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Abstract

B‐cell progenitor fate determinant interferon regulatory factor 4 (IRF4) exerts key

roles in the pathogenesis and progression of multiple myeloma (MM), a currently

incurable plasma cell malignancy. Aberrant expression of IRF4 and the establish-

ment of a positive auto‐regulatory loop with oncogene MYC, drives a MM specific

gene‐expression program leading to the abnormal expansion of malignant immature

plasma cells. Targeting the IRF4‐MYC oncogenic loop has the potential to provide a

selective and effective therapy for MM. Here we evaluate the use of bromodomain

inhibitors to target the IRF4‐MYC axis through combined inhibition of their known

epigenetic regulators, BRD4 and CBP/EP300. Although all inhibitors induced cell

death, we found no synergistic effect of targeting both of these regulators on the

viability of MM cell‐lines. Importantly, for all inhibitors over a time period up to

72 h, we detected reduced IRF4 mRNA, but a limited decrease in IRF4 protein

expression or mRNA levels of downstream target genes. This indicates that

inhibitor‐induced loss of cell viability is not mediated through reduced IRF4 protein

expression, as previously proposed. Further analysis revealed a long half‐life of IRF4
protein in MM cells. In support of our experimental observations, gene network

modeling of MM suggests that bromodomain inhibition is exerted primarily through

MYC and not IRF4. These findings suggest that despite the autofeedback positive

regulatory loop between IRF4 and MYC, bromodomain inhibitors are not effective

at targeting IRF4 in MM and that novel therapeutic strategies should focus on the

direct inhibition or degradation of IRF4.
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1 | INTRODUCTION

Transcription factor interferon regulatory factor 4 (IRF4) is a key

activator of lymphocyte development, affinity maturation and ter-

minal differentiation into immunoglobulin‐secreting plasma cells.1,2

Faulty regulation of IRF4 expression is associated with numerous

lymphoid malignancies, including multiple myeloma (MM), an

aggressive and incurable hematologic cancer characterized by the

abnormal proliferation of bone marrow plasma cells.2,3 At the mo-

lecular level MM is an heterogenous disease with several subgroups

defined by specific gene‐expression profiles and recurrent chromo-

somal rearrangements. In a minority of MM cases, chromosomal

translocation t(6; 14) (p25; q32) brings the IRF4 gene under the

control of immunoglobulin heavy‐chain regulatory regions.4,5 Inter-

estingly while IRF4 is not always genetically altered in MM,6 its

expression levels are always higher than in plasma cells.7 Over‐
expression of IRF4 leads to an aberrant gene‐expression program

and to the mis‐regulated transcription of a wide network of target

genes. Interferon regulatory factor 4 loss‐of‐function in RNA‐
interference‐based experiments have shown that MM cells are

“addicted” to this abnormal gene‐expression program since reduced

IRF4 expression causes rapid and extended non‐apoptotic cell death,
irrespective of genetic etiology.6 Similarly, targeting the 30 UTR of

IRF4 mRNA for degradation by overexpression of miR‐125‐b, leads
to MM cell death.8

MM accounts for 2% of all cancers and 10% of all hematologic

malignancies.9 In the UK around 5800 MM cases are diagnosed every

year (2015–2017) and incidence rates are projected to rise by 11%

by 2035. The past decade has seen a revolution in the management

of MM with the availability of novel therapies which are both more

effective and less toxic. Despite the ensuing improvement of clinical

outcomes, nearly every patient becomes refractory to therapies and

overall 5‐year survival rates are 52%.10 Considering that existing

treatments are not curative, there is a need for new therapeutic

approaches. Targeting IRF4 has potential to be a powerful thera-

peutic strategy in MM. Firstly, IRF4 inhibition likely presents

manageable side effects as phenotypes in IRF4‐deficient mice are

restricted to lymphoid and myeloid lineages and mice lacking one

allele of IRF4 are phenotypically normal.6 Additionally, MM cells'

“addiction” to IRF4 renders them fairly sensitive to even small de-

creases in IRF4 levels leading to cell death. Finally, IRF4 inhibition is

lethal to all MM cells regardless of their underlying transforming

oncogenic mechanism.6

An attractive approach to inhibit IRF4 might be targeting a

known regulator of IRF4 expression in MM, MYC. Constitutive

activation of MYC signaling is detected in more than 60% of

patient‐derived cells and one of the most common somatic genomic

aberrations in MM is rearrangement or translocation of MYC.11

MYC transactivates IRF4 by binding to a conserved intronic region

whilst IRF4 binds to the MYC promoter region in MM cells and

transactivates its expression, creating a positive autoregulatory

feedback loop.6 The expression of MYC in MM cells is abnormal

since normal plasma cells do not express MYC as a result of

repression by PR domain zinc finger protein 1 (PRDM1).12 More-

over, IRF4 binds to its own promoter region, creating a second

positive autoregulatory loop which would potentiate any thera-

peutic effect of targeting the MYC‐IRF4 loop.6 The IRF4‐MYC axis

is thus considered to be a promising therapeutic target in MM,

however the complex regulatory feedbacks make predictable tar-

geting of this axis challenging.

One way to target the IRF4‐MYC axis is through upstream

epigenetic regulators. Bromodomain and extra‐terminal (BET) pro-
teins inhibitors have emerged as potential therapeutic agents for

the treatment of hematologic malignancies.13 BET protein BRD4 is

specifically enriched at immunoglobulin heavy chain (IgH) enhancers

in MM cells bearing IgH rearrangement at the MYC locus, causing

their aberrant proliferation.14 BET inhibitors such as JQ1, which

displace BRD4 from chromatin by competitively binding to its

bromodomain acetyl‐lysine recognition pocket, trigger inhibition of

MYC transcription.14,15

CREB binding protein (CBP) and EP300 are bromodomain‐
containing histone acetyltransferases.16 CBP/EP300 bromodomain

inhibitors, such as SGC‐CBP30, induce cell cycle arrest and apoptosis
in MM cell‐lines.17 Whilst the effects of BET bromodomain inhibition

are most likely due to direct suppression of MYC, inhibition of CBP/

EP300 bromodomain has been proposed to work through suppres-

sion of IRF4.17

Given the positive auto regulation loop between MYC and IRF4

in MM, we hypothesized that combining the two classes of inhibitors

with distinct transcriptional effects would have a synergistic impact

on MM cells. To confirm this, we explored the effect of combinations

of BET and CBP/EP300 inhibitors on the viability of a panel of MM

cell‐lines. To assess whether the protein and mRNA levels for MYC,

IRF4 and their downstream targets following drug exposure were

consistent with those expected from the IRF4‐MYC auto‐regulatory
loop model, we compared their experimentally measured with their

simulated expression in a network model of MM molecular in-

teractions. We found that within the time frames used there is no

synergistic effect on the viability of MM cell‐lines. For all inhibitors
we experimentally measured largely unaffected levels of IRF4 protein

and downstream target protein mRNA levels. These results are

consistent with the continued presence of IRF4 protein in MM cells

due to its long half‐life. Our network modeling of MM therefore

suggests that cell death induced by CBP/EP300 bromodomain inhi-

bition is not exerted directly through IRF4 but indirectly through

MYC.

2 | METHODS

2.1 | Cell viability assay

Cell viability assay and statistical analysis were performed as

described in the supplemental methods. In brief, cell viability after

inhibitors treatment was assessed using CellTiter‐Blue® Cell Viability

Assay. Each experiment was reproduced 3 times per cell line.
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2.2 | Western blotting

Detailed protocols for western blotting are available in the supple-

mental methods. Primary antibodies: IRF4 (ab133590, Abcam), MYC

(sc‐40, Santa‐Cruz Biotechnology) and β‐actin (A2066, Sigma‐
Aldrich). HRP‐conjugated secondary antibodies: anti‐rabbit
(ab205718, Abcam) anti‐mouse (7076S, Cell signaling).

2.3 | Quantitative real time PCR

RNA extraction, cDNA synthesis, and quantitative real time PCR was

performed as in the supplemental methods.

2.4 | Protein half‐life

To measure protein half‐life, cells were treated with 10 μg/ml
cycloheximide for up to 72 h followed by western blotting. Detailed

protocols are available in the supplemental methods.

2.5 | Gene and protein network modeling

Computational models were constructed using Ordinary Differential

Equations and solved using MATLAB 2020a and ode15 s. All code,

equations and parameters used in modeling are available on Github

(https://github.com/SiFTW/MMModel/). Regulated reactions were

modeled as described previously.18 Detailed methods are available in

the supplemental methods.

3 | RESULTS

3.1 | Concomitant BRD4 and CBP/EP300 inhibition
does not have a synergistic effect on MM cell viability

To explore the effect of the combination of bromodomain inhibitors

on MM cell viability, we employed BET inhibitors JQ1 and OTX015,

CPB/EP300 inhibitor SGC‐CBP30 and ISOX‐DUAL, a dual inhibitor

of BET and CPB/EP300. Three MM (KMS‐12‐BM, NCI‐H929, SKMM‐
1) and one acute leukemia (OCI‐AML3) cells lines were treated for

48 h with different concentrations of these compounds. As shown in

Figure 1A–E, JQ1 was the most effective inhibitor with an IC50 be-

tween 0.27 and 0.42μΜ. Similar IC50 values were obtained for

OTX015 (0.47–1.9 µM) and JQ1+SGC‐CBP30 (0.28–0.67 μM).

However, treatment with SGC‐CBP30 alone (IC50 1.58–5 μM) and

ISOX‐DUAL (2.15–7.70 μM) showed reduced efficacy. The poor

inhibitory activity of ISOX‐DUAL could be explained by its reduced

affinity for BRD4 and CPB/EP300 (IC50 1.5 and 0.65 μM) when

compared to JQ1 and SGC‐CBP30.19 To test this hypothesis, we

compared the effect of ISOX‐DUAL treatment with a combination of

JQ1+SGC‐CBP30 (Figure 1E). We found that the combination

treatment had a stronger inhibitory effect on cell viability than ISOX‐
DUAL, with an IC50 comparable with that of JQ1 alone. Similar re-

sults were obtained when treating the cells for 72 h (Figure S1).

Taken together, our results demonstrate that ISOX‐DUAL offers no

advantage to treatment with a BET inhibitor alone and that

combining JQ1 and SGC‐CBP30 does not lead to synergistic or

antagonistic cytotoxic effects.

3.2 | Bromodomain inhibitors impact IRF4 mRNA
but not protein expression in MM cell‐lines

We next investigated the effects of bromodomain inhibitors on the

mRNA and protein expression levels of IRF4 and MYC. We treated

the cells with a concentration of drugs at their IC50 value (as in

Figure 1). As shown by western blotting analysis, we observed a

dramatic decrease in the level of MYC protein, following treatment

for 4, 8, 24 h (Fig.S2) with a complete abrogation after 48 and 72 h

(Figure 2) However, drug treatments did not have a similar effect

on IRF4 protein levels. No reduction in IRF4 protein levels was

observed at any of the time points when using JQ1 or OTX015 and

a slight reduction in IRF4 protein expression (up to 30%) was only

observed across all MM cell‐lines when a combination JQ1+SGC‐
CBP30 was used (Figure 2, Figure S2). We next examined the effect

of drug treatment on the levels of IRF4 and MYC mRNA. Treatment

with all drugs significantly decreased both IRF4 and MYC mRNA

expression in all cell‐lines after 4, 8, 24, 48 and 72 h (Figure 3,

Figure S3), although the mean reduction for MYC was more pro-

nounced than that for IRF4. In summary, our data show that bro-

modomain inhibitors effectively reduce MYC and IRF4 mRNA levels

and MYC protein levels, but do not show a corresponding effect on

IRF4 protein levels.

3.3 | Bromodomain inhibitors affect the gene‐
expression levels of target genes of MYC but not IRF4

As protein levels of MYC and IRF4 were unequally affected by drug

treatment, we hypothesized that expression of their downstream

target genes would also be differentially affected. To test this hy-

pothesis, we measured the impact of drug treatment on the mRNA

levels of IRF4 (KLF2 and PRDM1) and MYC (CDK4 and hTERT)

downstream targets. We treated the cells with a concentration of

drugs corresponding to their IC50 value for 4, 8, 24, 48 and 72 h

(Figure 4, Figure S4 and Figure S5). At the early time points of 4, 8

and 24 h, no significant reduction of mRNA levels could be detected

in the MM cell‐lines for IRF4 downstream target KLF2 (Fig.S4), whilst

a 30% reduction could be seen after 48 and 72 h (Figure 4). A similar

trend was observed for PRDM1 mRNA levels, with small decreases at

early time points (Fig.S4) and more substantial decreases of about

50% only occurring after 48 and 72 h (Figure 4).
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F I GUR E 1 Characterization of the effect of JQ1, OTX015, SGC‐CBP30, ISOX‐DUAL and JQ1+ SGC‐CBP30 treatments on MM cell‐lines
viability. Reduction of KMS‐12‐BM (A), NCI‐H929 (B), SKMM‐1 (C) and OCI‐AML3 (D) cell viability after treatment with different
concentrations of bromodomain inhibitors for 48 h. Cell survival is plotted against the logarithm of inhibitor concentrations. JQ1 (red curves),

JQ1+SGC‐CBPEP30 (purple curves), OTX015 (pink curves), SGC‐CBP30 (brown curves) and ISOX‐DUAL (light blue curves). Results are
represented as mean � Standard Error of Mean (SEM) of triplicate assays. (E) The graph shows the IC50 values of JQ1, JQ1+SGC‐CBP30,
OTX015, SGC‐CBP/EP30, ISOX‐DUAL after 48 h treatment of KMS‐12‐BM (green bars), NCI‐H929 (black bars), OCI‐AML3 (blue bars) and
SKMM‐1 (orange bars) cells
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In contrast, mRNA expression of the MYC downstream targets

hTERT and CDK4 were rapidly and effectively decreased by drug

treatment in all cell‐lines (Figure 5, Figure S5).

In summary, these results confirm our hypothesis that MYC, but

not IRF4 downstream target genes are substantially downregulated

as a result of bromodomain inhibition.

3.4 | Gene and protein network modeling are
consistent with a long IRF4 protein half‐life

Given the known feedback loop between MYC and IRF4 in MM cells

we asked whether the reduction in IRF4 mRNA, but not protein

expression could be explained by the stability of IRF4 protein.

To test this hypothesis and to assess whether the protein and

mRNA levels for MYC, IRF4 and their downstream targets

following drug exposure were consistent with those expected

from the IRF4‐MYC auto‐regulatory loop model, we used

computational techniques to model the MYC and IRF4 gene and

protein network in MM cells. Computational modeled time

courses of PRDM1, IRF4, and MYC protein and mRNA levels

were generated by simulating the effect of inhibiting MYC mRNA

transcription. In order to compare computational simulations with

measured protein and mRNA levels, both experimental and

simulated results were normalized to the first timepoint to give a

fold change over time.

As the results are independent from the drug and cell line

used, we initially modeled our response based on drugs inhibiting

MYC expression (Figure 6A) using the published half‐life for MYC

of 30 min20 and an estimated of 7 h for IRF4 (no data was

found). The squared distance between the mean experimental

result and modeled response for each timepoint shows a

discrepancy, specifically for IRF4 protein and PRDM1 mRNA levels

(Figure 6B), suggesting that IRF4 has a half‐life significantly longer

than 7 h. To measure IRF4 protein half‐life, we treated MM cell‐
lines with 10 μg/ml cycloheximide to block protein synthesis for

up to 72 h and monitored the effect on existing protein levels by

western blotting (Figure 7A). We found that IRF4 protein levels

decreased slowly in all MM cell‐lines and the half‐life was

determine to be 61, 52 and 33 h in KMS‐12‐BM, NCI‐H929 and

F I GUR E 2 IRF4 and MYC protein levels in MM cell‐lines following treatment with JQ1, OTX015, SGC‐CBP30, ISOX‐DUAL and JQ1+
SGC‐CBP30. Changes in MYC and IRF4 protein levels were analyzed by Western Blot following IC50 drug treatments for 48 and 72 h in KMS‐
12‐BM, SKMM‐1, NCI‐H929 and OCI‐AML3. The control (CTRL) is 2 mMDMSO treatment. β‐actin was used as loading control. Quantification
was performed by using LI‐COR machine and protein levels were expressed relative to the control treatment
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SKMM‐1 respectively. In contrast to the stability of IRF4, levels of

MYC decreased within 30 min in all MM cell‐lines, (half‐lives of

1 hr, 22 and 30 min respectively), in line with published reports.20

To test whether a half‐life of 48 h for IRF4 can explain the

observed response to the drug we modeled MYC and IRF4 gene

and protein network using this longer half‐life. The squared dis-

tance between the mean experimental result and modeled

response for each timepoint now shows a good agreement be-

tween the model and the data (Figure 7B). Despite the overall

improvement of the fit, a discrepancy persists for IRF4 protein

levels between 24 and 36 h suggesting that the model does not

completely recapitulate the data, especially at the later time

points.

3.5 | Gene and protein network modeling suggest
that bromodomain inhibitors effects on MM cell‐lines
are mainly exerted through MYC transcription
repression and not IRF4

The initial computational modeling of the predicted drug response on

MM cell‐lines was formulated on the assumption of bromodomain

inhibition affecting mainly MYC transcription. This was a reasonable

assumption based on the observation that unperturbed IRF4 protein

levels in MM cell‐lines could be measured following most drug

treatment. However, because of a small (30%) but consistent

reduction of IRF4 protein levels in response to treatment with the

JQ1+ SGC‐CBP30 combination we then asked whether
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F I GUR E 3 IRF4 and MYC mRNA expression in MM cell‐lines following treatment with JQ1, OTX015, SGC‐CBP30, ISOX‐DUAL and JQ1+
SGC‐CBP30. IRF4 and MYC mRNA expression was analyzed by qPCR following IC50 drug treatments for 48 and 72 h in KMS‐12‐BM (green
bars), SKMM‐1 (orange bars), NCI‐H929 (black bars) and OCI‐AML3 (blue bars) cells. The control (CTRL) is 2 mM DMSO treatment. Transcript

levels were normalized against β‐actin expression and expressed relative to the control treatment. Data are shown as mean � SEM. A t‐test
was performed with reference to the control. *p < 0.05, **p < 0.01, ***p < 0.001
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bromodomain inhibitors work through repression of MYC, IRF4 or

both. To do so, we used gene and protein network modeling to

simulate the effect of a drug acting on the transcription of MYC, IRF4

or both (Figure 8A) using the measured half‐lives of IRF4 and MYC.

When comparing the predicted to the experimentally measured

expression of MYC, IRF4 and PRDM1 we could conclude that the

main effect of the drugs is predicted to be through disruption of MYC

transcription (Figure 8B). The modeled response of the effects of a

drug acting only on IRF4 transcription poorly predicts the observed

protein and mRNA levels, especially those of MYC. Simulating the

effects of a drug treatment targeting both MYC and IRF4 transcrip-

tion improves the match, but not as well when using a single‐hit to
MYC model. However, for all models a discrepancy remains between

the measured and modeled levels of IRF4 protein after 24 h, pointing

at additional and yet uncovered regulatory interactions within the

IRF4 network in MM cells. When extrapolated to MM cells in vivo,

our work has important implications for the design of new thera-

peutic strategies.

4 | DISCUSSION

In this work we studied the effects on MM cell‐lines of two classes

of bromodomain (BET and CBP/Ep300) inhibitors, with putatively

distinct transcriptional effects, with the aim to disrupt the onco-

genic feedback loop between MYC and IRF4. Specifically, we wan-

ted to evaluate the possibility that the combination of these

bromodomain inhibitors would have synergistic impact on the
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F I GUR E 4 IRF4 downstream gene mRNA expression in MM cell‐lines following treatment with JQ1, OTX015, SGC‐CBP30, ISOX‐DUAL
and JQ1+ SGC‐CBP30. KLF2 and PRDM1mRNA expression was analyzed by qPCR following IC50 drug treatments for 48 and 72 h in KMS‐12‐
BM (green bars), SKMM‐1 (orange bars), and NCI‐H929 (black bars) cells. The control (CTRL) is 2 mMDMSO treatment. Transcript levels were
normalized against β‐actin expression and expressed relative to the control treatment. Data are shown as mean � SEM. A t‐test was
performed with reference to the control. *p < 0.05, **p < 0.01, ***p < 0.001
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viability of MM cells and on the transcription and protein levels of

IRF4 and MYC.

Our data showed that while the two BET inhibitors JQ1 and

OTX015 showed themost effective inhibitionon cell viability, theCBP/

Ep300 inhibitor SGC‐CBP/Ep300 and the dual BET‐CBP/Ep300 in-

hibitor ISOX‐DUAL caused the least effect. Since the combination JQ1
+SGC‐CBP30 has a stronger inhibitory effect on cell viability

compared to the dual inhibitor alone this suggests that the limited ef-

fect of ISOX‐DUAL is caused by its reduced affinity for BRD4 andCPB/
EP300. Our data also indicate that combining JQ1 and SGC‐CBP30
does not lead to synergistic or antagonistic cytotoxic effects on MM

cell‐lines. In line with previous studies,14,15,17,21 we found that these

drugs cause MYC downregulation at protein and mRNA levels. Inter-

estingly, within the time frame and for all inhibitors we have observed

largely unaffected levels of IRF4 protein and downstream target gene

mRNA levels. Using computational modeling of a network of MM mo-

lecular interactions, we could show that these results can be partially

explained by the high stability of the IRF4 protein (>48 h). Finally, the
modeling data also implies that any effect observed on MM cell‐lines
for both inhibitors is not exerted through IRF4 but mainly through

MYC. These results are in contrastwith previous data17 supporting the

idea that SGC‐CBP30 treatment on MM cell line causes cell cytotox-

icity via targeting of IRF4. However, more recent data show that inhi-

bition of CBP/EP300 bromodomains can interfere with GATA1 and

MYC‐driven transcription by displacing CBP/EP300 from GATA1

andMYCbinding sites at enhancers leading to a decrease in the level of

acetylation of these regulatory regions. This in turn reduces gene‐
expression of both GATA1 and MYC.22

Our data shows that IRF4 is characterized by a long half‐life
in a panel of MM cell‐lines. Previous studies have shown a
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F I GUR E 5 MYC downstream gene mRNA expression in MM cell‐lines following treatment with JQ1, OTX015, SGC‐CBP30, ISOX‐DUAL
and JQ1+ SGC‐CBP30. CDK4 and hTERT mRNA expression was analyzed by qPCR following IC50 drug treatments for 48 and 72 h in KMS‐12‐
BM (green bars), SKMM‐1 (orange bars), and NCI‐H929 (black bars) cells. The control (CTRL) is 2 mMDMSO treatment. Transcript levels were
normalized against β‐actin expression and expressed relative to the control treatment. Data are shown as mean � SEM. A t‐test was
performed with reference to the control. *p < 0.05, **p < 0.01, ***p < 0.001
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variability in the half‐life's values for IRF proteins (IRF1∼30 min,

IRF7∼5 h, IRF2∼8 h, IRF3∼60 h).23,24 The basis of these varied

half‐lives is unclear, but it may involve differences in ubiquitin‐
mediated degradation through differential in expression of

ubiquitin‐specific proteases (USPs). Alterations of USP enzymes are

implicated in the pathogenesis of various cancers and USP15 has

been reported to be overexpressed in MM cells and inhibit MM

apoptosis.25,26 Interestingly, USP4 interacts with, stabilizes and

deubiquitinates IRF4,27 which could be provide an explanation for

the long IRF4 half‐life. Further work will be required to determine

if these USPs have any role in the regulation of IRF4 stability in

MM cells.

A growing body of preclinical and clinical evidence suggests that

bromodomain inhibition could be an important therapeutic approach

in a number of hematologic malignancies.28 Furthermore, in vivo and

in vitro evidence suggests synergistic cytotoxicity of bromodomain

inhibitors and immunomodulatory drugs (IMiDs) in MM29 and pri-

mary effusion lymphoma.30 lMiDs are known to bind cereblon, which

activates E3‐ubiquitin ligase resulting in the degradation of IKZF1

and IKZF3.31 Downregulation of IKZF1 and IKZF3 then suppresses
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F I GUR E 6 Computational model of the
molecular regulatory network in MM cells. A,

Systems Biology Graphical Notation (SBGBN)
diagram of the model of IRF4, MYC and
PRDM1 regulation. Positive regulation is

indicated by lines capped with circles. Negative
regulation is indicated by lines capped with
bars. B, Experimentally measured expression of
the indicated molecular species in H929,

SKMM‐1, KMS cell‐lines exposed to SGC‐
CBP30, JQ1, OTX015, ISOX‐DUAL, and JQ1
+SGC‐CBP30 combination. Each shaded region
represents the standard deviation of 3
experimental replicates. The modeled response
is shown with a solid line. The model assumes a

half‐life for IRF4 of 7 h. The squared distance
between the mean experimental result and
modeled response for each timepoint is shown

in the bottom right with colors consistent with
other panels
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IRF4 transcription. Therefore IMiDs, just like bromodomain in-

hibitors, indirectly inhibit IRF4 expression. Our studies suggest that

indirect inhibition of IRF4, either via IMiDs or bromodomain

inhibition, might not be effective at interfering with IRF4 and its

oncogenic transcription program in MM because of its stability.

Future work aimed at targeting the IRF4 addiction in MM may be
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F I GUR E 7 Analysis of IRF4 stability in MM cell‐lines and updated computational model of the molecular regulatory network in MM cell. A,
KMS‐12‐BM, SKMM‐1, NCI‐H929 were incubated with 10 μg/ml cycloheximide for the indicated time points and cell lysates analyzed by

Western blotting for protein levels of IRF4 and MYC. β‐actin was used as a loading control. B, Experimentally measured expression of the
indicated molecular species in H929, SKMM‐1, KMS cell‐lines exposed to SGC‐CBP30, JQ1, OTX015, ISOX‐DUAL, and JQ1+SGC‐CBP30
combination. Each shaded region represents the standard deviation of 3 experimental replicates. The modeled response is shown with a solid

line. The model uses the experimentally determined IRF4 half‐life. The squared distance between the mean experimental result and modeled
response for each timepoint is shown in the bottom right with colors consistent with other panels
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more effective if re‐focused on direct inhibition or degradation of

IRF4, which could be then used in synergistic combination to address

relapsed or refractory cases of MM for which presently limited

choices exist.
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