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Abstract

Background: Singular value decomposition (SVD) is a powerful technique for information retrieval; it helps uncover
relationships between elements that are not prima facie related. SVD was initially developed to reduce the time
needed for information retrieval and analysis of very large data sets in the complex internet environment. Since
information retrieval from large-scale genome and proteome data sets has a similar level of complexity, SVD-based
methods could also facilitate data analysis in this research area.

Results: We found that SVD applied to amino acid sequences demonstrates relationships and provides a basis for
producing clusters and cladograms, demonstrating evolutionary relatedness of species that correlates well with
Linnaean taxonomy. The choice of a reasonable number of singular values is crucial for SVD-based studies. We
found that fewer singular values are needed to produce biologically significant clusters when SVD is employed.
Subsequently, we developed a method to determine the lowest number of singular values and fewest clusters
needed to guarantee biological significance; this system was developed and validated by comparison with
Linnaean taxonomic classification.

Conclusions: By using SVD, we can reduce uncertainty concerning the appropriate rank value necessary to
perform accurate information retrieval analyses. In tests, clusters that we developed with SVD perfectly matched
what was expected based on Linnaean taxonomy.

Background
We developed a methodology, based on singular value
decomposition (SVD), for improved inference of evolu-
tionary relationships between amino acid sequences of
different species [1]. SVD produces a revised distance
matrix for a set of related elements. Our SVD-based
computations provide results that are close to the

internationally accepted scientific gold standard, Lin-
naean taxonomy.
The reason we chose this methodology is the proven

capacity that SVD has to establish non-obvious, relevant
relationships among clustered elements [2][3][4][5], pro-
viding a deterministic method for grouping related spe-
cies. A distance matrix derived from SVD can be used
by cladogram software to produce a “phylogenetic tree”,
yielding a visual overview of the relationships. We com-
pared species grouping by this method with Linnaean
taxonomy grouping and found that the species clusters
were similar.
The rationale behind SVD is that a matrix A can be

represented by a set of derived matrices [2], in the same
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way that a number can be derived into factors. One can
also think of SVD as a set of matrices that provide
numerically different representations of data without
loss in semantic meaning, as for example representation
in different base numbers. To understand the mathema-
tical concept of SVD, suppose that ‘A’ is an array of real
numbers or complex numbers composed of m rows by
n columns. A matrix with a singular value decomposi-
tion of matrix A can be made:

A U V T=   Σ (1)

where U is an orthonormal m x m matrix, and Σ is an
m x n matrix, known as the diagonal matrix, with real
and non negative numbers. The matrix VT is known as
a conjugate transpose, an n x n unit matrix with real or
complex numbers. As the diagonal values of Σ are
ordered in descending order, Σ is a direct function of
matrix A and characterizes the singular values of this
matrix, ordering them from the most significant to the
least significant values. Considering a subset of singular
values of size k<n, we can obtain Ak an approximate
matrix of matrix A:

A U Vk k k k
T=   Σ (2)

Thus, data approximation depends on how many sin-
gular values are used [6]. In this case, the number of
singular values k is also known as the rank of matrix Ak,
indicating how many lines and columns in matrix Ak

are linearly independent. The possibility of extracting
information based on less data is part of the reason for
this technique’s success, as it allows data compression/
decompression, with an execution time that does not
increase exponentially with increasing matrix size, mak-
ing analysis viable [6]. A data set represented by a smal-
ler number of singular values than the original, full-size
data set has a tendency to group data items that would
not be grouped together if we used the original data set
[2]. This could explain why clusters derived from SVD
can expose non-trivial relationships among the original
data set items [7]. In this paper we do not use the
matrix Ak, product’s factorization by SVD to rank k;
with only two arrays of SVD, the matrix Dk[3] is repre-
sented in the context of the matrix

A U V U V U Dk k k k
T

k k k
T

k k= = =       Σ Σ( ) (3)

The justification for using only Dk is that it has k lines
instead of m lines from Ak, so Dk is made up of linear
combinations from Uk columns, which in turns provides
the relationship A ≈ Ak ≈ Dk.
The main data set that we used was obtained from a

previous study involving SVD [8], with 832

mitochondrial protein sequences from 13 families of
mitochondrial genes, obtained from 64 vertebrate mito-
chondrial genomes. We organized these 832 sequences
into 64 single FASTA sequences, each representing a
single Linnaean species, concatenating the sequences of
the 13 families of mitochondrial genes of each species.
From here on, we will refer to this set of data as data-
set1. Dataset1 consists of 64 highly-related species that
have at least 8 of 14 Linnaean taxonomy levels in com-
mon with each other. As we also wanted to investigate
how SVD parameters can influence cluster quality, we
added 12 additional species to this data set, creating a
second set of data, which we named dataset2 (Figure 1).
We chose these 12 new species based on their high
diversity, in order to create a less homogeneous data set;
our objective was to determine whether SVD would
separate non-related and related species into different
groups. The species within dataset1 all belong to the
same infraphylum (Gnathostomata), whereas the 12 new
species that were included to increase diversity were
selected from other phyla, also from the animal king-
dom. The 12 species included in dataset2 were Aphro-
callistes vastus, Asterias amurensis, Aurelia aurita,
Balanoglossus carnosus, Branchiostoma belcheri, Bugula
neritina, Callyspongia plicifera, Candida albicans,
Metridium senile, Ostreococcus tauri, Phallusia fumi-
gata, and Unionicola foili.

Figure 1 Dataset2 schema. Construction scheme for a set of
species that were used as a negative control for the partitioning
techniques.
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The quality of the clusters that were generated was
measured by the number of Linnaean taxonomy levels
each species within the cluster bore in common with
the other species; this was calculated as a function of an
increasing rank value. When certain rank values are
reached, larger values do not improve cluster quality,
because there is no increase in taxonomic levels that the
species have in common; in some cases a decrease is
observed. The cluster quality obtained from a certain
rank value maintains the number of shared common
Linnaean taxonomy levels constant. This is evidence
that there is an intrinsic relationship between these spe-
cies that is mirrored in the distance matrix derived from
these clusters; this quality helps build relevant
cladograms.

Results and discussion
Singular value decomposition and number of clusters
matters
In this study we give support to the hypothesis that
choice of an appropriate data representation and a fixed
number of clusters, combined with a good algorithm for
categorizing this data, is sufficient for the production of
biologically significant clusters. An A matrix has rank n,
where n indicates the number of distinct species. The
rank value (k) defines the degree of resolution of matrix
Dk compared to the original matrix D, so k must be less
than or equal to n. However, a k value close to n is
undesirable, because one obtains a strong approximation
to the original matrix D, which is useless to uncover
relationships. We need to avoid this so-called ‘noise
data’ [9] and find a smaller number of singular values
that adequately represent the original data and thus
achieve a reduction in the amount of data that needs to
be processed [9][10]. We found that there is an optimal
rank value that can be obtained by systematically testing
all possible rank values and distances that define
whether two species will form part of the same cluster,
based on Linnaean taxonomic levels. A maximum dis-
tance value defining whether two species belong to a
cluster can be experimentally found by increasing and
decreasing an initial, empirically-defined distance, for
example, the maximum distance between two species in
a data set. We tried a systematic search for parameters
that could confirm or deny this hypothesis. Working
with singular value decomposition, one of the main
parameters is the number of singular values necessary to
create matrix decomposition sufficient to correctly sepa-
rate all 76 species. This can be done by an algorithm
called kdcSearch, which systematically examines possibi-
lities for variation in singular values, Euclidean distance
separation of clusters and number of clusters, a triad
that we call kdc values. A systematic search to evaluate
these three parameters proved to be computationally

viable, independent of human intervention; it separates
the target species into groups that represent similarity
relationships between protein sequences and thus infer
homology between species. The clusters generated
through systematic choice of these parameters were bio-
logically significant, demonstrating that we were on the
right path in our attempt to determine the smallest
number of singular values and the correct Euclidean dis-
tance that will correctly represent the original data, giv-
ing the correct separation of species groups. Based on
these experiments we showed that even an “as simple as
possible agglomerative clustering algorithm” (ASAP) can
benefit from singular value decomposition to improve
the quality of clusters that are generated. The next step
was to use the parameters that were optimal [5] accord-
ing to our methodology in other algorithms that have
been thoroughly tested by the scientific community. The
choice was made by K-Means [11], Expectation Maximi-
zation (EM) [12], Adaptive Quality-based Clustering
Algorithm (AQBC) [13], K-Medoids [14], and Make-
DensityBasedClusterer (MDBC) [15], since there is a sta-
tistically well-founded background, they have been
widely used, and they are available as free software
packages from R [16], Waikato Environment for Knowl-
edge Analysis (WEKA) [15], and the JAVA Machine
Learning Library [17]. The K-Means requires that an
array of numbers be processed to calculate distances for
the creation of clusters. It also opens the possibility of
including a parameter that defines a fixed number of
clusters to be created with the elements in the distance
matrix. The same number of clusters inferred from the
analysis done by ASAP, our in-house agglomerative
clustering algorithm, was used by the K-Means algo-
rithm. The K-Means implemented in the R statistical
software, from now on called the K-Means-R algorithm,
was parameterized for the initial number of elements,
but not for specific elements. There is no such parame-
terizing in the K-Means implemented in the WEKA (K-
Means-WEKA) software, making it possible that differ-
ent results will be obtained with these two programs.
We chose as the number of initial elements for calculat-
ing the first K-Means-R average half of the items or half
of the species. The first run of K-Means-R was done
with a matrix regarded as adequate because it had been
generated with the parameters of the algorithm systema-
tically observed ASAP, a rank value of nine and eight
clusters. The algorithms EM, MBDC, K-Means-WEKA
and K-Medoids were configured for eight clusters, with-
out altering the other configuration parameters. The
algorithm AQBC does not allow fixing the number of
clusters, but we empirically tested parameters till we
obtained the same number of clusters (eight). Then we
looked for a way to compare the results from the var-
ious algorithms. At first glance it seemed that the result
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of, for example, K-Means-R was as good as the result
from ASAP, but the large number of species and the
not less considerable number of clusters made the com-
parison difficult. We needed a measure that would allow
us to objectively compare the performances of the algo-
rithms. Then we initiated execution of all algorithms
with a number of singular values that represented the
original array, without any reduction in the rank of the
matrix decomposed into singular values. Despite minor
variations in quality in some clusters, the overall quality
of the clusters did not differ from the performance of all
algorithms on a distance matrix generated with a reduc-
tion in rank. Table 1 shows quality calculations of eight
clusters using ASAP and K-Means-R algorithms with
different numbers of singular values. Clusters shown in
this table are from the second round of trying to create
smaller clusters, while maintaining correct separation of
the Aves group (positive control), or the first recursive
call of the ASAP algorithm. Both K-Means-R and ASAP
were configured to generate eight clusters. Both algo-
rithms used the matrix of the trigrams representing
8,000 combinatorial possibilities of 20 amino acids (203),
also called N-gram with N=3, with 60 singular values
(the original matrix, since all possible singular values
were used) and another matrix derived from the former
with only nine singular values; these quantities of singu-
lar values and clusters gave good SVD results in final
clustering. The first column shows the cluster identifica-
tion. The columns that follow are in groups of four,
showing the results of K-Means and ASAP, using a tri-
grams frequency matrix created by SVD with 60 or nine
singular values. The four columns under the label
‘Number of species clusters Joined by’ show the number
of species obtained in each cluster. The four columns
under the label ‘Linnaean Taxonomy levels in common
by clusters’ show the number of Linnaean levels in com-
mon for each cluster, and the four columns under the

label ‘common Linnaean taxonomy frequency levels
(cLtlf) by cluster’ show the results of the metrics that
we suggested. These come from multiplication of the
column ‘Number of species clusters Joined by’ by the
column ‘Linnaean Taxonomy levels in common by clus-
ters’. There were no significant differences (Student t
test) in the quality of clusters generated by the algo-
rithms, based on a comparison of the mean number of
Linnaean levels in common and cLtlf, even though they
used different singular values, as shown in the Addi-
tional file 1 (Figure S1). The Chi-square test did not
demonstrate any significant relation between these four
clustering rounds. However, there were significant dif-
ferences between the algorithms and cluster data, based
on cLtlf, as shown in Table 2. This table shows an alter-
native to measuring algorithm performance with differ-
ent calibration parameters, using Linnaean taxonomy to
infer cluster quality. The sum of the individual qualities
of each cluster is measured by cLtlf. When cLtlf is
weighted by the variation of this quality around the
mean or standard deviation, the quality of results can be
inferred through Linnaean clusters metric quality (Lcq).
It is worth noting that clusters whose data are shown in
Table 1 possessed a large number of taxonomic levels in
common (60% of the levels that we used in this work).
It is possible that so many in-common taxonomic levels
left little scope for differentiation between the clusters,
making the average quality very similar regardless of the
method used for clustering. This result in the compari-
son between K-Means-R and ASAP was also observed
in the results produced by the other algorithms that we
tested. When there was a set of clusters with homoge-
neous qualities, it was necessary to find a measure that
would discriminate the effectiveness of the algorithms
with different numbers of singular values. Therefore, we
used a measurement that takes into consideration the
sum of the qualities of all clusters provided by a given

Table 1 Using the distance matrix that corrected separated Aves cluster: K-Means compared to ASAP

Number of species joined by clusters Linnaean Taxonomy levels in common by
clusters

common Linnaean taxonomy levels
frequency (cLtlf) by cluster

Cluster K-means
with rank

60

SNJ
with

rank 60

K-means
with rank

09

SNJ
with

rank 09

K-means
with rank

60

SNJ
with

rank 60

K-means
with rank

09

SNJ
with

rank 09

K-means
with rank

60

SNJ
with

rank 60

K-means
with rank

09

SNJ
with

rank 09

1 10 10 10 10 10 10 10 10 100 100 100 100

2 14 27 14 25 10 9 10 9 140 243 140 225

3 4 1 4 7 12 13 12 8 48 13 48 56

4 7 17 4 7 8 8 10 8 56 136 40 56

5 2 2 9 2 13 11 9 12 26 22 81 24

6 6 1 4 4 10 13 10 10 60 13 40 40

7 5 1 6 4 9 13 10 12 45 13 60 48

8 11 1 8 1 9 13 8 13 99 13 64 13

This table displays the results of K-Means and ASAP on a cluster of 60 species obtained in the first ASAP clustering round, when 76 species were separated into
clusters.
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method, weighted by the variation in the quality of clus-
ters. We analyzed this metric to look for significant dif-
ferences between the two algorithms and the two
numbers of singular values. The K-Means-R algorithm
performance was two-fold better than that of ASAP.
When we used an array of nine decomposed singular
values, the number considered optimal for this set of
data, in accordance with the methodology suggested
here, K-Means and ASAP algorithms had 9 and 28%
better performances, respectively, when compared to the
original results from these methods, without singular
value decomposition. The other algorithms that we
tested also gave a significant increase in the quality of
clusters in the results of the matrix decomposed into
nine singular values and eight clusters, versus the non-
decomposed matrix and eight clusters. In decreasing
order, the increases in performance for each method
were ~50% (AQBC), ~49% (EM), ~27% (ASAP), ~16%
(K-Medoids), and ~9% (K-Means-WEKA, MDBC and
K-Means-R). Despite the equal percentage increase for
the algorithms K-Means-WEKA, MDBC and K-Means-
R, the absolute quality values for K-Means-R were
approximately 50% higher than those from K-Means-
WEKA and MDBC, considering the distance matrices
with and without decomposition by singular values. We
chose the K-Means-R method for more detailed analysis
of the results because this is a widely used algorithm
and because in terms of absolute quality, it gave results
very close to those from algorithm EM, which was the

best in terms of absolute quality. These results have
some details that are worthy of note. First, they show
that in fact a matrix decomposed into a certain number
of singular values, using a certain number of clusters,
can create a representation of the original data with bet-
ter quality than that obtained when we use the original
data matrix (full rank). This reinforces the need for
decomposition of a matrix into a smaller number of sin-
gular values for the removal of so-called ‘noise’ attribu-
table to a full-rank array [9][10][18]. Second, the
clustering algorithm was instrumental in generating
good-quality clusters. It can be seen in Table 2 that the
performance of K-Means-R and EM algorithms was
two-fold better than that of the ASAP algorithm. Third,
the method that we suggest here, to systematically
explore the parameters needed to obtain the best perfor-
mance of the K-Means proved essential to allow the K-
Means to generate even better quality clusters. Fourth,
the representation of a sequence of amino acids as a
vector that stores the trigram frequency of 20 amino
acids was effective to capture the levels of similarity
between the sequences of the protein species that we
analyzed, without incurring the problems that classical
algorithms have with protein sequence alignments [19].
Fifth and finally, the quality metrics using the Linnaean
classification suggested in this study were effective in
measuring the quality of the biological significance of
clusters constructed from mitochondrial proteins of
dozens of species. Consequently, we conclude that when

Table 2 Inferring quality from clustering methods

Algorithm/
software

Rank N Min
cLtlf

Max
cLtlf

Mean
cLtlf

cLtlf
clusters
sum

(∑cLtlf)

cLtlf
standard
deviation

(s)

Linnaean
clusters quality

(∑cLtlf/s)

Linnaean clusters
quality gain (K09/

K60)%

cLtlf
median

Median clusters
quality gain (K09/

K60)%

AQBC-
javaml

K09 8 32 180 71.25 570 52.27 10.90 49.58% 42.50 26.87%

K60 8 0 220 64.38 515 70.64 7.29 33.50

EM-weka K09 8 40 120 70.12 561 31.53 17.79 48.99% 57.00 1.79%

K60 8 16 160 70.25 562 47.06 11.94 56.00

Kmeans-
weka

K09 8 30 180 69.38 555 46.70 11.88 9.26% 61.50 -2.38%

K60 8 16 180 69.88 559 51.39 10.88 63.00

Kmeans-R K09 8 40 140 71.62 573 34.48 16.62 9.21% 62.00 6.90%

K60 8 26 140 71.75 574 37.72 15.22 58.00

K-Medoids-R K09 8 24 160 70.12 561 44.37 12.64 15.92% 60.00 13.21%

K60 8 26 180 68.50 548 50.24 10.91 53.00

MDBC-weka K09 8 30 180 69.38 555 46.70 11.88 9.26% 61.50 -2.38%

K60 8 16 180 69.88 559 51.39 10.88 63.00

ASAP-in
house

K09 8 13 225 70.25 562 67.68 8.30 27.51% 52.00 197.14%

K60 8 13 243 69.12 553 84.92 6.51 17.50

All evaluated partitioning’s algorithms showed improved performance considering the Linnaean clusters quality when used the optimized distance matrix created
by the better kdc parameters tested.
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we use a smaller number of singular values to generate
clusters, the quality of the clusters is significantly
improved when compared with clusters generated with
a matrix with all singular values, independently of algo-
rithm. These results show that the combination of cor-
rect choice of algorithm, the number of singular values,
the number of clusters and a quality metric with biolo-
gical significance allows separation of species groups
that are biologically meaningful. Furthermore, the use of
trigrams of amino acids provides an effective way to
determine similarity between protein sequences without
using sequence alignment algorithms.
In the remainder of this paper, we show preliminary
findings and methods that helped us reach our final
conclusions, including how we arrived at an adequate
number of singular values that allowed us to separate a
set of species into groups with biological significance.
To this end, we found that using arrays of trigram fre-
quencies of amino acids to determine statistical proper-
ties was as good as using 4-gram frequencies [19]. We
show that the size of the sequences that are analyzed
can affect the separation of elements into clusters. We
also present measures that allow us to infer the biologi-
cal significance of a cluster and measure the quality of
the clustering methods compared to Linnaean taxo-
nomic classification of species.

Algorithm kdcSearch: parameterizing rank and number of
partitions
The objective of the algorithm kdcSearch (Figure 2) is to
identify a ‘k’ rank value and a quantity ‘c’ of partitions

that promote correct separation of species, based on
biological significance according to Linnaean taxonomy.
This ‘k’ rank is responsible for the reducing the dimen-
sions of the data that hide evolutionary relations among
species, also known as data noise. A quantity of parti-
tions ‘c’ should correctly separate the positive control
group from the other species and possibly separate the
other species into partitions with evolutionarily-signifi-
cant relationships. In this algorithm, the number of par-
titions ‘c’ is a function of ‘d’, that is c=f(d), with ‘d’
being the Euclidian distance between elements in a sym-
metric matrix of distances between the species. The
value of ‘d’, on the other hand, varies according to the
distance matrix created with rank ‘k’, establishing the
relations d=f(k) and c=f(f(k)). In this way, we look for
the ‘k’ value that will eliminate data noise and generate
a distance ‘d’ responsible for creating a number of parti-
tions ‘c’ with the greatest capacity to infer evolutionary
relationships between grouped species. In this process,
we use an in-house algorithm, ASAP, to partition the
species. Considering the random selection of pivotal ele-
ments for the creation of partitions by ASAP, it is not
possible to estimate a priori what distance ‘d’ will create
a number ‘c’ of partitions. Consequently, a systematic
search is made with a range of X and Y values of Eucli-
dean distances in order to determine which distances
give what number of partitions. This algorithm begins
with an X value equal to the largest Euclidean distance
between species represented in a symmetric matrix of
distances with a maximum value; that is, it has not
undergone decomposition by singular values and for
this reason k is equal to the total ‘n’ of the number of
species in this matrix. Considering the maximum dis-
tance of the symmetric matrix, only one partition with
‘n’ species is formed. The value Y is always zero, the
point at which the search for partitions of value ‘k’ ter-
minates and ‘n’ partitions of the data are always formed,
with only one species per partition. With the values in
hand (k1, k2, k3, ..., kn) with their respective values
(c1=f(d1) , c2=f(d2), c3=f(d3), ..., cn=f(dn)), in turn with
their respective biological significance levels, measured
by the function cLtlf, we filtered the configuration that
gave the correct separation of the control group and the
greatest number of partitions of species sharing the
highest possible numbers of Linnaean classification
levels. This algorithm is recursive because if no group of
these variables provides a partitioning of the control
group isolated from the other species, then the algo-
rithm did not yet find a solution with the desired level
of Linnaean taxonomic relationship. In order to simplify,
it is not necessary to analyze all of the possible numbers
of partitions; analysis is made only within well-defined
intervals. Taking as an example, dataset2 with 76 spe-
cies, an alternative is to analyze the number of partitions

Figure 2 kdcSearch algorithm schema. Main procedures, datasets
and products. Multiple rectangles mean recurring calls.
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containing groups of three (c3, c6, c9, ..., c75). This
example can be obtained from the algorithm below
through the initialization of a variable that, as it divides
the total number of species by 25, permits the creation
of an incremental step of three levels between analyses.
The number was determined empirically and the algo-
rithm below is adduced by the variable EDRD (Empirical
Dimensional Range Division).
When one of the recursions of the algorithm

kdcSearch finds one or more groups of variables k, d
and c that give correct separation of the positive control
group, the algorithm recursions are finalized. In this
case, there is no reason to continue making recursions,
since the desired level of cohesion for the elements of
the partitions has reached its limit, measured by the
positioning of the positive control. In the case of the
data that we analyzed here, this situation occurs after
the end of the first recursion by the algorithm
kdcSearch, culminating in the plotting of the final
graphs and implementing the function ‘Finalize’. The
code for the function ‘Finalize’ was left open because at
this stage of execution, the algorithm finds various
groups of the variables k, d and c (kdc) that promote
correct separation of the positive control group in a par-
tition separate from the other species. At this point, the
question is which group of values kdc is a good result.
What differentiates one group of variables kdc from
another is the quality of the partitioning of the other
species compared with Linnaean taxonomic classifica-
tion. We think that it would not be useful to develop an
algorithm that one particular kdc group is better than
others because they give different levels of separation of
species. A researcher can be trying to separate a group
of species at the level of ‘Classis’ with nine Linnaean
levels in common (Table 3), while another researcher
may try to separate this same group at the ‘Ordo’ level,
with 11 Linnaean levels in common. Consequently, it
would be reasonable to consult the last table generated
by the algorithm kdcSearch to adjust the result to the
necessities of a specific objective. However, in case the
final objective is not well defined, an option to comple-
tely automate this process could be to compare the par-
titioning medians for each kdc group with which it was
possible to separate integrally and isolatedly the positive
control species group. This comparison creates an esti-
mate of the cohesiveness of the partitionings based on
comparison with Linnaean taxonomic classifications.
Values of kdc that give larger medians would be chosen
as superior, promoting partitionings with greater biolo-
gical significance. The rationale that explains the use of
the median as a parameter for the procedure ‘Finalize’
can be better comprehended by analysis of the data in
Tables 4 and 5. These tables show the cLtlf results for
nine sets of kdc values that by definition are good

results because they can separate integrally and isolat-
edly the positive control group. In the partitionings pro-
duced with these kdc values, there is always a partition
of the positive control group with a cLtlf equal 100 (10
species sharing 10 Linnaean levels). Values of kdc that
cannot optimally separate the positive control group
from the other species were also included. The set of
kdc values used as a negative control in this analysis is
suffixed with the symbol ‘(-)’. In Table 4, we can see
that the kdc sets that have many partitions with only
one isolated element (cLtlf=1*13=13 or the minimum
cLtlf) reduce the median cLtlf value for all of the parti-
tions produced in this set by the respective set of kdc
values. The intention of these partitionings is to demon-
strate evolutionary relationships among species; the kdc
values that give large numbers of partitions with only
one element each do not give much information about
such relationships. Consequently, it is understood that
the best kdc values are those that have the fewest spe-
cies isolated in partitions with only one element. Table
5 also shows the application of the measurement ‘Lin-
naean cluster quality’ to the partitionings based on these
kdc values; however, this measure was not effective in
indicating how informative the partitionings for each
group of kdc values were in terms of the relationships
based on Linnaean classification. It can be seen that the
kdc values of the negative control had larger ‘Linnaean
cluster quality’ values than the various sets of kdc values
that adequately separated the positive control group.
Apparently, ‘Linnaean cluster quality’ is not efficient at
classifying kdc values at this ‘Finalize’ step of the algo-
rithm search, though it is efficient while the positive
control group has not been integrally separated in an

Table 3 Linnaean taxonomy levels

Linnaean Taxonomy levels

Number Name Value

14 Species Aythya americana

13 Genus Aythya

12 Familia Anatidae

11 Ordo Anseriformes

10 Subclassis Carinatae

9 Classis Aves

8 Infraphylum Gnathostomata

7 Subphylum Vertebrata

6 Phylum Chordata

5 Cladus2 Deuterostomia

4 Cladus1 Bilateria

3 Subregnum Eumetazoa

2 Regnum Animalia

1 Superregnum Eukaryota

Linnaean taxonomy levels used to classify the species in this paper. The
numbers denote an increasing degree of nomenclature specialization.
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isolated partition. However, based on the median, the
sets of kdc values that do not separate the positive con-
trol group into isolated clusters were correctly classified
as being of low quality based on Linnaean classification,
as well as other kdc values that had many partitions
with the lowest Ltlf. In Table 5, the kdc values with the
largest medians are in bold, and the kdc values that do
not adequately separate the positive control group are in
italic. It is relevant to point out that though some kdc
values can adequately separate the positive control
group, many partitions have the minimum cLtlf; these
were responsible for the low kdc values, values even
lower than some kdc values that do not adequately
separate the positive control group. In this study, we
decided to analyze in more detail the partitions created
by the kdc values with eight partitions and rank nine,

which produced the third best median result without
separating many species into isolated partitions. This
choice is justified by the fact that these kdc parameters
make the correct separation of the mammals ‘Hsap’ and
‘Ppya’ in a partition separate from those of the other
species. These two species were used as a second posi-
tive control group. In the set of kdc values with six par-
titions and rank six, the configuration classified as
having the best median, these two species are in a parti-
tion with 25 other species. Another option would be to
use the kdc values with six partitions and rank three,
which were classified as the second-best median. In this
kdc configuration, ‘Hsap’ is isolated in a partition, while
‘Ppya’ is in a partition with 26 other species. Accord-
ingly, the kdc values that give eight partitions with rank
nine promote correct separation of the two positive

Table 4 Function Finalize: sample data

06clusters
k03

06clusters
k06

08clusters
k06

08clusters
k09

08clusters
k12(-)

08clusters
k45

10clusters
k30(-)

12clusters
k12

14clusters
k18

14clusters
k21

14clusters
k36(-)

14clusters
k60

100 100 100 100 248 100 144 100 100 100 88 100

243 243 200 225 13 243 252 216 240 250 240 220

45 64 56 56 180 13 13 13 13 13 13 13

96 100 13 56 30 136 13 64 90 88 96 112

13 13 100 24 13 22 56 22 22 22 22 22

40 40 45 40 32 13 13 13 13 13 20 20

24 48 13 13 13 16 16 13 13 13

40 13 13 13 13 24 24 13 13 24

13 40 40 30 13 13

13 48 13 13 13 13

13 13 13 13 13

13 13 13 13 13

13 13 13 13

13 13 13 13

The statistic cLtlf for all of the partitionings of species obtained with nine kdc values that separate the positive control group in the function Finalize of the
algorithm kdsSearch, along with three kdc values as a negative control (-).

Table 5 Function Finalize: sample statistics

ASAP/
Clusters

Rank N Min
cLtlf

Max
cLtlf

Mean
cLtlf

cLtlf clusters sum
(ΣcLtlf)

cLtlf standard
deviation (s)

Linnaean clusters quality
(ΣcLtlf/s)

cLtlf
median

06clusters K03 6 13 243 89.50 537 82.46 6.51 70.50

06clusters K06 6 13 243 93.33 560 80.81 6.93 82.00

08clusters K06 8 13 200 72.25 578 60.65 9.53 50.50

08clusters K09 8 13 225 70.25 562 67.68 8.30 52.00

08clusters(-) K12 8 13 248 67.75 542 92.41 5.87 21.50

08clusters K45 8 13 243 69.12 553 84.92 6.51 17.50

10clusters(-) K30 10 13 252 54.30 543 81.02 6.70 13.00

12clusters K12 12 13 216 48.50 582 59.10 9.85 23.00

14clusters K18 14 13 240 44.50 623 63.29 9.84 14.50

14clusters K21 14 13 250 43.36 607 66.12 9.18 13.00

14clusters(-) K36 14 13 240 41.64 583 63.66 9.16 13.00

14clusters K60 14 13 220 43.00 602 60.68 9.92 13.00

Comparison of the Lcq values and the ΣcLtlf medians for partitionings of the species obtained in Table 4.
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control groups and were responsible for significantly
improving performance in the statistic ‘Linnaean cluster
quality’ and in most of the medians of the partitioning
algorithms that were tested (Table 2).

From 76 to 60 species and eight clusters
We decided to use a 76 species data set (dataset2),
incorporating 12 species that were less related to the
original group, in order to develop relationship trees
that included clusters with distantly related species. The
64 species data set (dataset1) from the study by Stuart
contains closely related species, as all of them share 8 of
the 13 Linnaean taxonomy levels used in our study to
differentiate species [5]. When a correct fit was made
(15 imposed clusters and rank value of 39), we were
able to separate 60 of the 64 species and the additional
12 species using ASAP (Figures 3 and 4). These 12
added species plus four of the original species from
dataset1 did not group into a single cluster. Instead, we
obtained several different clusters, most of which
included only one species.
Analyses were then carried out on only the 60 species

from the data set that were joined as a single cluster;
the ASAP algorithm was run with 15 clusters and a
rank value of 39. When the ASAP algorithm was run
with the original 64 species data set, some elements
were separated into isolated clusters despite actually
sharing several Linnaean taxonomy levels in common
with all of the other species.

This could be due to the fact that mitochondrial pro-
tein sequences for some species within the data set used
in this study were not available. Since our algorithm
only uses the frequency of occurrence of amino acid tri-
plets, a lower frequency can affect the quality of the
clusters that are generated, as does the presence or
absence of a triplet sequence. Presence or absence of
amino acid triplets are also responsible for early cluster
separation of the 12 additional taxonomically distantly
related species, incorporated into the original 64 species
data set. Consequently, we worked with this 60 species
data subset. To do so, we included a recurrence step
prediction in our algorithm in order to develop a species
subset. We worked with the concept that a good separa-
tion of species in clusters distributes the elements in
groups of more than one element, whereas a group with
only one element gives no information about species
ancestry. When we correctly separated the Aves group
in an isolated cluster, we assumed that other groups
should also be close to divisions that have evolutionary
significance. Finally, a good separation involves having
Aves isolated in a single group, while having the largest
possible number of other species together in groups,
with a few isolated species in groups of only one ele-
ment (Figure 5, rank value of 39 and 15 clusters). This
definition of good separation between species is applic-
able only when it is not possible to isolate the positive
control group, the Aves group. But when we split a
homogeneous positive control group, the concept of a

Figure 3 Exploring the number of species in the Aves cluster. The number of species grouped into the Aves cluster as a function of rank
value and number of clusters. Ordinates are multiplied by the respective maximum Linnaean taxonomy levels shared by species in Figure 5.
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good separation of species is altered and it changes the
way we interpret the graph of rank value versus cLtlf in
the first recursive call of the algorithm (Figure 6, rank
value of nine and eight clusters). In Figure 6, a high

cLtlf value means poor cluster quality, because at this
level of recursion it is possible to isolate the positive
control group in a single cluster and leave few species
in isolated groups. Therefore the optimal value for the

Figure 4 Exploring Aves cluster with maximum shared linnaean taxonomy levels. The number of Linnaean levels shared by all species is
plotted against rank value and number of imposed clusters. Ordinates are multiplied by the respective number of species that produced Figure 5.

Figure 5 Determining the best algorithm parameters. Aves cluster quality as a function of rank value and different numbers of clusters. The
number of clustered elements multiplied by maximum common Linnaean taxonomy levels shared between species gives the quality measure.
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separation of the group of Aves is 100 (10 species * 10
Linnaean levels in common). A value larger or smaller
than that gave inappropriate separation, because the
positive control is the group of birds with 10 species
sharing 10 levels of Linnaeus. Using a second positive
control group (’Hsap’ and ‘Ppya’), we concluded that
using eight partitions with rank nine is the best config-
uration, correctly separating the birds group, creating
groups with evolutionary significance and decreasing the
number of species in groups of only one element. We
used a rank value of nine to create the unrooted tree
shown in Figure 7. ASAP was calibrated with a d value
that produces eight clusters using the experimented
rank value of nine. This choice was made based on
obtaining a good separation result, when grouping all
species of the Aves class into a single cluster, plus a
positive control group.
The results of the first execution of our recurrence algo-

rithm based on the 60 species data set can be seen in
Table 6. Clusters 2, 5 and 8 are comprised of species of
theclass Mammalia. Cluster number 5 includes the homi-
nids Homo sapiens and Pongo pygmaeus, which were
together, separated from other mammals due to their
mitochondrial protein sequences sharing 12 common Lin-
naean taxonomy levels. Clusters 2, 5 and 8 were composed
of only mammalian species, sharing 9, 12 and 13 common
Linnaean taxonomy levels, respectively. It is evident that
the number of clusters and rank value used to create dis-
tance matrices enables even ASAP to provide adequate
clustering based on quality discrimination. All the clusters

that were obtained are shown in Figure 7, in which four
mnemonic letters represent each species.

Conclusions
Clusters and cladistic trees drawn from distance matrices,
which were generated with SVD, showed a good correla-
tion with Linnaean taxonomy. Considering the best esti-
mate, when a difference is found, this does not necessarily
mean strong divergence from taxonomic methods, but per-
haps a more accurate picture of the relationship between
the species that clustered together. This was demonstrated
by clusters that were separated from mammalian clusters
due to their greater protein sequence relatedness. It also
was reinforced by Linnaean taxonomy information.
The similarity between clusters generated by our dis-

tance matrix and Linnaean taxonomy is indicative that
distance matrices generated by SVD can demonstrate
evolutionary relationships of species and construct bet-
ter quality clusters and phylogenetic trees. These clus-
ters and phylogenetic trees would benefit from amino
acid trigrams and the Euclidean distance property of dis-
playing a distance proportional to the number of neces-
sary edits needed to perform a global alignment
sequence within a polynomial execution time.

Methods
Datasets
The set of species used in this work is not original [8].
We opted for using a previously known set of data to
allow comparisons with other studies that also use this

Figure 6 Determining the best algorithm parameters at the first algorithm recurrence step. Aves cluster quality measured with a reduced
numbered of species than in dataset2. Now is possible to cluster the Aves species separately and the best algorithm adjustment to this cluster is
preferred. Higher curves do not represent better quality.
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data. We named this set of 13 mitochondrial proteins
from 64 vertebrate species, dataset1. Within dataset1, a
group of 10 species belonging to the class Aves was cho-
sen to be the positive control group. We developed a
negative control group with mitochondrial protein from
12 other species. Joining the proteins from these 12 spe-
cies with the 64 in dataset1 gave origin to dataset2. Fig-
ure 1 schematically represents dataset2 as a set of data
composted of dataset1 and 12 additional species. These

12 additional species were selected based on the criter-
ion of being at least one level above the Linnean level
common to all of the species in dataset1. Two species
were randomly selected for each Linnaean taxonomic
level, from Phylum to Superregnum. The same 13 mito-
chondrial proteins from dataset1 were selected for these
12 additional species. The additional amino acid
sequences were obtained from the NCBI site. The union
of these 13 mitochondrial proteins from the 12 new
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Figure 7 60 species from the Stuart data set. A 60 species data set unrooted tree generated from a distance matrix created with the ASAP
algorithm. The original algorithm from this paper provided the distance matrix. Blue labels denote clusters.
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species with the sequences in dataset1 gave origin to
dataset2, which includes positive and negative control
groups of species. In order for a partitioning method to
be successful, the positive control group needs to stay
together in a partition and no other partition can be
contaminated by the negative control group.

Positive control group and statistics
In order to show how rank values and the number of
imposed clusters affect SVD, we ran ASAP algorithm
with different rank values and numbers of clusters. Fig-
ure 5 shows the results of these runs for a single cluster,
the cluster denominated cluster 1, which contains spe-
cies belonging to the Linnaean taxon, the Aves class.
This taxon is ideal for testing our hypothesis, because
few and closely related species within the data we used
belonged to this taxon. Furthermore, the Aves species in
our data set tended to mix with less evolutionarily
related species when the algorithm was incorrectly cali-
brated or the number of clusters was too small. For
evaluating the quality of the cluster generated, we con-
sidered the product of common shared Linnaean taxa
among clustered elements multiplied by the number of
clustered elements. This indicator gives us a good mea-
sure of cluster quality, as it assesses the frequency of
commonality within the cluster. Here, we denominated
this indicator as “common Linnaean taxonomy level fre-
quency”, or cLtlf, and used it to show how cluster qual-
ity can vary as a function of the rank value or the
maximum number of clusters used. Figure 5 shows the
quality of cluster 1 generated by the algorithm, as rank
value increases when different numbers of clusters are
used to group the entire 76 species data set.
Figure 5 shows that, independent of the maximum

number of clusters chosen to represent the 76 species
data set, an increase in rank value does not improve clus-
ter quality; consequently, we can safely use a considerably
smaller number of singular values than the theoretical
maximum. It is possible to roughly estimate an optimal
value for rank value from this particular data set. If we

consider 15 clusters, a rank value over 39 will not drama-
tically increase the quality of each cluster (Figure 5).
When we evaluate cluster quality measured by cLtlf,

(Figure 5), we see that there is no significant improve-
ment in cluster quality beyond the rank value of 39. This
rank is sufficient for a good data representation of our
original data set. Also, within cluster 1, the number of
elements clustered together and the number of Linnaean
taxonomy levels in common as a function of rank value,
can be seen, respectively, in Figures 6 and 7. The maxi-
mum number of Linnaean taxonomy levels in common
within cluster 1 obtained was 10. There is another inter-
pretation for this graph in Table 3, associating these 10
levels in common within the cluster with the 14 Linnaean
taxonomy levels considered in our study. This shows that
the stringency of the data representation provided with
SVD is sufficient to infer Linnaean taxonomy levels. On
the other hand, if a less stringent fit is used, such as with
an inappropriate number of clusters and rank value, a
panoply of unrelated species are included in a cluster. It
must be pointed out that our main task in this study was
to learn and exemplify the calibration of our algorithm in
order to retrieve desirable information. With the data set
we used, the desirable information to be retrieved was
Linnaean taxa, however, with other data sets this calibra-
tion should be tuned to direct the desired objective.
Table 3 characterizes a bird species, Aythya americana.

The taxonomy levels shared by cluster 1 species in our
algorithm executions with 20, 25, and 30 clusters and
rank value 24, are levels lower than level number 11,
namely the order (Ordo). Levels numbered as 11 (order)
and 12 (family) were not shared among the 10 bird spe-
cies in the data set. As more non-Aves species are added
to this bird set, there is a decrease in cluster quality.

Euclidean distance
We can produce a distance matrix that contains a mea-
sure of how each species is related to each other. To
construct this matrix, each species rank values set is
treated as a vector in a k-dimension space. One can

Table 6 Eight clusters from 60 data set

Cluster Number of species joined Linnaean taxonomy levels in common Deepest Linnaean taxonomy level

1 10 10 Carinatae

2 25 9 Mammalia

3 7 8 Gnathostomata

4 7 8 Gnathostomata

5 2 12 Hominidae

6 4 10 Elasmobranchii

7 4 12 Salmonidae

8 1 13 Rattus

Eight clusters created from the first recurrence algorithm execution calibrated with a rank value of nine. Species were grouped according to their deepest
evolutionary relatedness based on Linnaean taxonomy levels. Clusters 2, 5 and 8 belong to the mammalian class.
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choose the best measure to calculate the distance among
vectors, depending on the particular characteristics in a
data set. We decided to use Euclidean distance instead
of the cosine distance used by Stuart [8]. This is because
there is data indicating that Euclidean distance produces
better cluster quality results than cosine distance. There
is evidence [20], using the same 64 species data set that
we present here, that Euclidean distance is proportional
to the number of editions needed to perform a global
sequence alignment. Consequently, it gives a more accu-
rate measure of evolutionary relatedness than cosine dis-
tance, without the need for a global alignment sequence.
There is evidence that the superiority of this Euclidean
distance calculation is due to intrinsic evolutionary dif-
ferences that affect the size of vectors. This is easy to
see when one considers two vectors with the same
cosine distance but with significant differences in length.

ASAP algorithm: in house agglomerative clustering
We implemented a clustering algorithm that was called
ASAP (As Simple As Possible) and showed that even a
naive algorithm can benefit from data adequately treated
by SVD. Thus, it is not our intention to demonstrate it’s
worth using this clustering algorithm, but we want to
leave the message that regardless of the algorithm, it is
worth using SVD conjugated with positive controls in
information retrieval, as an initial filter against noise
[10][18].
ASAP is an algorithm designed to facilitate the work

of measuring the impact of using SVD in clustering
algorithms. This algorithm somewhat resembles single-
linkage clustering; the differences are that no clustering
starts from the two elements with the lowest Euclidean
distance. Clustering starts with a random element; also,
a new entry is not inserted in the matrix of Euclidean
distances for each cluster created between the algorithm
interactions.
The idea is quite simple; randomly select a species

from the distance matrix, cluster together with other
species according to a fixed ‘d’ distance and remove the
clustered species from the distance matrix. Do it again
randomly selecting other species, and so on.
(1) Repeat as long as the number of columns in the

distance matrix is greater than one:
1.1. Fix the first column as the pivotal element;
1.2. Create a cluster of elements so that the Euclidean

distance is smaller than a ‘d’ value for the pivotal
element;
1.3. Remove elements from the novel cluster (lines

and columns) from the distance matrix;
1.4 End repeat.
This algorithm was implemented using Scilab1 5.2.1

run on GNU linux Ubuntu, core 2.6.22-16. This

implementation is available in the Additional file 2,
accompanied with data and raw results.

Clustering algorithms evaluated
K-Means-R
The K-Means algorithm implemented [11] in the R sta-
tistical software aims to partition points into k groups
such that the sum of squares from points to the
assigned cluster centers is minimized. At the minimum,
all cluster centers are at the mean of the set of data
points which are nearest to the cluster center [16].
K-Means-WEKA
The K-Means algorithm implemented in the WEKA
software is denominated SimpleKMeans. This imple-
mentation can use either the Euclidean distance or the
Manhattan distance. If the Manhattan distance is used,
then centroids are computed as the component-wise
median rather than mean [15].
Expectation Maximization (EM)
The EM algorithm [12] creates partitions assigning a
probability distribution to each instance. EM can decide
how many clusters to create by cross validation, or is
possible to specify apriori how many clusters to generate
[15].
Adaptive Quality-based Clustering Algorithm (AQBC)
It’s a heuristic iterative two-step algorithm with compu-
tational complexity approximately linear. The first step
consists in finding a sphere in the high-dimensional
representation of the data where the density of expres-
sion profiles is locally maximal. In a second step, an
optimal radius of the cluster is calculated based only on
the significantly coexpressed items which are included
in the cluster. By inferring the radius from the data
itself, there is no need to find manually an optimal
value for this radius by trial-and-error [13].
K-Medoids
It’s an exact algorithm based on a binary linear pro-
gramming formulation of the optimization problem
[21], using ‘lp’ from package ‘lpSolve’ as solver [16].
Probably is not possible to obtain clustering solutions
depending on available hardware resources due to the
quadratic order of the program. The K-Medoids R
implementation is an NP-hard optimization problem.
Partitioning Around Medoids (PAM) [14] is a very
popular heuristic for obtaining optimal K-Medoids par-
titions [16].
MakeDensityBasedClusterer (MDBC)
It’s an algorithm wrapping the SimpleKMeans and pos-
sibly others clusterers algorithms. Makes SimpleKmeans
return a distribution and density. Fits normal distribu-
tions and discrete distributions within each cluster pro-
duced by the wrapped clusterer. For the SimpleKMeans
supports the number of clusters requestable [15].
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Cladograms
The clustering operations were made by calculating the
Euclidean distance from the first alphabetically ordered
species, defined as the pivotal species, to all the other
species. Therefore, when ASAP created the clusters, it
already had a symmetric distance matrix containing a
data set with all the species. All we needed to do was to
create a phylogenetic tree expressed as a Newick phylo-
genetic tree. We developed an unrooted tree created by
the software NEIGHBOR from the PHYLIP package.
We drew the unrooted tree in Figure 7, representing the
eight clusters of the 60 species from dataset2. All default
parameters were used.

Additional material

Additional file 1: Qualitative cluster measures. In this document, we
elaborate on aspects of the qualitative cluster measures that are not
discussed in this paper, such as the demand for specific metrics for
clusters based on Linnaean taxonomic classification, how sequences size
influence kdcSearch, a proof that amino acid trigams do not occur by
chance, how to make a graphic cluster approximation by cladograms,
how the evaluated algorithms were executed and the kdcSearch
algorithm pseudo-code.

Additional file 2: Scilab algorithms and raw data. In this file, we
elaborate on aspects of the algorithms and data used in this research.
Algorithms were written in Scilab version “5.2.0.1266391513”, scilab-5.2.1.

Acknowledgements
Funding: FAPEMIG - Fundação de Amparo à Pesquisa de Minas Gerais, Brazil
and CNPq - Conselho Nacional de Desenvolvimento Científico e
Tecnológico - Brazil.
This article has been published as part of BMC Genomics Volume 12
Supplement 4, 2011: Proceedings of the 6th International Conference of the
Brazilian Association for Bioinformatics and Computational Biology (X-
meeting 2010). The full contents of the supplement are available online at
http://www.biomedcentral.com/1471-2164/12?issue=S4

Author details
1Department of General Biology, Instituto de Ciências Biológicas,
Universidade Federal de Minas Gerais, Belo Horizonte, Av. Antônio Carlos,
6627, MG, 31.270-901, Brazil. 2Computer Science Departament, Instituto de
Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Av.
Antonio Carlos, 6627, 31.270-901, MG, Brazil. 3Max Planck Institute for
Informatics, Campus E2 1, Saarbrücken, Germany. 4CEBio and Laboratory of
Cellular and Molecular Parasitology, Instituto René Rachou, Oswaldo Cruz
Foundation, Belo Horizonte, Av. Augusto de Lima 1715, 30190-002, MG,
Brazil. 5Genome and Proteome Network of the State of Pará, Universidade
Federal do Pará, Belém, R. Augusto Corrêa, 66.075-110, PA, Brazil.

Authors’ contributions
MAS encouraged the research and writing, BMC application, provided
references and applied mathematical knowledge and gave final approval of
the version to be published. ARS downloaded all the data and conducted all
the tests, decided to use Linnaean taxonomy as a measure of cluster quality,
developed the algorithm and wrote the paper.
JB made substantial contributions to conception and design, analysis and
interpretation of data. VAA encouraged submission to BMC and gave final
approval of the version to be published. JAM, GCO, AM and AS have given
final approval of the version to be published.

Competing interests
The authors declare that they have no competing interests.

Published: 22 December 2011

References
1. Golub G, Kahan W: Calculating the Singular Values and Pseudo-Inverse of

a Matrix. Journal of the Society for Industrial and Applied Mathematics, Series
B: Numerical Analysis 1965, 2:205-224.

2. Berry MW, Dumais ST, OBrien GW: Using Linear Algebra for Intelligent
Information Retrieval. SIAM Review 1995, 37:573-595.

3. Élden L: Numerical linear algebra in data mining. Acta Numerica 2006,
15:327-384.

4. Élden L: Matrix Methods in Data Mining and Pattern Recognition. Society
for Industrial and Applied Mathematics; 2007.

5. Fogolari F, Tessari S, Molinari H: Singular value decomposition analysis of
protein sequence alignment score data. Proteins 2002, 46:161-170.

6. Del-Castillo-Negrete D, Hirshman SP, Spong DA, DAzevedo EF:
Compression of magnetohydrodynamic simulation data using singular
value decomposition. Journal of Computational Physics 2007, 222:265-286.

7. Deerwester SC, Dumais ST, Furnas GW, Harshman RA, Landauer TK,
Lochbaum KE, Streeter LA: Computer information retrieval using latent
semantic structure. U. S. Patent: 4839853 1989.

8. Stuart GW, Moffett K, Leader JJ: A comprehensive vertebrate phylogeny
using vector representations of protein sequences from whole genomes.
Mol Biol Evol 2002, 19:554-562.

9. Vries JK, Liu X: Subfamily specific conservation profiles for proteins based
on n-gram patterns. BMC Bioinformatics 2008, 9:72.

10. Ider YZ, Onart S: Algebraic reconstruction for 3D magnetic resonance-
electrical impedance tomography (MREIT) using one component of
magnetic flux density. Physiol Meas 2004, 25:281-294.

11. Hartigan JA, W MA: Algorithm AS 136: A K-Means Clustering Algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics) 1979,
28:100-108.

12. Dempster AP, Laird NM, Rubin DB: Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society 1977,
39:1-38.

13. De Smet F, Mathys J, Marchal K, Thijs G, De Moor B, Moreau Y: Adaptive
quality-based clustering of gene expression profiles. Bioinformatics 2002,
18:735-746.

14. Kaufman L, Rousseeuw P: Finding Groups in Data An Introduction to
Cluster Analysis. Wiley Interscience; 1990.

15. Witten IH, Frank E, Hall MA: Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann; 2011.

16. Team RDC: R: A Language and Environment for Statistical Computing.
2006.

17. Abeel T, de Peer YV, Saeys Y: Java-ML: A Machine Learning Library.
Journal of Machine Learning Research 2009, 10:931-934.

18. Liu Q, Zhang Y, Xu Y, Ye X: Fuzzy kernel clustering of RNA secondary
structure ensemble using a novel similarity metric. J Biomol Struct Dyn
2008, 25:685-696.

19. Vries JK, Munshi R, Tobi D, Klein-Seetharaman J, Benos PV, Bahar I: A
sequence alignment-independent method for protein classification. Appl
Bioinformatics 2004, 3:137-148.

20. Couto BRGM, Ladeira AP, Santos MA: Application of latent semantic
indexing to evaluate the similarity of sets of sequences without multiple
alignments character-by-character. Genet Mol Res 2007, 6:983-999.

21. Gordon AD, Vichi M: Partitions of Partitions. Journal of Classification 1998,
15:265-285.

doi:10.1186/1471-2164-12-S4-S11
Cite this article as: Santos et al.: A singular value decomposition
approach for improved taxonomic classification of biological sequences.
BMC Genomics 2011 12(Suppl 4):S11.

Santos et al. BMC Genomics 2011, 12(Suppl 4):S11
http://www.biomedcentral.com/1471-2164/12/S4/S11

Page 15 of 15

http://www.biomedcentral.com/content/supplementary/1471-2164-12-S4-S11-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-12-S4-S11-S2.zip
http://www.biomedcentral.com/1471-2164/12?issue=S4
http://www.ncbi.nlm.nih.gov/pubmed/11807944?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11807944?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11919297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11919297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18234090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18234090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15005322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15005322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15005322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12050070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12050070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18399702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18399702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15693739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15693739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18058717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18058717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18058717?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Singular value decomposition and number of clusters matters
	Algorithm kdcSearch: parameterizing rank and number of partitions
	From 76 to 60 species and eight clusters

	Conclusions
	Methods
	Datasets
	Positive control group and statistics
	Euclidean distance
	ASAP algorithm: in house agglomerative clustering
	Clustering algorithms evaluated
	K-Means-R
	K-Means-WEKA
	Expectation Maximization (EM)
	Adaptive Quality-based Clustering Algorithm (AQBC)
	K-Medoids
	MakeDensityBasedClusterer (MDBC)

	Cladograms

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


