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Background: Triple-negative breast cancer (TNBC) accounts for 15–20% of all breast cancer in women globally. This subtype often
has early and high recurrence rates resulting in poor survival, partially due to lack of targeted therapies. Therefore, there is an
urgent need to identify TNBC-specific biomarkers for early diagnosis and treatment monitoring, and to develop more effective
targeted therapy.

Methods: By using miRCURY LNA array platform, we compared the differential miRNA expressions in plasma of patient with
TNBC (n¼ 5) and non-TNBC (n¼ 5), as well as healthy controls (n¼ 5). Potential miRNAs were then validated in a large cohort of
patients by real-time PCR.

Results: Ten putative miRNAs from the microarray data that differentially expressed between non-TNBC and healthy controls
were identified. In the screening phase (n¼ 90), we selected five miRNAs (miR-92a-3p, miR-342-3p, miR-16, miR-21 and miR-199a-5p)
that could discriminate TNBC from non-TNBC for further validation. Results showed that miR-16, miR-21 and miR-199a-5p were
underexpressed in TNBC when compared with non-TNBC, and were further validated in a large cohort (n¼ 252). In addition, post-
operative plasma levels of miR-16, miR-21 and miR-199a-5p were significantly restored when compared with pre-operative plasma
of TNBC. Plasma miR-199a-5p expression in TNBC had significant difference when compared with non-TNBC and healthy
controls, the receiver-operator characteristics curve analysis revealed the highest area under curve (AUC¼ 0.8838) among all. The
expression levels were associated with TNM stage and tumour subtypes.

Conclusions: Our data suggest that miR-199a-5p could be a TNBC-specific marker with diagnostic value and provide insights into
targeted therapy in the treatment of TNBC.

Breast cancer is the most common cause of cancer mortality in
women worldwide (GLOBOCAN 2012, http://globocan.iarc.fr/
Pages/fact_sheets_population.aspx). Triple negative-breast cancer
(TNBC) is characterised by lack of oestrogen receptor (ER),
progesterone receptor (PR) and human epidermal growth factor
receptor 2 (HER2). This subtype accounts for 15–20% of all breast
cancers (Boyle, 2012). It is a heterogeneous disease that partake
distinct histopathological features and clinical behaviour. Epide-
miological studies revealed that TNBC is associated with young age
(o40) and more frequently in African–American and black
ethnicity (Boyle, 2012). TNBC tumours represent the most
aggressive phenotype with relatively high recurrence rates (Dent
et al, 2007). Patients with TNBC do not respond to endocrine

therapy or HER2 targeted therapy, and treatment are based on a
combination of commonly used breast cancer therapies including
surgery, radiation and chemotherapy regimens.

Clinical trials conducted on TNBC using cisplatin-based
regimes as neoadjuvant therapy found that the response rate to
single-agent cisplatin was only 21%. An improved response rate
was seen using a combination of paclitaxel/fluorouracil, doxor-
ubicin and cyclophosphamide but this was still only 45% (Silver
et al, 2010). TNBC and BRCA mutations associated tumour share
common pathologies. Poly (ADP-ribose) polymerase (PARP)
inhibitor is a class of anti-tumour agents which targets tumours
with BRCA mutations but could only benefit a small group of
patients (Metzger-Filho et al, 2012). Combining inhibitors of
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PARP and PI3K were shown to be effective in primary tumour
xenografts where tumours had no BRCA mutations, and the
clinical outcome of this trial is awaiting (Ibrahim et al, 2012). To
date, the current treatment options for TNBC do not demonstrate
promising clinical outcomes and often results in poor treatment
response and overall survival rate. This is also partly due to the lack
of biomarkers to envisage which groups of patients are likely to
respond to specific chemotherapeutic and targeted therapies nor
are there reliable biomarkers which have been identified to be used
as a screening marker. Hence, there is a substantial need for
discovering a predictive biomarker for diagnosis that could identify
patients with this aggressive and fast growing tumour at an earlier
stage to improve the prognosis. With limited targeted therapy
currently available for TNBC, it is also important to have a marker
for disease monitoring and evaluate the need to change therapy if
the treatment response is poor.

MicroRNA (miRNA) has a critical regulatory role in gene
expression and is involved in breast carcinogenesis (Serpico et al,
2014). Currently, there are over 1800 miRNAs identified in
human (miRBase release 20) and these regulate 450% of the
genes. Several lines of evidence have shown that miRNAs are
differentially expressed in cancerous tissues when compared with
adjacent non-tumour counterparts (Calin and Croce, 2006;
Volinia et al, 2006). Expression profiles of miRNAs have been
reported to form more defined cluster with similar tumour types
than mRNA expression. Numerous studies suggested that
miRNAs are highly stable and can be detected in the circulation
(Mitchell et al, 2008). It has also been reported that miRNA
patterns are unique in the cancers of breast (Ng et al, 2013), colon
(Ng et al, 2009), gastric (Tsujiura et al, 2010), ovary (Shapira et al,
2014) and prostate (Brase et al, 2011). The recognition of
miRNAs in the circulation marks the milestone in cancer
diagnosis and therapeutic application. Detection of circulating
miRNAs can serve as non-invasive and cost-effective markers to
identify high-risk patients, which are beneficial in clinical setting
in terms of diagnosis, prognosis and treatment response.
Published data reported that the levels of miR-30a were lower
in patients with breast cancer, and showed improved sensitivity
and specificity compared with conventional circulating tumour
markers (CEA and CA153) (Zeng et al, 2013). Furthermore, high
level of miR-155 was associated with better clinical outcome in
TNBC patients (Gasparini et al, 2014).

Our group has established a robust platform to profile miRNA
in various diseases (Ng et al, 2009; Lai et al, 2013; Ng et al, 2013),
and have identified a panel of breast cancer-associated miRNAs
from plasma, which can potentially serve as screening tool for
breast cancer patients (Ng et al, 2013). In this study, we aim to
uncover TNBC-associated miRNAs in the circulation based on our
established platform. The profiles of miRNAs in TNBC were
compared with those in non-TNBC, as well as healthy controls.
Candidate miRNAs were selected based on the differential
expression between these groups, validated in an independent
cohort, and correlated with clinical outcomes.

MATERIALS AND METHODS

Study design and patients samples. In the marker discovery
phase, miRNA expression from plasma of TNBC (n¼ 5), non-
TNBC (n¼ 5) and healthy controls (n¼ 5) were profiled. In the
validation phase, candidate miRNAs were selected and validated in
a small scale independent cohort of breast cancer patients (n¼ 90).
Those miRNAs were then verified in primary breast tissues and
pre- and post-operative plasma samples. Potential miRNAs were
then validated in a large cohort of patients (n¼ 252). The workflow
of the study design is shown in Figure 1. A total of 67 TNBC female

patients and 95 non-TNBC female patients were recruited with
informed consent through the Queen Mary Hospital, the Tung
Wah Hospital and the Hong Kong Sanatorium and Hospital and
through the Hong Kong Hereditary Breast Cancer Family Registry.
We also recruited 90 healthy controls from the Queen Mary
Hospital and the Tung Wah Hospital who were confirmed not to
have breast cancer and have no personal history of other cancers.
The study was approved by the Institutional Review Board of the
University of Hong Kong and the Hong Kong Sanatorium and
Hospital. Patients’ demographic and clinical outcomes were listed
in Table 1.

Samples processing and miRNA extraction. Total RNA were
extracted from tissues and paraffin blocks using the TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s
instructions. Blood samples were centrifuged at 1600 g for 10 min
at 4 1C, and plasma was carefully transferred into new tubes
followed by further centrifugation at 1600 g for 10 min at 4 1C.
Total RNA containing small RNA using Trizol LS reagent and
miRNeasy Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s suggestion protocol with the following modifica-
tions: 1 ml Trizol LS reagent was added to 500 ml plasma samples.
After phase separation, 1.5 volume of 100% ethanol was added to
the aqueous phase and the mixture was loaded into the miRNeasy
column (Qiagen) according to the manufacturer’s instructions. The
concentration of all miRNA samples were quantified by NanoDrop
1000 (Thermo Scientific, Wilmington, DE, USA).

MiRNA expression profiling. In the marker discovery phase, we
profiled 5 age- and sex- matched individuals from plasma of
patients with TNBC, non-TNBC and healthy controls using a
miRCURY LNA Array V3.R (Exiqon, Vedbaek, Denmark), which
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Figure 1. Workflow of the study design.
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contained 752 human miRNAs. This system is a real-time PCR-
based array containing a panel of 384 well-established mature
miRNA assays. The kit contains all reagents and primers, reverse
transcription and qPCR. In brief, a poly-A tail is added to the
mature miRNA template and then synthesised to cDNA by a poly-
T primer with a 30 degenerate anchor and 50 universal tag. The
cDNA is amplified by miRNA-specific and LNA-enhanced forward
and reverse primers (Exiqon). SYBR Green PCR will be performed
in LC480 Real-time PCR system (Roche, Basel, Switzerland).

MiRNA validation by real-time RT–PCR. MiRNAs were poly-
adenylated and reverse transcribed into cDNA by using miScript
Reverse Transcription Kit (Qiagen) according to the manufac-
turer’s instructions. Real-time qPCR was performed using
LightCycler 480 SYBR Green I Master (Roche) in Roche
LC480 system. The miRNA-specific forward primers sequences

were designed based on the miRNA sequences obtained from
the miRBase database (release 20; http://mirbase.org/). The
miRNA-specific primer sequences for qPCR were listed in
Supplementary Table 1. Each sample was run in duplicates for
analysis. The expression levels of miRNAs were normalised to
miR-484. Fold change of miRNA was calculated by the
equation 2�DDCt. DCt was calculated by subtracting the Ct
values of miR-484 from the Ct values of the miRNA-of-interest.
DDCt was then calculated by subtracting DCt of the control
from DCt of cancer.

Statistical analysis. The significance of plasma miRNA levels was
determined by Mann–Whitney test, Wilcoxon test, w2-test or
Kruskal–Wallis test where appropriate. The sensitivity and
specificity were calculated according to the standard formulas.
Multivariate logistic regression model was established and leave-
one-out cross validation to find the best logistic model. Receiver-
operator characteristics (ROC) curves were established for
discriminating patients with or without breast cancer. The optimal
sensitivity and specificity from ROC curves were determined by a
commonly used method. All P-values are two-sided and Po0.05
was considered statistically significant. All statistical calculations
were performed by GraphPad PRISM 5 software (GraphPad
Software, La Jolla, CA, USA).

RESULTS

Discovery of TNBC-associated miRNAs. We profiled miRNA
expression in plasma from patients with TNBC (n¼ 5), non-TNBC
(n¼ 5) and age-matched healthy controls (n¼ 5) using miRCURY
LNA Array. With a cutoff value of 2-fold difference, there were 10
differentially expressed miRNAs in TNBC. As shown in Table 2,
there were three upregulated (miR-342-3p, miR-23b-3p and miR-
92a-3p) and seven downregulated miRNAs (miR-21 miR-16, miR-
143, miR-185, miR-199a-3p, miR-199a-5p and miR-221) in TNBC
when compared with non-TNBC and healthy controls.

Selection of potential markers. Ten putative miRNAs derived
from microarray were validated in plasma of 30 breast cancer
patients and 30 healthy controls by real-time PCR. The expression
of these miRNAs was shown in Figure 2A, and we selected
a marker that could differentiate TNBC from non-TNBC.
Results showed that the expression levels of miR-16, miR-21,
miR-199a-5p, miR-92a-3p and miR-342-3p were significantly
different between TNBC, non-TNBC and healthy controls and
was consistent with the array data. Receiver-operator character-
istics curve analysis of miR-16 (area under curve (AUC)¼ 0.7289,

Table 1. Clinical characteristics of TNBC and non-TNBC breast
cancer patients in validation set

TNBC
(n¼67)

Non-TNBC
(n¼95) P-value

Age (years; mean (s.d.)) 55.7 (12.6) 55.1 (11.8) 0.4753

Histological type 0.1166

DCIS 0 3
IDC 59 85
ILC 1 3
Mixed (ILCþ IDC) 2 1
Others 5 3

Histological tumour grade 0.7058

1 1 11
2 14 41
3 41 28
NA 11 12

Bilateral cancer (at the
same time)

1 1 1.0000

Operation 0.1695

No 2 0
Yes 65 95

Lymph-node (N) 0.7833

N0 43 53
N1 11 27
N2 3 8
N3 8 7
NX 2 0

Distant metastasis
Before surgery
No 65 91 1.0000
Yes 2 4

After surgery
No 57 93 0.0040
Yes 10 2

Stage 0.8016

0 1 4
I 26 35
II 25 39
III 11 13
IV 2 4
NA 2 0

Tumour stage 0.0921

T0 2 5
T1 34 49
T2 22 39
T3 5 0
T4 2 0
TX 2 2
Abbreviations: DCIS¼ductal carcinoma in situ; IDC¼ invasive ductal carcinoma; ILC¼
invasive lobular carcinoma; NA¼not applicable. Bold represents statistical significance.

Table 2. Dysregulated miRs in TNBC when compared with
normal and non-TNBC

Downregulated miRs TNBC/normal TNBC/non-TNBC
miR-21 0.14 0.02

miR-16 0.16 0.03

miR-143 0.06 0.03

miR-185 0.16 0.03

miR-199a-3p 0.12 0.05

miR-199a-5p 0.1 0.05

miR-221 0.12 0.05

Upregulated miRs
miR-92a-3p 6.1 2.03
miR-23b-3p 1.15 18.53
miR-342-3p 6.68 23.81

Abbreviations: miR¼miRNA; TNBC¼ triple-negative breast cancer.
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95% CI: 0.60–0.86, P¼ 0.002), miR-21 (AUC¼ 0.8333, 95% CI: 0.73–
0.94, Po0.0001) and miR-199a-5p (AUC¼ 0.8463, 95% CI: 0.78–
0.91, Po0.0001), miR-92a-3p (AUC¼ 0.7789, 95% CI: 0.66–0.90,

P¼ 0.0002), miR-342-3p (AUC¼ 0.7283, 95% CI: 0.60–0.86,
P¼ 0.002) (Figure 2B). Therefore, these five miRNAs were chosen
for further validation.
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Figure 2. Small scale validation of miRNAs in TNBC, non-TNBC and healthy controls (n¼90). (A) Box plot of plasma levels of three upregulated
(miR-342-3p, miR-23b-3p and miR-92a-3p) and seven downregulated miRNAs (miR-21 miR-16, miR-143, miR-185, miR-199a-3p, miR-199a-5p and
miR-221) in TNBC patients. The expression of miRNAs was normalised to miR-484. The lines inside the boxes represent the medians. The boxes
mark the interval between the 25th and 75th percentiles. The whiskers denote the interval between the 10th and 90th percentiles. Statistically
significant differences were determined using Mann–Whitney tests. (B) Receiver-operator characteristics (ROC) curve analysis of miRNAs to
discriminate TNBC patients from healthy controls. *Po0.05, **Po0.01, ***Po0.001.

BRITISH JOURNAL OF CANCER Cell-free miRNA and triple-negative breast cancer

1754 www.bjcancer.com | DOI:10.1038/bjc.2015.143

http://www.bjcancer.com


To examine whether these miRNAs were associated with
tumour load, we compared the expression of these miRNAs in
paired primary breast tissues, as well as pre- and post-operative
plasma samples. The expression levels of miR-92a-3p and miR-
324-3p were higher in primary breast cancer tumour tissues
(n¼ 11) when compared with the adjacent non-tumour counter-
parts (Figure 3A). On the other hand, miR-16, miR-21 and miR-
199a-5p had a lower expression in tumour tissues, which was in
line with the data in plasma. Moreover, we compared the
expression levels of miR-16, miR-21, miR-199a-5p, miR-92a-3p
and miR-342-3p between pre-operative (pre) and post-operative
(post) plasma (n¼ 10). Results showed that the expression levels of

miR-16, miR-21 and miR-199a-5p were reversed in the post-
operative plasma, however, reversal of expression levels were not
seen in miR-92a-3p and miR-342-3p (Figure 3B). These data
confirmed that miR-16, miR-21 and miR-199a-5p were associated
with tumour load, which may potentially be used as a diagnostic
marker for TNBC.

Further validation of markers. Mir-16, miR-21 and miR-199a-5p
were then further validated in a large cohort of patients containing
67 TNBC (stage 0 & I, n¼ 27; stage II, n¼ 25; stage III & IV,
n¼ 13), 95 non-TNBC (stage 0 & I, n¼ 39; stage II, n¼ 39; stage
III & IV, n¼ 17) and 90 healthy controls. Results showed that all
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three miRNAs showed a significant lower expression in TNBC
than non-TNBC (Figure 4). Receiver-operator characteristics curve
analyses revealed that miR-16 (AUC¼ 0.7983, 95% CI: 0.71–0.88,
Po0.0001), miR-21 (AUC¼ 0.8740, 95% CI: 0.81–0.94,
Po0.0001), miR-199a-5p (AUC¼ 0.8838, 95% CI: 0.83–0.94,
Po0.0001) were differentiating TNBC from healthy controls and
non-TNBC patients. Results showed that miR-199a-5p with the
highest ROC value maybe a potential biomarker to discriminate
TNBC from non-TNBC.

Correlation with clinical outcomes. To correlate if the plasma
level of miR-199a-5p is associated with tumour stage, patients were
then stratified into TNM stages. Plasma miR-199a-5p expression in
TNBC patients had significant difference when compared with
healthy controls (stage 0 & I, Po0.001; stage II, Po0.001; stage III,
Po0.001; stage IV, Po0.001) (Figure 5). In addition, there was a
trend of decrease in the expression level of miR-199a-5p with tumour
stage, in which patients with stage IV breast cancer had a significantly
lower expression than those with stage 0 & I disease (P¼ 0.028).

More importantly, the plasma levels of miR-199a-5p were
categorised into tumour subtypes, that is, ER/PRþ (luminal),
HER2þ and TNBC. Result showed that tumours bearing
hormone receptors (luminal and HER2þ ) had a higher expression
of miR-199a-5p than in TNBC, implicating hormone receptors
may have a role in the regulation of miR-199-5p in breast cancer.

DISCUSSION

Triple-negative breast cancer represents an aggressive phenotype of
breast cancer. It has been well-documented that TNBC is
associated with advanced stage, family history and occurs in
patients who are BRCA1 mutation carriers (Lee et al, 2011).
Epidermal growth factor receptor (EGFR) was one of the first
anti-cancer agents which was used to treat TNBC. However,
o20% of the patients responded to anti-EGFR agents in the
clinical setting, suggesting other signal pathways were prevailing in
these group of patients (Carey et al, 2012). Others suggest that anti-
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Figure 4. Large scale validation of three miRNAs in a cohort of 252 patients. Box plot of plasma levels of miR-16 miR-21 and miR-199a-5p in
TNBC patients. The expression of miRNAs was normalised to miR-484. The lines inside the boxes represent the medians. The boxes mark the
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angiogenesis-based drugs can result in a better response in TNBC in
the neoadjuvant setting but whether survival would be affected is still
very much unknown (Sikov et al, 2015; von Minckwitz et al, 2014).
Lack of available targeted therapy is one of the obstacles in treating
TNBC, which could partially explain the poor prognosis in patients
with TNBC compared with other breast cancer subtypes (Foulkes
et al, 2010). MiRNA profiling could help to understand the
pathogenesis of TNBC, can be implicated in the clinical application
as biomarkers for diagnosis and prognosis. In the present study, we
used our established platform to examine the miRNAs that can
discriminate TNBC from other breast cancer subtypes.

We have listed several differentially expressed miRNAs in TNBC
and compared their expression in pre- and post-operative plasma
(Table 2 and Figure 3B). We have demonstrated that miR-16, miR-21
and miR-199a-5p had a significant lower expression in TNBC than
in non-TNBC, in which only miR-199a-5p was associated with
tumour stage (Figure 5). In our previous study, miR-16 and miR-21
were upregulated in primary tissues and blood samples in non-TNBC
cases (Ng et al, 2013). Interestingly, we found that these miRNAs
were downregulated in the plasma, as well as in cancerous tissues of
TNBC patients (Figure 4). Piles of evidence showed that miR-21 was
one of the ER-responsive miRNAs in cancers (Terao et al, 2011;
Tilghman et al, 2012), which could partly explain the low expression
of miR-21 in TNBC. Recently, a panel of miRNAs (including miR-
16) has been identified to be used as a predictive marker for overall
survival in TNBC cases (Cascione et al, 2013). Furthermore, a four-
miRNA signature (miR-16, miR-25, miR-222 and miR-324-3p) has

been associated with increased risk of breast cancer (Hu et al,
2012). However, the exact functions of miR-16 in breast cancer
have not been clearly defined. The tumour suppressive role of miR-
16 was linked to cyclin E regulation in breast cancer (Rivas et al,
2012). In the case of hepatitis B virus-related hepatocellular
carcinoma, downregulation of miR-15 and miR-16 was observed in
the viral RNA (Wang et al, 2013). These studies revealed the
tumour suppressor function of miR-16, which reverberated our
data on the low expression of miR-16 in more aggressive subtype of
breast cancer.

The action of miR-199a-5p in the development of cancers
has not been studied until recently. Higher expression of
miR-199a-5p was found in cancerous tissues than non-tumour
counterparts and was associated with lymph-node metastasis in
patients with gastric cancer (He et al, 2014). Forced expression of
miR-199a-5p has been shown to stimulate EMT process and
metastasis in gastric cancer through serum response factor
(Zhao et al, 2014). On the other hand, the anti-tumorigenic
activity of miR-199a-5p was seen in multiple myeloma cells by
targeting endothelial-cell migration and adhesion molecules
(VCAM-1 and ICAM-1) (Raimondi et al, 2014). Recently, a
three-miRNA plasma panel with low expression of miR-199a-5p
could discriminate patients with COPD and squamous cell
carcinomas. This early-response miRNA has contributed to the
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced
pulmonary carcinogenesis (Kalscheuer et al, 2008). There has only
been one study which demonstrated that miR-199a-5p is a
regulator of autophagy and sensitised breast cancer cells to
irradiation (Yi et al, 2013). Consistent with our current findings,
miR-199a-5p was downregulated in cancers of prostate, colon and
bladder, in which it could suppress surface-exposed glucose-related
protein (GRP78) and enhance chemosensitivity to chemotherapy
in cancer cells (Su et al, 2013).

It is widely believed that circulating miRNAs are released
from the tumour cells, and yet the level of specific miRNAs would
be altered before and after removal of tumours. There is a
possibility of hormonal influence, which regulates the miRNA
biogenesis and the subsequent cellular responses in breast
carcinogenesis. These hypotheses warrant further investigation
and provide the basis for the understanding of the molecular
mechanisms of specific miRNAs. Though the results were
promising, our study was limited by small sample number of
TNBC patients and those with stage IV disease. The evaluation of
the association between metastasis and expression of miR-199a-5p
would be useful and is awaited to be proven with a large sample
size. Nevertheless, results of this study provide a non-invasive
screening tool to identify patients with TNBC phenotype, which
offers a more convenient and sensitive method when compared
with immunohistochemistry.

To the best of our knowledge, this is the first study to unravel
low expression of miR-199a-5p in TNBC subtype when compared
with other breast cancer subtypes in the circulation. With the
inclusion of non-TNBC subtypes in this study, we could have a
clearer picture of the changes in expression levels in TNBC
subtypes, which was not common in most of the studies. The
expression of miR-199a-5p was associated with a disease stage,
which could be potentially useful as a predictive marker for early
diagnosis for TNBC in the clinical settings. This study provides the
basis for drug development, which may serve as a target for
treating TNBC patients.
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