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Abstract
Practice of movement in virtual-reality and other artificially altered environments
has been proposed as a method for rehabilitation following neurological injury
and for training new skills in healthy humans.  For such training to be useful,
there must be transfer of learning from the artificial environment to the
performance of desired skills in the natural environment.  Therefore an
important assumption of such methods is that practice in the altered
environment engages the same learning and plasticity mechanisms that are
required for skill performance in the natural environment.  We test the
hypothesis that transfer of learning may fail because the learning and plasticity
mechanism that adapts to the altered environment is different from the learning
mechanism required for improvement of motor skill.  In this paper, we propose
that a model that separates skill learning and environmental adaptation is
necessary to explain the learning and aftereffects that are observed in virtual
reality experiments.  In particular, we studied the condition where practice in the
altered environment should lead to correct skill performance in the original
environment. Our 2-mechanism model predicts that aftereffects will still be
observed when returning to the original environment, indicating a lack of skill
transfer from the artificial environment to the original environment. To illustrate
the model prediction, we tested 10 healthy participants on the interaction
between a simple overlearned motor skill (straight hand movements to targets
in different directions) and an artificially altered visuomotor environment
(rotation of visual feedback of the results of movement).  As predicted by the
models, participants show adaptation to the altered environment and
after-effects on return to the baseline environment even when practice in the
altered environment should have led to correct skill performance.  The
presence of aftereffect under all conditions that involved changes in
environment demonstrates separation of environmental adaptation and skill
learning. Our results support the existence of two distinct learning modules with
different adaptation properties.  Therefore we suggest that adaptation to an
altered environment may not be useful for training new skills.
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Introduction
Experiments in haptic (Gandolfo et al., 1996; Patton et al., 2001; 
Shadmehr & Mussa-Ivaldi, 1994) and virtual-reality environments 
(Krakauer et al., 1999; Pine et al., 1996) have repeatedly shown 
that movement will be altered by changes in environment, and 
may remain altered for a short time after the original environ-
ment is restored (“motion aftereffect”). (Della-Maggiore et al., 
2004; Thoroughman & Shadmehr, 2000) This observation has 
led researchers to suggest that either the original adaptation or 
motion aftereffect could be used to train skills (Rose et al., 1996; 
Sveistrup, 2004). Unfortunately, in most cases, the effect of the 
altered environment is only temporarily maintained, and thus there 
is no transfer of learning from the altered movement to normal skill 
performance (Kozak et al., 1993). The lack of transfer between 
experimental conditions in virtual reality perturbations could be 
explained by the specificity of learning framework (Henry, 1968), 
which stated that transfer of learning depends on the specificity 
of the conditions of practice. Evidence supporting this framework 
stemmed from low correlations in skilled performance in similar 
tasks requiring similar motor skills (Bachman, 1961; Lotter, 1960). 
These studies suggested poor generalization of motor skills and 
conditions that facilitate transfer of learning appear to be very com-
plex and task specific (Proteau et al., 1992; Wulf & Shea, 2002). 
We hypothesize that the reason for the lack of transfer in adapta-
tion tasks is that task learning and environment adaptation are per-
formed by two separate learning systems.

Shadmehr and colleagues (Smith et al., 2006) proposed that there 
are two learning systems of different time scales that underlie motor 
learning. These two learning systems are characterized by their 
time properties. The fast system responds strongly to error but also 
forgets rapidly, while the slow system responds weakly to error, 
but retains information. Recent evidence (Chen-Harris et al., 2008) 
suggests that the fast system has the structure of a forward internal 
model and the slow system could be a motor command generator. 
The adaptation to visuo-motor perturbations has been shown to 
depend on the cerebellum, and is driven by the sensory prediction 
error rather than the motor error (Tseng et al., 2007).

We suggest that these two systems can be separated based on 
their training signals rather than on their time scales. (Mazzoni & 
Krakauer, 2006) separated explicit cognitive strategies and implicit 
environmental adaptation in an experiment that tested the use of 
cognitive strategies to counter a visual rotation in a reaching task. 
Their results showed that implicit motor adaptations override 
explicit cognitive strategies, demonstrating the interactive nature of 

the two systems. In this paper, we present a mechanistic explana-
tion through the use of a computational simulation. In particular, 
we suggest a system that responds to sensory prediction error and 
learns the structure of the sensory-motor dynamic environment 
(“fast system”), while another system responds to task perform-
ance error and learns the elements needed to perform a task (“slow 
system”). We further suggest that the two systems have very differ-
ent generalization properties, so that while the sensory prediction 
error system can generalize broadly across the environment, the 
performance error system does not generalize to dissimilar tasks. 
These properties are consistent with two different and simultane-
ously-active learning systems, and we will simulate a simple model 
of this structure to compare with human data. The proposed struc-
ture is similar in spirit to a model originally proposed by Doya and 
colleagues, in which there are separate neuroanatomical regions for 
motor planning and for adaptation to changes in dynamics (Doya 
et al., 2001).

Many experiments that use altered visuo-motor environments con-
found the two types of error, so that performance error is caused 
by sensory prediction error. In such cases it is not possible to dis-
tinguish the two learning systems. In order to distinguish the two 
systems we need to test the effect of sensory prediction error when 
performance error is zero, and the effect of performance error when 
sensory prediction error is zero. By doing so, we will show that 
the two systems have very different generalization properties, and 
therefore cannot be implemented by the same network. Recent stud-
ies have distinguished the two mechanisms into model-based learn-
ing and model-free learning (Haith & Krakauer, 2013; Huang et al., 
2011). Using modified visuomotor rotation experiments, Krakauer 
and colleagues showed the contribution of model-free learning in 
explaining faster relearning of visuomotor rotations. We build on 
this knowledge and further distinguish the two types of learning by 
the error that is used by each learning mechanism.

We use a very simple experimental paradigm. The “skill” that we 
test is the ability to make straight reaching movements to different 
targets on a pen tablet. This is a very simple and overlearned skill, 
but it provides a sufficient model for testing the hypothesis. Here we 
consider movements to different targets to represent different skills, 
since different movement directions require significant changes in 
the pattern and timing of muscles used. The “environment” that we 
test is the relation between hand movement on the pen tablet and 
the visual image of movement that is seen by the subject. Differ-
ent rotations of the displayed hand movement with respect to the 
true hand movement are considered to be different sensory-motor 
environments.

We compare the results to three simple model structures for skill 
learning and environment adaptation (Figure 1). Structure 1 con-
sists of a single network, and structures 2 and 3 have increasingly 
more complex structure. Each has different generalization proper-
ties. Structure 1: Skill learning and environment adaptation are per-
formed by a single shared network for all tasks (directions of hand 
movement) and all environments (visual rotations). This structure 
predicts that adaptation to a new environment will change perform-
ance on multiple targets. It also predicts that practice on one target 
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will affect performance on other targets even without a change in 
environment. Thus both the environment and the task will gener-
alize across multiple targets, and environment learning will have a 
broad effect on task learning. Structure 2: Task learning and envi-
ronment adaptation are performed by a single distinct network for 
each target. This structure predicts that adaptation to a new environ-
ment will change performance only on the particular target practiced 
in that environment. Thus neither the environment nor the task will 
generalize across multiple targets, but environment learning will 
have a focused effect on task learning. Structure 3: Task learning 
is performed by a separate network for each target, but environment 
adaptation is performed by a single shared network. This structure 
predicts that adaptation to a new environment will change perform-
ance on multiple targets, but practice on one target will not affect 
performance of other targets. Thus the environment will generalize 
across multiple targets, but the task will not, and environment learn-
ing will have no effect on task learning because it is performed by a 
completely different subsystem. Note that we do not test the fourth 
implied possibility, in which the task generalizes across multiple tar-
gets but the environment does not, because this is not consistent with 
known previous results (Goodbody & Wolpert, 1998). Only struc-
tures 1 and 2 could permit environment adaptation to be useful for 
training tasks, since only in these structures are the parameters modi-
fied by environment adaptation also used for tasks (see Figure 1).

In this study, we will reject structure 1 by showing that learning one 
task does not lead to aftereffects on a second task, and therefore 
show that sufficiently different tasks do not share parameters and are 
probably learned by distinct networks. Furthermore, we will reject 
structure 2 by showing that learning a new environment does lead to 
aftereffects when the environment returns to baseline, and therefore 
that multiple environments are learned by a single network with a 
single set of parameters. Our results support structure 3 by show-
ing that learning one environment leads to aftereffects in a differ-
ent environment, but learning one task does not affect learning of 
another task. Since adaptation to sensory-motor error generalizes 
broadly while task learning generalizes narrowly, we claim that 

environment learning and task learning cannot be implemented by 
the same network. An interesting consequence of the independ-
ence of the two systems is that when the task error is zero but the 
sensory-motor mismatch is nonzero, adaptation reduces the mis-
match even at the expense of worsening the task error, confirming 
the results of (Mazzoni & Krakauer, 2006). Therefore adaptation 
to the environment is controlled independently of the task error, 
and our results will support the existence of two different learning 
systems that respond to two different types of error.

Motion aftereffect paradigms have provided useful results concern-
ing generalization of adaptation to different task or environment 
parameters. (Hwang et al., 2006; Krakauer et al., 1999; Krakauer 
et al., 2006; Shadmehr & Moussavi, 2000; Vetter et al., 1999) Here, 
we show that the type of generalization depends on the type of error 
that drives learning, consistent with the hypothesis of two different 
learning systems that are distinguished by the error to which they 
respond and the way in which they generalize across the environment.

Simulations
One example of each of the three models was simulated. To do this, 
several assumptions were made. We assumed that the participants 
had already learnt the dynamics of their arm and know the motor 
commands for reaching movements. Therefore, the learning of the 
arm dynamics was not included in the model. Furthermore, we 
assumed that the participants would have already learnt what trajec-
tory would solve the problem optimally from previous experience. 
Based on physiological studies, human movements are observed to 
have a bell-shaped velocity. (Gordon et al., 1991; Bizzi & Abend, 
1983). This type of velocity profile has been shown to be optimal 
for many cost criteria such as the minimum-jerk criterion in optimal 
controlled reaching (Nagasaki, 1989). For simplicity, the optimal 
controller (trajectory generator) was modeled with a desired trajec-
tory generator, which generates a straight-line trajectory to the tar-
get with a bell-shaped velocity profile. The bell-shaped profile used 
is a normalized truncated Gaussian distribution function, which is 
lowered so that it has zero initial velocity.

Figure 1. Different neural network models. A. Structure (1) is a single learning network that adapts to both changes in skill and environment. 
The same system learns based on errors in the observed task. B. Structure (2) is a motor program model. Learning is performed by separate 
network for each task based again only on observed error. C. Structure (3) is a two system-learning model. This model splits into two groups 
of systems, where there is a separate system for each task, learning based on observed error, but a single inverse model for control of the 
environment, learning based on prediction errors.
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Model components
There were three components used in the models: the trajectory gen-
erator, the environment adapter and the online feedback controller. 
The use of these elements is illustrated in Figure 2. From Figure 2 

we see that in models A and B there is one environment adaptation 
module for every trajectory generation module. Therefore, in the 
simulations of models A and B we used the same network for tra-
jectory generation and adaptation to the environment. Model A has 

Figure 2. Block diagram of the three simulated models. P (Plant) is the matrix that represents the rotation of the visual feedback. P-1 is the 
internal inverse model of the plant. The desired trajectory generator uses a bell-shaped velocity profile to generate the desired trajectory. The 
“Time diff” block calculates the velocity sequence that would have produced the planned trajectory using the planned position sequence. 
Using the planned velocity sequence as the input command, the online correction takes the delayed error as a proportional correction term 
to give the new velocity to guide where the cursor should go relative to the current location. The learning networks in the models are basis 
function (BF) networks where each basis function is an increasing order monomial of time. A. Detailed simulation model for model A (simple 
learning model). B. Detailed structure for model B (motor program). C. Detailed structure for model C (two-system learning model).

Learning 
network

target

(xt, yt)

xp(t),
P

xs(t), ys(t)

delay

buffer

+-
xd(t), yd(t)Desired trajectory 

generator

xe(t), ye(t)

xc(t)
yc(t)

Time 
diff.

xe(t-td) 
ye(t-td)

vx(t)
vy(t)

+ x(t)
y(t)

Online correction

Model A

target

(xt, yt)
P

xs(t), ys(t)

delaybuffer

+-xd(t), yd(t)

Model B

Desired trajectory 
generator

xe(t), ye(t)

Learning 
network

Learning 
network

Learning 
network

Learning 
network

:.

x c(t)
y c(t)

Time 
diff.

xe(t-td) 
ye(t-td)

vx(t)
vy(t)

+ x(t)
y(t)

Online correction

xc
yc

P-1^ P
c

c

P̂

xs(t)
ys(t)

xs(t), ys(t)

- +

^       ^

Learning 
network

target

(xt, yt)

xp
yp

Time 
diff.

Learning 
network

Learning 
network

Learning 
network

:.

delaybuffer

+
xd(t), yd(t)Desired trajectory 

generator

xe(t), ye(t)

-

xe(t-td) 
ye(t-td)

vx(t)
vy(t)

+ x(t)
y(t)

xc(t) = xc(t-1) + x
yc(t) = yc(t-1) + y

(t)
(t)

Trajectory Controller

Online correction

Environment ControllerModel C

Time Update* 

*Time update equations:

Time Update* 

Time Update* 
yp(t)

(t)
(t) (t)

(t)(t)
(t)

xp(t)
yp(t)

α 

α 

α 

Trajectory Controller

Trajectory Controller

Page 5 of 24

F1000Research 2014, 3:72 Last updated: 23 NOV 2015



a single network for trajectory generation and environment adapta-
tion, while model B has a separate network for each task that learns 
both the trajectory and the environment. The separation of learning 
networks for each task is a simplification in modeling to replicate a 
task generator that generates a command trajectory for each desired 
target in a continuous fashion. With this simplification, we could 
use basis function networks to model task learning rather than other 
more complicated networks. In model C, there is a separate trajec-
tory generator for each task but only a single environment adaptation 
module, so two different types of network must be used. In the tra-
jectory generator module, the error signal is based on performance 
error, the error observed by the participant during each trial. For the 
environment adapter, the error that trains the network is based on 
the prediction error, the difference between the participant’s antici-
pation of movement and the actual observed movement.

For any task k, the desired trajectory generator creates a desired 
trajectory x[k]

d
(t) and y[k]

d
(t). This trajectory is compared with the 

observed feedback to generate the error signals x
e
(t) and y

e
(t). At 

each trial, the learning network produces the planned trajectory, 
x

p
(t) and y

p
(t). x

p
 and y

p
 are the input to a feedback controller. The 

feedback controller combines the planned trajectory and the error 
x

e
(t) and y

e
(t) at each point in movement in order to generate a 

motor command x
c
(t) and y

c
(t). The plant takes the motor command 

x
c
(t) and y

c
(t) (which is just a desired position on the pen tablet) 

and transforms it into the observed position x
s
(t) and y

s
(t) that is 

then available as sensory (visual) information. The plant transforms 
the motor command into the sensory output by rotating, so that 
—
x

s

y
s

[ ] = P(θ) —
x

c

y
c

[ ], where P(θ) is a 2×2 rotation matrix.

The sensory output is compared with the desired trajectory to gen-
erate the error signal x

e
 = x

d
 - x

s
, y

e
 = y

d
 - y

s
. The error signal is 

used in real-time for feedback control, and it is used at the end of 
each movement attempt to update the trajectory generator module. 
Assuming that the desired trajectory (x

d
, y

d
) is known, the goal of 

the trajectory generator is to minimize the cost function, ε, the norm 
of the error signal integrated over time.

In addition to the above elements, model C includes a separate 
environment adaptation module that modifies the motor command 
x

c
 y

c
 and changes it to x′

c
 y′

c
 in order to compensate for changes in 

the plant (rotation). It performs this modification by using a plant 
inverse P–1(θ) that predicts the correct motor command x′

c
 y′

c
 for 

any desired sensory output x
s
, y

s
. The plant inverse is learned by 

approximating the plant “forward model” from x′
c
 y′

c
 to x

s
, y

s
 and 

then inverting the resulting 2×2 matrix. Note that in models A and 
B, a change in the environment results in a change in the trajectory 
generator because of the increased performance error x

e
 and y

e
. In 

model C, a change in the environment will be compensated by the 
environment adaptation module and thus the trajectory generator 
module will not change.

Trajectory generator
The input to the trajectory generator was the x and y coordinates of 
the target location (x

t
, y

t
) as shown on the display. Using the given 

target (x
t
, y

t
), the desired trajectory generator generated a trajectory 

(x
d
(t), y

d
(t)) that it “hopes” to see on screen, based on the assump-

tions mentioned above (straight and bell shaped velocity).

The learning network was programmed as a basis function neural 
network. The basis functions used were polynomials of time up 
to degree n. Let W

x
∈ℜn and W

y
∈ℜn be unknown weight vectors. 

Then the output of the trajectory generator was written as

x
p
(t) = Σ

i
 W

xi
 × Φ

i
(t)    and    y

p
(t) = Σ

i
 W

yi
 × Φ

i
(t)

where W
xi
 and W

yi
 were the ith elements of the W

x 
and W

y
 vectors 

and Φ
i
(t) is the ith degree monomial of t (Φ

i
(t) = ti). These weighted 

basis functions were passed through a summation operator to sum 
across all ith elements. The outputs x

p
(t) and y

p
(t) were then passed 

to the rest of the learning model. The outputs x
p
(t) and y

p
(t) specify 

the trajectory input provided to the feedback controller.

The weight vectors W
x 
and W

y
 were trained using the errors (x

e
(t), 

y
e
(t)) between the desired trajectory (x

d
(t), y

d
(t)) and the trajectory 

of the movement observed on the screen (x
s
(t), y

s
(t)). The training 

algorithm is the Widrow-Hoff “least mean squares” (LMS) training 
algorithm that is known to converge for stationary inputs. (Widrow 
& Hoff, 1960; Widrow et al., 1976). Unfortunately, when used in a 
control system, the inputs are non-stationary and thus convergence 
of LMS is not guaranteed. Nevertheless, this is a commonly used 
algorithm that has been shown to perform well in adaptive control 
tasks (Sanger, 1991; Sanger, 1994; Sanner & Slotine, 1992) and it 
provides one of the simplest models of motor learning (Berthier 
et al., 1993; Schweighofer & Arbib, 1998).

x
e
(t) = x

d
(t) – x

s
(t)         and     y

e
(t) = y

d
(t) – y

s
(t)

∆W
xi
 = λ Σ

j
 x

e
(t

j
)Φ

i
(t

j
)  and    ∆W

yi
 = λ Σ

j
 y

e
(t

j
)Φ

i
(t

j
)    for all i

W
x 
=

 
W

x 
+

 
∆W

x
            and     W

y
 = W

y
 + ∆W

y

λ was the learning rate of this system, i was the degree for the basis 
function described above, and j was the time index used for the 
summation of errors from the whole movement. Each weight (W

xi 

and W
yi
) was updated after each trial, based on the errors from the 

whole movement. In models A and B, the output x
p
 and y

p
 repre-

sents both task learning and adaptation to the environment, since 
a change in the environment or the desired trajectory will lead to 
a change in error x

e
 and y

e
 that will modify the weights in the net-

work. In model C, there is a separate stage of environment adapta-
tion and thus this initial network is responsible only for adapting to 
changes in the task. In models B and C, the multiple neural network 
structure was simulated by storing multiple weight vectors W(k)

x
 

and W(k)
y
 which can be trained or retrieved when needed for any 

particular task k.

Environment adapter
The environment adapter built an internal model of the environment, 
P̂ , giving predictions, x̂ 

s
, ŷ 

s
. The internal model was inverted to 

provide the environment inverse P̂ 
–1

. This gave the learning system 

P θ
θ
θ

θ
θ

( ) =
−









cos
sin

sin
cos

ε = ∫
x t
y t

dte

e

( )
( )
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a way to anticipate the rotational field and attempted to “undo” its 
effect. At each trial, the input to the environment inverse was the 
output from the feedback controller (x

c
(t), y

c
(t)). The model inverse 

produced the modified command trajectory (x′
c
(t), y′

c
(t)) that the 

system anticipated could invert the plant. This signal is then fed 
through both the plant and the plant model. By computing the error 
between the plant output and the plant model output (e

p
), the plant 

model P̂ , could be trained. Training of the plant model was done 
through the LMS algorithm. Since the posed problem was essen-
tially solving a linear regression, the LMS is guaranteed to con-
verge, assuming that the learning rate is not too large.

where α
e
 was the learning rate of the system.

Online feedback correction
As a human participant would, the system in the simulation should 
also be allowed to correct errors online. Therefore, an online feed-
back correction controller was implemented. The planned trajec-
tory (x

p
, y

p
) from the trajectory planner was used as input to the 

controller and it was also given a feedback of the error “observed” 
on screen (x

s
, y

s
). This error was calculated based on the desired 

trajectory (x
d
, y

d
). The online feedback is delayed by 100ms, the 

same order of magnitude of recorded human visual reaction time. 
(Fischer & Ramsperger, 1984) The controller output was propor-
tional control using the delayed feedback with a feedback gain γ, 
added to the feedforward control generated using x

p
 and y

p
.

v
x
(t) = x

p
(t) – x

p
(t-1)          v

y
(t) = y

p
(t) – y

p
(t-1)

v’
x
(t) = v

x
(t) + γx

e
(t-t

d
)       v’

y
(t) = v

y
(t) + γy

e
(t-t

d
)

x
c
(t) = x

c
(t-1) + v’

x
(t)          y

c
(t) = y

c
(t-1) + v’

y
(t)

Experimental methods
In a visual rotation (VR) setting, there are two aspects to any task: 
vision (what the participant sees) and motor (the participant’s actual 
movement). In our experiment, the participants observed the visual 
feedback of their movement on a LCD monitor and performed the 
movement using their unseen hand under the monitor. We manipu-
lated the relationship between movement and visual feedback in 
order to force the participants to adapt to a new motor-sensory map 
(environment). We determined whether this adaptation interfered 
with performance of a previously-learned task (straight line move-
ments in different directions). In one experimental manipulation, 
participants were asked to make a movement that appeared visu-
ally the same, for example, moving toward the same target on the 
screen, but required a different hand movement due to a change in 
the visual-motor map. We will refer to this as “same task (target) 
different environment (visuo-motor map)”. In a second experimen-
tal manipulation, we asked the participant to make a movement to a 
different target but without a change in the visual-motor map. This 
required a change in the actual (unseen) hand movement, so we 
refer to this as “different task same environment”. In a third experi-
mental manipulation, we asked the participant to make a movement 
to a different target, but the visual-motor map was changed so that 
successful performance occurred for the same hand movement in 

both cases. In other words, the change in target and the change in 
visual-motor map were in exactly opposite directions and cancel 
each other out. We refer to this case as “different task different envi-
ronment”, although the required hand movement did not change. 
The movements were recorded using a pen tablet (Wacom, Intuos 
2 XD-0912-R, Saitama, Japan) connected to a personal computer 
(Fujitsu, Lifebook T4010, Tokyo, Japan). The participants were 
asked to complete four short experiments. In each experiment, there 
were three blocks of 20 reaching trials, reaching from the center 
of the screen to a target location on a circle. The first and third 
block were always under the same experimental condition and in 
the second block, we changed the vision and/or the motor aspect 
of the task. The experiment was designed to determine whether 
the condition in the second block interfered with performance of 
the skill attempted in the first block by causing aftereffects at the 
beginning of the third block. Thus the three blocks are namely, base-
line, interference, and re-adaptation. The outcome measure was a 
comparison between baseline (before the interfering condition) and 
re-adaptation (after the interfering condition). The four experiments 
were carried out in a pseudorandom order for each subject, such that 
each subject completed all 4 experiments in a randomized order to 
minimize the effect of the familiarization of the task on any particu-
lar experimental condition.

Since straight-line reaching is a heavily practiced skill for most 
subjects, the visual environment was rotated 10 degrees clockwise 
in the baseline condition. The baseline condition was therefore no 
more familiar to subjects than the interference conditions, so sub-
jects were unable to use their extensive prior experience with reach-
ing to override errors induced by the adaptation. Changes in the 
rotation feedback (environment) were made relative to the baseline 
environment.

Procedure
In experiment 1 (same task, different environment), the feedback of 
the movement in the interference block was rotated counterclock-
wise by 20° relative to baseline (see Figure 3). The target location on 
the visual display was not changed. This was a typical aftereffects 
paradigm, where the subject was asked to perform the task with the 
same specification, but with a change in environment. Two things 
changed in the experimental condition between the first and second 
block of the experiment: the visuo-motor map and the movement 
the subject was required to make. In order to tease apart which is 
the main cause of the aftereffects, we designed experiment 2 and 3 
to test each aspect. In experiment 2 (different task, same environ-
ment), the visual feedback was not rotated, but the target location 
moved in the interference block. This experiment was designed to 
look at interference between learning different hand movements. In 
experiment 3 (different task different environment), the feedback of 
the movement in the interference block was rotated counterclock-
wise by 20° relative to baseline. The target location (task) in state 
B was also rotated by the same amount in the opposite direction to 
keep the required arm movement the same. This experiment was 
designed to look at the effect of changes in the visuo-motor map 
(environment) without a change in the hand movement required to 
solve the problem. However, in order to test, the target location had 
to be different between the baseline and interference conditions. 
Therefore, a fourth experiment, Experiment 4 (different task, differ-
ent environment) was designed as a control for experiment 3 where 
the visual display was not changed throughout the three blocks. The 
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purpose of this control is to ensure that the effects in experiment 3 
were not simply due to the altered sensory display. In the baseline 
condition, instead of asking the subjects to reach to the target loca-
tion, we placed the target at 20°, and asked the participant to reach 
to 40°. Additional feedback was given in form of a score. The score 
was calculated as 100 - the target error (in degrees). The target error 
was calculated at the point when the subject’s hand/cursor crossed 
the circle where the target lies. In the interference block, the target 
was still kept at 20° and the feedback of the movement was rotated 
counterclockwise 20°. The participants were asked to reach to the 
target to keep the movement the same. Therefore, the visual display 
did not change although the target and environment did. We used 
this experiment to verify whether the results observed in experi-
ment 3 could be explained by changes in the visual display and 
to separate the effects of changes in the intended movement from 
changes in sensory stimulus (visual display).

Because subjects may make large errors following an unexpected 
change in the visual rotation, they were provided with a visual indi-
cation of the environment, and this indication also served as a warn-
ing when a change occurred. The indicator on screen marked the 
“west” direction on the pen tablet. Therefore, when the visual feed-
back was rotated, the indicator moved on the screen according to the 
rotation field. The participants were instructed to reach out from the 
center as fast and as straight as possible. If they completed the move-
ment and reached the target within a time limit (1 s), the target would 
flash orange to indicate a success. After each trial, the participant 
was guided to move the cursor back to the starting location without 

direct feedback of the cursor location. On the screen, the participants 
were shown a circle whose radius represents the distance between 
the subject’s cursor and the starting location. The participants were 
told to move their cursor to minimize the size of the circle in order 
to move the hidden cursor back to the starting point.

Participants
Ten participants with no history of neurological diseases were 
recruited from Stanford University. The participants were between 
the age of 23 and 27, six males and four females. All participants 
were right-handed and performed the experiments with their right 
hand. Follow-up tests with another group of participants were carried 
out after the conclusion of the first study. The follow-up study was 
on the same rotation paradigm only with larger changes in rotation 
angles. For the follow up study, eight adult participants (average age: 
25.4, five females and three males) were recruited for further tests. 
These eight participants did not participate as a subject in the first 
group. All except one of the follow-up study participants were right 
handed. All participants performed the tasks with their dominant 
hand. All procedures were approved by the Stanford University Insti-
tutional Review Board. Participants signed written consent for the 
experiment and HIPAA authorization for the use of personal data.

Data analysis
Data analysis was performed in MATLAB. The primary data were 
the samples of the pen tablet position sampled at 50Hz. The ini-
tial direction of movement was calculated as the angle of the line 
connecting the start location to the point of maximum velocity  

Figure 3. Experimental procedure. In each of the four experiments, there were three blocks, with 20 trials each. In the figure, the monitor 
represents what the participants saw during the experiment. The rectangle below represents the subjects’ arm movement. The dark circular 
dot represents the starting location, and the light colored dot represents the target presented to the participants during the experiment. The 
line in between the dots indicates the desired movement as observed on screen. Two striped marks on the side of the screen always indicate 
the “west” direction on the tablet, which was used as an indicator to the participants to let them know which environment they are in. Figures 
A, B, C and D show the experimental setup for experiment 1, 2, 3 and 4 respectively. E and F show details of each experimental block.

A. B.

C. D.

E.

F.

Experiment 1: same task, different environment

20 trials

Baseline: A1 Interference: B1 Re-adaptation: A1

20 trials 20 trials

Monitor
display

Pen
Tablet

40o

30o

40o

50o

40o

30o

-10o rotation +10o rotation -10o rotation

Experiment 2: different task, same environment

20 trials

Baseline: A1 Interference: B2 Re-adaptation: A1

20 trials 20 trials

40o

Monitor
display

Pen
Tablet 30o

60o

50o

40o

30o

-10o rotation -10o rotation-10o rotation

Experiment 3: different task, different environment

20 trials

Baseline: A1 Interference: B3 Re-adaptation: A1

20 trials 20 trials

Monitor
display

Pen
Tablet 30o

40o

30o

-10o rotation +10o rotation -10o rotation

20o

30o

40o

Experiment 4: different task, different environment

20 trials

Baseline: A2 Interference: B3 Re-adaptation: A2

20 trials 20 trials

Monitor
display

Pen
Tablet 30o 30o

-10o rotation +10o rotation -10o rotation

20o

30o

40o 40o

Exp Baseline Interference Re-adaptation
1 A1 B1 A1

A1
A1
A2

2 A1 B2
3 A1 B3
4 A2 B3

Condition Visual Display In World Coordinates
A1 Displayed target location: 40o

Reach Target: 40o

Visual feedback rotation: -10o

Target direction: 30o

A2 Displayed target location: 20o

Reach Target: 40o

Visual feedback rotation: -10o

Target direction: 30o

B1 Displayed target location: 40o

Reach Target: 40o

Visual feedback rotation: +10o

Target direction: 50o

B2 Displayed target location: 60o

Reach Target: 60o

Visual feedback rotation: -10o

Target direction: 50o

B3 Displayed target location: 20o

Reach Target: 20o

Visual feedback rotation: +10o

Target direction: 30o
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(Krakauer et al., 1999). For each trial, the average and standard 
deviation of the initial reach angle for all participants were calcu-
lated. The extent of an aftereffect in each experiment was determined 
by comparing the first trial in state C with the baseline statistics 
computed from the last ten trials of state A. The baseline statistics, 
means (μ) and standard deviations (σ), were calculated for each 
experiment per participant. Using the measurement from the first 
trial of state C (x

c1
), the magnitude of the aftereffect was calculated 

as a z-score.

A larger z value is associated with a greater aftereffect. The presence 
of an aftereffect was tested statistically by performing a hypothesis 
test with α = 0.05. When |z| > 1.96, the null hypothesis (x

c1
 belongs 

to the baseline distribution) was rejected, and we asserted the pres-
ence of a statistically significant aftereffect. Furthermore, we com-
pared the magnitude of the aftereffects to the baseline trials and 
between experiments. The last trial in state A was compared to the 
first trial in state C for all 4 experiments using repeated measures 
ANOVA. The initial direction was the dependent measure, and the 
experiment (1 to 4) and the state (A and C) were the independent 
measures. Post-hoc pairwise statistics were performed using Fisher 
protected least square difference tests.

Results
Simulation results
Before the simulation of the experiment, the model was allowed to 
“practice” straight lines from the center to the various target location, 

without the rotation of the “visual feedback” (not shown in the 
figure). The models practiced several hundred straight lines move-
ments to targets at 0° (straight up), 20°, 40° and 60°. This allowed 
the model to have relatively similar experience as a human subject, 
where humans are assumed to already know how to make straight 
lines to the various targets in the normal environment. The learning 
rates in the models were tuned by starting with very small values, 
and increasing them until the system was able to learn in approxi-
mately the same speed as the human subjects (within 20 trials). The 
online feedback gain was tuned to adjust the trajectories such that 
the trajectories would end at the target location. The system was 
approximately overdamped even if there was large initial error.

The simulations showed a small learning curve at the beginning of 
experiment 1. This was because the model has to learn to adapt to the 
+10° rotational field. The simulation started with doing experiment 1 
and we did not program a break in between the experiments, so the 
computer could retain the +10° field learnt from before and did not 
show a learning curve in the beginning of experiment 2 and 3.

Our simulation results highlighted the following model predictions 
for each structure: Model A (Structure 1) predicted that practice 
on one target will affect performance on other targets even with-
out a change in environment (Figure 4D). Model B (Structure 2) 
predicted that adaptation to a new environment will change per-
formance only on the particular target practiced in that environ-
ment (Figure 4H). Model C (Structure 3) predicted that adaptation 
to a new environment will change performance on multiple targets 
(Figure 4I), but practice on one target will not affect performance 
of other targets (Figure 4F).

Figure 4. Results from one simulation run of each model. Results plotted are the initial angle (in degrees) of the simulated movement 
observed on screen against the trial number in that experiment. The solid black line represents the computer simulation results; whereas 
the dotted grey line represents the target presented for that trial. Experiment 4 was not simulated due to the nature of the experiment being 
very similar to experiment 3. To a computer simulation, experiment 3 and experiment 4 are the same as the difference between the two 
experiments comes from difference in visual display. The first column (A, D, G) are the results from model A, second column (B, E, H) are 
results from model B and the third column (C, F, I) are from model C. The first row (A, B, C) are results for experiment 1, the second row (D, 
E, F) are results for experiment 2, and the third row (G, H, I) are results for experiment 3.
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Human participant experimental results
According to the calculations outlined earlier (results shown in 
Table 1, raw data in dataset 1), in experiments 1 and 3, ten par-
ticipants showed significant aftereffects that reached statistical 
significance (≥ 0.05); in experiment 4, nine participants showed 
aftereffects. In experiment 2, only three participants showed a sig-
nificant aftereffect. In experiment 1, all subjects showed transient 
aftereffects both at the onset of the altered environment (first few 
trials of state B) and at the return to the baseline environment (first 
few trials of state C). This agrees with previous results and shows 
that subjects adapted to the altered environment in a way that sug-
gests the presence of an adaptive internal model (Kawato, 1999;  
Wolpert et al., 2001). Aftereffects were also seen in experiment 3 
and 4. Note however, that although subjects achieved the desired 
performance in the altered environment (at the end of state B), the 
return to the baseline environment caused worsening of perform-
ance (beginning of state C) that only gradually returned to its origi-
nal baseline. Aftereffects were not observed in experiment 2.

These results were confirmed using repeated measures ANOVA, 
examining the difference between the last trial of state A (baseline) 
and the first trial of state C (aftereffect), with the initial direction as 
the dependent measure, and the experiment (1 to 4) and the state 
(A and C) as the independent measures. The initial direction was 
statistically different between the experiments (F(3,27) = 13.18, 
p<0.0001) and between baseline and aftereffect (F(1,27) = 376.76, 
p<0.0001). The interaction between the experiment and state was 
also statistically significant (F(3,27) = 10.703, p<0.0001). The 
post hoc Fisher PLSD test showed that initial direction measure 
in state C (aftereffects) were significantly higher in experiment 1, 
3, and 4 compared to experiment 2 (exp 1-2: p < 0.0001, exp 2-3: 
p = 0.0002, exp 2-4: p = 0.0072, see Figure 5E).

By comparing Figure 4 and Figure 5, we see that models A and B 
do not match the experimental results. Only model C is consistent 
with human results in all of the experiments and predicts afteref-
fects in experiments 1, 3, and 4, but not 2. Figure 6 shows several 
typical trajectories from a participant and simulations of model C. 
The terminal “hook” is due (in the model) to the feedback control-
ling online correction.

In the follow-up study, a second group of participants (8 in total) 
were recruited to study the generalization of aftereffects in larger 

rotation angles. We repeated our first experiment with a 90° rota-
tion between environments. The targets were also further apart. The 
targets were located at 90°, 180° and 270° rather than 20°, 40°, and 
60° respectively. We call this the 90 degrees experiment. The results 
in the 90 degrees experiment are presented in Figure 7 and the sta-
tistics in Table 2, with the raw data in dataset 2.

The results in the 90 degrees experiment were not as strong when 
compared to the original 20 degrees experiment. However, the con-
clusion still stands that in experiment 1, 3, and 4, the participants 
showed stronger aftereffects than in experiment 2. The initial errors 
that occurred in the interference state of experiment 2 showed the 
environment learner’s limited ability to generalize to targets that are 
far away from the initial training. Yet the observation that training 
of a new target in the second environment did not interfere with the 
performance of the initial target upon return to the re-adaptation state 
reinforces the separation of task learning and environment adapta-
tion. Aftereffects were observed in experiment 3 and 4 indicating that 
the training in a different environment at a target 90° away from the 
initial target interfered with the initial training. The statistical results 
using repeated measures ANOVA showed that the initial direction 
was statistically different between baseline and aftereffect (F(1,21) = 
53.437, p=0.0002), but no statistical difference was observed between 
the experiments (F(3,21) = 1.739, p=0.1897, see Figure 7E).

Data from motor learning experiments

8 Data Files

http://dx.doi.org/10.6084/m9.figshare.957526  

Discussion
Consistent with prior force and rotation field studies (Gandolfo 
et al., 1996; Martin et al., 1996; Patton et al., 2001; Shadmehr 
& Mussa-Ivaldi, 1994), participants showed transient aftereffects 
when they returned to the original experimental condition after 
practicing in a different rotational field (experiment 1). However, 
aftereffects did not occur following a change in the task (experi-
ment 2). Aftereffects did occur in a different rotational field even 
when the task was adjusted so that the required hand movement 
did not change between conditions (experiment 3). Aftereffects also 
occurred in a different rotational field when both the visual display 
and the required hand movement did not change (experiment 4).

Table 1. Statistics of the aftereffect. Represented in the table are the aftereffect z scores calculated for 
each participant for the 4 experiments (Exp). The bolded numbers are the ones considered significant under 
the assumption of α=0.05 (|z| > 1.96). The significant column (Sig.) in the table represents the number of z 
scores (out of 10) that are significant in that experiment. The table also includes results from the three models: 
+ indicates a presence of aftereffects prediction and – indicates an absence of aftereffects prediction.

Exp Human participants Model prediction

1 2 3 4 5 6 7 8 9 10 Sig. A B C

1 6.30 4.85 4.64 9.82 2.50 3.66 6.91 10.9 8.05 15.4 10 + + +

2 1.48 1.81 1.78 1.40 5.71 0.69 -0.28 0.31 2.30 2.20 3 + - -

3 4.77 7.13 7.31 6.75 5.51 3.83 2.94 2.96 6.42 6.14 10 - - +

4 2.11 2.21 10.6 5.65 0.33 5.04 3.52 2.12 5.28 3.54 9 - - +
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Figure 5. Experimental results of human participants. The initial direction measurement of the movement observed on screen. This is the 
trial by trial average of all ten subjects. The error bars mark the standard deviation amongst the subjects and the dotted grey line represents 
the desired target angle observed on screen. The vertical axis is the initial direction measured in degrees and the horizontal axis is the trial 
number. A. Experiment 1, same task different environment. B. Experiment 2, different task same environment. C. Experiment 3, different task 
different environment. D. Experiment 4, different task different environment (same display target). E. Group mean of the last trial in state A 
(baseline) compared to the first trial in state C (aftereffects) in a bar graph. Asterisks indicate statistical significant difference between groups 
(p < 0.05).

Aftereffects can be considered a type of interference between con-
ditions in which the prior condition affects the initial performance 
in the subsequent condition. Our results show that interference 
between conditions occurs if and only if there is a change in the 
rotational field (the environment). A change in the target task is 
not sufficient, by itself, to cause interference or aftereffects. Since 
changes to the environment interfere with each other (experiment 1, 
3, and 4), the results suggest that there is only a single environment 
internal model that adapts and re-adapts (thereby showing after-
effects); whereas there are multiple independent modules for task 
performance (experiment 2). In this model simulation (Model B 
and C), we considered each reaching target to have independent but 
similar learning networks. In reality, this is not realistic as it would 
require a potentially infinite number of learning networks to model 
all possible reaching directions. There must be a balance between 

Table 2. Statistics of the aftereffect in the 90 degrees rotation 
experiment. Represented in the table are the aftereffect z scores 
calculated for each participant for the 4 experiments (Exp). The 
bolded numbers are the ones considered significant under the 
assumption of α=0.05 (|z| > 1.96). The significant column (Sig.) 
in the table represents the number of z scores (out of 8) that are 
significant in that experiment.

Exp Human participants

1 2 3 4 5 6 7 8 Sig.

1 21.0 15.0 12.6 6.51 1.92 11.3 0.19 3.43 6

2 1.63 3.07 5.05 0.58 -0.32 6.69 -0.25 3.30 4

3 2.48 4.35 1.75 6.33 3.64 1.98 3.99 3.12 7

4 1.17 3.52 3.18 2.78 4.62 3.51 9.67 4.22 7
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Figure 6. Trajectories of participants along with trajectories 
from the simulation of model C. The trajectories are taken from 
Experiment 3. The participants plot contains the trajectories from 
all ten participants for that particular trial. A, C, and E are from 
participants. B, D, and F are from simulations. A and B are one of 
the baseline trajectories. C and D are from the interference state. E 
and F are from the readaptation state. In figures C–F, the black lines 
are from the first trial of the state, and the grey lines are from the last 
trial of the state.

the ability to switch between tasks quickly and the resources needed 
for simultaneous storage of multiple learning networks. This is 
likely accomplished through a structure that is different from our 
current understanding and requires further research.

The most important observation comes from experiment 3, in 
which environment adaptation exactly compensated for errors in 
task performance. In this experiment, adaptation to the rotation 
of the visual environment caused the hand movement to solve the 
desired task. Immediately after the visual environment was returned 
to the baseline, the next attempted hand movement should have low 
error. If environment adaptation and task learning shared a com-
mon mechanism, then the low task error should have resulted in 
continued good performance. However, as soon as the environment 
returned to baseline, there was a higher than expected sensory-
motor mismatch, and the subjects responded by adapting to the 
mismatch, even though this resulted in worsening task error. There-
fore environment adaptation is not controlled by task performance 
error. This result is similar to the results of Mazzoni and Krakauer 
and probably is due to the same mechanism (Mazzoni & Krakauer, 
2006). Our results strongly imply that the two systems use differ-
ent learning mechanisms. An important consequence is that for this 
very simple set of tasks, adaptation to an altered environment does 
not lead to improvements in task performance.

This conclusion is supported by the model simulations. From 
Figure 4 and Figure 5 we see that model A is not consistent with 
the human data since there are aftereffects in experiment 2 in the 
model but not in the human data. Model B is not consistent since 
there are no aftereffects in experiment 3 in the model but there are 
in the human data. Only model C correctly predicts the presence of 
aftereffects in experiments 1 and 3 but not in experiment 2. Model 
C includes separate networks for each task, but a shared network 
that adapts to the environment. Thus the match between data and 
simulations of model C supports our hypothesis.

Although the focus of this study is on typical motor behavior, we 
can suggest hypotheses about patient deficits using our model 
simulations. Research has shown that patients with cerebellar dis-
orders have difficulties with environmental adaptation and demon-
strate perseverant behavior when switching between environments 
(Baizer et al,. 1999; Martin et al,. 1996a; Morton & Bestian, 2006). 
These patients demonstrate ability to learn a new movement but 
when introduced to a new environment, they show no adaptation, 
hence no aftereffects. In some circumstances, there has been early 
evidence that showed this inability to adapt to environmental dif-
ferences can be used to temporarily improve movement patterns 
in these patients (Malone & Bastian, 2014). The lack of environ-
mental adaptation is similar to the simulation results of model B, 
demonstrating a lack of aftereffects in Experiment 3. The other dif-
ference between our simulation and patients with cerebellar disor-
der is the learning rate. In our simulation, we used a relatively fast 
learning rate to simulate typical adult performance, but patients 
with any movement disorders often have a slower learning rate. 
Without a separate environmental learning network, there will be 
no adaptation to changes in the environment and a slower learn-
ing rate will require more trials for equivalent performance in this 
population.

These experimental results are consistent with prior results on gener-
alization (Krakauer et al., 2000; Vetter et al., 1999). Previous studies 
concluded that environment adaptation to visuomotor rotation has 
good generalization properties for targets within 45°. This is con-
sistent with the aftereffects the participants and the model simula-
tions showed in our 20° rotation experiments. However, based on 
these previous results, aftereffects were not consistently observed 
for the targets were more than 45° apart from each other. In order to 
test the generalization of the model to targets more than 45° apart, 
we performed the 90 degree experiment. If there were no generali-
zation of the environment adaptation to targets more than 45° apart, 
there should be no aftereffects in experiments 3 or 4, where the par-
ticipants were trained in a different environment at a target that was 
90° away from the target used in the first environment. Since after-
effects were observed in the human subject results in experiments 
3 and 4, we infer that environmental adaptation can be generalized 
to targets larger than 45° apart although the effects are smaller than 
the 20° rotations. This is consistent with previous research showing 
that visual rotations between 75° and 120° had smaller facilitation 
effects, as the brain appears to use different strategies for rotations 
beyond 90° (Abeele & Bock, 2001).

An important consequence of these experiments is that training 
in the rotated environment may not be helpful for improving task 
performance, especially in undamaged motor systems, since the 
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Figure 7. Experimental results for the 90° experiment. The figure shows initial direction measurement of the movement observed on screen. 
This is the trial by trial average of all eight subjects. The error bars mark the standard deviation amongst the subjects and the dotted grey 
line represents the desired target angle observed on screen. The vertical axis is the initial direction measured in degrees and the horizontal 
axis is the trial number. A. Experiment 1, same task different environment. B. Experiment 2, different task same environment. C. Experiment 
3, different task different environment. D. Experiment 4, different task different environment (same display target). E. Group mean of the last 
trial in state A (baseline) compared to the first trial in state C (aftereffects) in a bar graph. Asterisks indicate statistical significant difference 
between groups (p < 0.05).

Our results are consistent with the common observation that a skill 
can often be performed in a different environment with substantially 
less retraining than originally required to learn the skill, described 
by Krakauer and colleagues as task-specific savings (Krakauer et al., 
2005). Our results are also consistent with the observation of tran-
sient aftereffects after changing the mechanics of the environment. 
Our results are also consistent with the ability to learn multiple new 
skills without forgetting previously-learned skills. Although previ-
ous models have addressed skill learning or environment adaptation 
separately, our results and model simulations represent one of the 
first quantitative studies to examine their interaction. A recent study 
(Mazzoni & Krakauer, 2006) on rotational field experiments con-
cluded that implicit adaptation to a visuomotor rotation overrides 
the explicit strategies given by the experimenters. Despite the use of 
explicit cognitive strategies that opposes the visual rotation, experi-
ment participants unconsciously adapted to the rotational field, mak-
ing increasing errors to the target. The rate of adaptation was the 
similar with and without the explicit cognitive strategies, showing 

rotated environment leads to modification of the environment adap-
tation module but not the task generation module. This is directly 
seen in the human data for experiment 3, in which the motor task 
remained the same under all conditions. Performance transiently 
worsened when the rotation returned to baseline, even though no 
change in hand movement was required to achieve correct perform-
ance. In the simulation model, this occurs because there are two 
different types of error that are used to train the two learning mod-
ules. When the baseline rotation is restored in experiment 3, the 
performance error e

x
, e

y
 is zero, since the initial hand movement is 

correct. However, the plant inverse error, e
p
, is nonzero and thus the 

plant inverse learns (and motor performance changes) even though 
there was no performance error. This is an important distinction 
between the two systems. Task learning is driven by performance 
error, while environment adaptation is driven by predictions of the 
environment response, independent of the desired task. Therefore 
this model suggests that virtual reality adaptation may be insuffi-
cient to train task performance.

Experiment 3C

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

Trials

In
iti

al
di

re
ct

io
n

(d
eg

)

A

B Experiment 2

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70

D

Experiment 1

0

50

100

150

200

250

0 10 20 30 40 50 60 70

Experiment 4

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70
Trials

In
iti

al
di

re
ct

io
n

(d
eg

)

Trials

In
iti

al
di

re
ct

io
n

(d
eg

)

Trials

In
iti

al
di

re
ct

io
n

(d
eg

)

 Baseline (A)  Aftereffect (C)
0

50

100

150

200

250

300

Aftereffect Summary

State

In
iti

al
 D

ire
ct

io
n 

(d
eg

)

Exp1
Exp2
Exp3
Exp4

E
*

Page 13 of 24

F1000Research 2014, 3:72 Last updated: 23 NOV 2015



that implicit adaptation occur independent of the use of explicit 
strategies. The “implicit adaptation” is equivalent to the environ-
ment learning network in our model, and “explicit strategies” are 
equivalent to task learning in our model. Their results are consist-
ent with our model, showing that two types of learning interact for 
visuo-motor adaptations. Our model provides a good framework to 
capture these two types of sensory-motor learning.

Our two-systems model was also consistent with the fast and slow 
adapting systems as Shadmehr and colleagues proposed (Smith  
et al., 2006). The two-rate learning model has been used to explain 
task interference (Sing & Smith, 2010), generalization (Tanaka 
et al., 2012), savings (Zarahn et al., 2008) and retention (Joiner 
& Smith, 2008). We believe that our two system model will offer 
another perspective in differentiating the two learning systems. Our 
environment adaptor would behave similarly to the fast adapting 
system, and the trajectory generator would behave like the slow 
adapting system.

There are several weaknesses of the current model that need to be 
addressed in future experiments. The model does not explain the 
observation that learning two very similar skills can generate inter-
ference. Such an observation could be incorporated in a model in 
which different tasks are represented not by a set of discrete motor 
programs but by a parameterized or “fuzzy” mixture of motor pro-
grams perhaps using a local basis function network (Poggio & 
Girosi, 1990). The model also does not explain the observation that 
after extensive practice it is possible to switch between two envi-
ronments (e.g. prism glasses) almost instantly (Martin et al., 1996; 
Shadmehr & Wise, 2005). This observation could be incorporated 
using an environment learning model that can learn to respond to 
cues indicating a change in the environment. Our model does not yet 
explain differences in performance following blocked or interleaved 
practice (Simon & Bjork, 2001). This would depend upon the details 
of the task learning and environment adaptation algorithms. For 
instance in certain neural network algorithms, blocked practice (as 
in our experiment) might be more likely to retrain existing weights 
to fit the most recent condition, while interleaved practice might be 
more likely to fit the network output so that it performs correctly in 
multiple different conditions. Furthermore, our models were limited 
to using errors in the visual domain and did not capture performance 
measures and errors in other domains important to motor perform-
ance such as proprioception. Incorporation of multi-dimensional 
sensory information is needed to fully capture human motor learn-
ing and to explain behaviors in proprioception-driven tasks.

The two learning systems proposed in the model are analogous to two 
types of control systems. The task learning system can be compared 
to an optimal controller that learns a desired trajectory that will 

achieve the task goal. The environment learning system can be 
compared to an adaptive controller that learns the motor commands 
required to achieve the desired trajectory in the current environ-
ment. This is similar to the differing neuro-anatomical modules in 
Doya’s proposed framework (Doya et al., 2001). In this context, it 
is interesting to speculate whether errors in the adaptive controller 
could facilitate or interfere with learning in the optimal controller. 
If so, then it might be possible to use our model to redesign current 
virtual-reality training programs so that a change in the environ-
ment that leads to a change in the adaptive controller might also 
facilitate task learning. In future studies we plan to study this poten-
tial interaction, and we plan to investigate the interaction of the two 
learning systems for more complex tasks in which the dynamics of 
movement must be learned.
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Open Peer Review

   Current Referee Status:

Version 2

 23 November 2015Referee Report

doi:10.5256/f1000research.6149.r11102

 Eileen Lew
Faculty of Engineering, Computing and Science, Swinburne University of Technology-Sarawak, Kuching,
Malaysia

The paper has been revised based on the concerns addressed by previous reviewers where clarity has
improved greatly. A few minor points as follows:

The title could be improved to highlight differences in transfer of learning from artificial to natural
environment instead of focusing only about rotated visual environment (artificial environment), as
the title appears misleading. The use of the keywords, such as environment adaptation and skill
learning could better highlight the content and outcome of the paper as author has done extensive
analysis on the interactions of the two environments.
 
There is no mention about the follow-up study (8 participants) in the abstract, which is could be
interesting to put forward the intention to study generalization and the outcome.
 
In terms of future work, as this study focused on simple task, the next question will be on complex
task. Authors could elaborate further on the hypothesis of the learning systems for more complex
tasks and proposition on how the dynamics of the movements can be learned. 

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 24 February 2015Referee Report

doi:10.5256/f1000research.6149.r7050

 Rajiv Ranganathan
Department of Kinesiology, Michigan State University, East Lansing, MI, USA

The authors have satisfactorily addressed my concerns from the previous review. I only have a couple of
minor points:

It seems that the same 10 participants were used in all 4 experiments (and a further 8 were used
for bigger angles). Was the order of the experiments randomized or did participants do the
experiments in sequence? Also, what was the time gap between experiments? This detail could be

included under the "Participants" section.
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included under the "Participants" section.
 
There seems to be a problem in Figure 3D - On the monitor, the movements in A and C are not
aimed toward the target

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Version 1

 09 September 2014Referee Report

doi:10.5256/f1000research.3940.r5806

 Rajiv Ranganathan
Department of Kinesiology, Michigan State University, East Lansing, MI, USA

Summary:

The goal of this paper by Chu and Sanger is to examine the hypothesis that learning mechanisms that
adapt to altered environments (like visuomotor rotation) is different from learning mechanisms that are
required for improvement of motor skills.  Using both experiments and model simulations, the authors
make the argument that there are indeed two learning mechanisms --  a learning mechanism for each task
(which accounts for the specificity of learning of different skills) but a single learning mechanism for
learning the environment (which accounts for generalization within a single environment).

The topic addressed in the paper is of great interest to readers in the motor control community. Overall
the paper is well-written and the experiments/modeling are well done.

Major concerns:
The paper does not seem to make reference to a very similar idea of “model-based” and
“model-free” learning ( , ). Those papers make almost theHuang 2011 et al., Haith & Krakauer, 2013
exact same distinction where model-based learning accounts for tasks like adaptation, whereas
model-free mechanisms account for “skill learning” tasks.  It would be useful for the authors to look
at this distinction and discuss these ideas in relation to the current paper.
 
Huang  (2011)et al.  also used a similar paradigm to Experiment 3 to show that practicing in an
“opposite” visuomotor rotation could lead to savings (faster re-learning) if the hand-direction was
the same (due to model-free learning). Therefore, the authors may want to use caution before
making statements such as “adaptation to an altered environment is not useful for training task
performance”.
 
While the statistics are used in a “within-subject” kind of way with the z-statistic, I have a couple of
concerns:

The sample standard deviation is estimated from only 10 trials  - therefore the use of a t-distribution

Page 18 of 24

F1000Research 2014, 3:72 Last updated: 23 NOV 2015

http://dx.doi.org/10.5256/f1000research.3940.r5806
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134523/
http://link.springer.com/chapter/10.1007/978-1-4614-5465-6_1#page-1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134523/


F1000Research

1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.  

The sample standard deviation is estimated from only 10 trials  - therefore the use of a t-distribution
may be more appropriate than a z-distribution.
 
The sign of the after-effect is masked by this analysis – i.e. both undershoots and overshoots
would count as being significant since only the absolute value is being taken into account.
 
It would therefore be useful to do a typical "between-subjects" analysis (like a paired t-test) which
would also help the reader know the actual magnitudes of the after-effects across the 4
experiments (and not merely whether they were significant or  not). 

Minor:
I do not understand how the two stripes are representing “West”. Does one stripe represent West
in visual space, and the other in hand space? If so, how did the participants distinguish the two
stripes? Also it seems that in Figure 3B, the middle panel “Interference:B1” has the directions
marked incorrectly.
 
Figure 2 is a little hard to digest and has repetition of the same blocks across multiple panels – it
would help the readers if the authors could omit the equations (or use them just once if they are
repeated) so that readers could clearly grasp the critical differences between the 3 models.
 
The rationale behind Experiment 4 is a little unclear to me. What do the authors mean when they
say “we had to change the visual display”(do they mean target position?). There also seems to
some discrepancy between Figure 3D and the table in Figure 3 (e.g. figure 3D should show
Baseline "A2" and Readaptation A2, not A1). Also the titles for each experiment condition in
Figures 3A-D are all labeled the same "Baselne A1 Interference B1 and Re-Adaptation A1".
 
The lesser strength of effects in the 90° experiments could be explained by different strategies
used in small versus large visuomotor rotations ( ).Abeele & Bock, 2001
 
The ideas in the paper would also be helped by reference to older ideas of “task and practice
specificity” of motor skills (Henry, 1959) – which suggest poor generalization of motor skills.
 
It would help to line up the experimental data in Figure 5 alongside  the model predictions in Figure
4 so that it is easier to identify the best predicting model.
 
Why is there a difference in the learning rate between the 3 models during adaptation to the first
task (Figure 4, Experiment 1 trials 1-20)? Is it a fair comparison among the 3 models if the final
performance of all models is not equivalent after this first block?
 
Since Experiment 3 is the real important finding that confirms the author's model of motor learning,
it would help to show in a Figure the fact that participants actually increase the error in the first few
trials (currently it is not possible to see this clearly because all 60 trials are all compressed into the
figure).

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 01 Dec 2014
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Author Response 01 Dec 2014
, University of Illinois at Chicago, USAVirginia Chu

Thank you for your suggestion on additional discussion areas and statistical analysis. We have
addressed your comments in our second version with the details highlighted below.

Thank you for your suggestion with the discussion on model-based and model free learning
models, we have added a discussion on this topic in the manuscript.
 
Regarding the use of z-statistics as a measure in our study, we agree that this is not a
conventional way of using this measure. What we call “z” is using a measure similar to the
z-statistics, since our sample size was 1 (aftereffect trial) to be compared with a population
size of 10 (baseline). In using a z-statistics-like measure, this allows us to use the baseline
mean and standard deviation of the baseline trials as the population mean and standard
deviation. However, if we use the t-statistics, it will require that we have the sample’s
standard deviation (which is 0 for a sample size of 1). Therefore, we chose to use the
z-statistics as the basis of for our statistical measure.
 
In order to show the sign of the after effect for readers to examine, we have changed the
reported z value to be without the absolute value, and use |z| for statistical comparison. As
shown in the new Table 1 and 2, only 3 values were affected, all insignificant z values for
Experiment 2.
 
As requested by both reviewers, regarding information for typical “between-subject”
analysis, we performed additional statistical analysis and they are reported in the text and in
the new figures 5 and 7.
 
Thank you for pointing out the error in the notation in figure 3B. We have corrected that. The
2 stripes were used as 1 symbol. They are together used as an indicator for changes in the
rotation environment. They were deliberately vague so that the participants would notice a
change, but cannot clearly determine the amount of visual rotation.
 
We made Figure 2 simpler and changed the shading of the border markings to make the
models easier to read.
 
Figure 3 has been corrected. We apologize for the mislabeling. We have also clarified the
rationale for experiment 4 to make things clearer.
 
Thank you for pointing out two relevant references (Abeele & Bock, 2001) and (Henry,
1959). Unfortunately, we were not able to locate (Henry, 1959). Were you by chance
referring to (Henry, 1958/1968)? We have added a discussion on the topics in the
introduction and discussion.
 
We agree that comparison between Figure 4 and 5 is important in the identification of the
best predicting model. Unfortunately, we feel that putting the subject data from Figure 5
within Figure 4 would make the figures too small to give. Instead, we re-arranged the order
of the graphs in Figure 5, to facilitate comparison between the two figures.
 
The model simulations are meant for qualitative comparisons. Thank you for pointing out
that the learning rate and final performance in the end of the first block was not the same.

Our primary focus was to keep the model components to be as consistent as possible

Page 20 of 24

F1000Research 2014, 3:72 Last updated: 23 NOV 2015



F1000Research

10.  

1.  

2.  

Our primary focus was to keep the model components to be as consistent as possible
across the 3 models, so that the only difference between the models is the model structure.
As an example, each learning network in the controller and the time update in the online
correction (Figure 2) for all 3 models used the same model parameters. The differences
observed in the simulation results, simply result from the difference in model structure. We
felt that this was a more important comparison to examine from the simulation results, rather
than tuning the model parameters so that the learning rates and final performance to be
equal. It is important to note that the difference in simulation results stemmed simply from a
difference in model structure using the exact same model components and parameters.
Model C appear to have higher learning rate because it has an additional learning
component (environment adaptation controller) compared to model A and B. Model A and B
could be made to have the same learning rate and final performance in the baseline block
by tuning λ, the learning rate of the system (using a faster rate). But this would not change
the pattern of results we see in the simulation, and it is more important to us that the model
parameters were kept the same.

In order to demonstrate the errors in Experiment 3 more clearly, the trajectory errors were shown in
Figure 6, where the last trial of baseline and the first trial of the remaining 2 blocks were shown.
Further, the errors were also show numerically in Table 1.  With the new Figure 5E and Figure 7E,
the group means of the errors in the first trial in state C are now shown clearly in a bar chart form. 

 No competing interests were disclosed.Competing Interests:

 04 July 2014Referee Report

doi:10.5256/f1000research.3940.r5345

 Gelsy Torres-Oviedo
Departments of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA

The title is appropriate for the work. The abstract needs to be revised to improve its clarity. Specifically,
the authors need 1) to include a brief definition for skill learning and 2) to clarify that after-effects equate to
poor skill performance in their study since literature presents some other cases of after-effects leading to
improved movements.

Overall the article content is clearly explained and very well written. There are only a few general
conceptual points that should be addressed. Authors should consider revising their conclusions based on
these points.

It is unclear how different the reaching directions need to be, for them to be considered the same
tasks or skills?
 
A common patients' deficit is their perseverant behavior from one situation to another (even when
this is inappropriate). Literature shows this motor perseverance appears beneficial when
experiencing environmental adaptations. Given that patients continue doing the adapted motion
when the external perturbation is removed, it ultimately leads to long-term changes in their
movements with repeated exposure. The authors are very adamant in their conclusions that
environmental adaptation cannot be used as a rehabilitation intervention, yet their two-mechanism

model does not seem to include this perseverance feature of patients' behavior. Kindly elaborate
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model does not seem to include this perseverance feature of patients' behavior. Kindly elaborate
on this.
 
In their theoretical framework, authors present a single performance error and they do not seem to
differentiate between self-generated and externally generated performance errors. Possibly this
simplification limits their model to predicting behaviors during visual tasks but it would fail at
explaining behaviors in proprioception-driven tasks, like reaching in a force field or walking on a
split-belt treadmill.

Other comments in order of appearance:

Page 4: Link description of model predictions to their visual representation on Fig 4.
 
Conceptual question in Figure 2: It is not clear why the desired trajectory generator is not part of
the controller block in which all the trajectories are generated.  What are the learning network
blocks computing? 
 
Illustration points in Figure 2:
 

The "environment adaptation module" in Model C could be better indicated, since it is not
very clear that it is missing in Model A and B.
 
The equations for the online correction on Fig. 2 do not match the ones on the text (page 7).
Kindly add V and V' on the text or change equations on Fig. 2.
 

Page 6: x ' and y ' are missing the c.
 
Page 6, under Trajectory generator section: It is not well explained what j and i are on the
equations.
 
Page 6 under environment adapter section: Authors should consider adding the equation in which
x ' and y ' = Phat  [x  y ] and the learning rule for P, as they do for indicating the update of W.
 
Page 7: Authors randomize the order of the 4 experiments to account for the order of the task.
However, it is not very clear if repeated exposures of the adaptation task changes subjects
behaviour.
 
Page 7, under procedure: In the explanation of experiment 4 it is unclear if subjects were able to
see the cursor or not.
 
Page 7: Authors equate the intended movement to the target position. However, the intended
movement could be different from the target position when subjects are told to aim at a different
direction (as done by ). Please clarify.Mazzoni and Krakauer, 2006
 

Page 9, under data analysis section: Authors perform z-score to determine if after-effects are

c c

c c
-1

c c
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Page 9, under data analysis section: Authors perform z-score to determine if after-effects are
statistically different from baseline. It is unclear whether similar results are obtained if means
(baseline vs after-effect) are compared.  

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 01 Dec 2014
, University of Illinois at Chicago, USAVirginia Chu

Thank you for your valuable comments and we have addressed them in our new revision in detail,
listed below.

Thank you for your suggestion on the abstract. It has been edited accordingly.
 
You have raised a very interesting topic on the delineation between same and different
tasks/skills. As there is no consensus in the scientific community regarding the criteria for
defining tasks that are the same or different, this provides for an interested discussion. We
have added a discussion on this topic
 
We agree with your assessment of patient deficits. Our simulation focused on
understanding typical adult motor performance, and thus did not address motor
performance in motor disorders. We believe that the type of perseverant behavior in
patients can be also understood in our model frameworks. We have added a discussion on
this topic.
 
Thank you for pointing out a limitation of our simulation. Although we did not clearly
delineate the two errors as you have categorized them, we believe that we were able to
capture some of that information. In models A and B, there was only a single performance
error (difference between performance and desired trajectory). However, in model C, we
had two different performance errors that drive the two networks: difference between
performance and desired trajectory to drive the trajectory controller, and the difference
between performance and the expected output to drive the plant estimator. Using your
terminology, we believe that the trajectory error can provide information about
self-generated errors, and the plant estimation error can give us information about externally
generated performance errors. But since our models were not meant to simulate
proprioceptive tasks, we do believe that further adjustments to the models will be needed to
properly simulate proprioceptive tasks. A discussion has been added to the limitations.
 
Instead of adding the link between model predictions on page 4 to Figure 4, we have added
a description in the results section. Since the experiments were not yet described in page 4,
it may be premature to link to Figure 4 at that part of the manuscript.
 
In regards to Figure 2, whether the desired trajectory generator was included in the
controller block was only a matter of notation. We chose not to include that in the controller
block because no learning occurred in the desired trajectory generation as the desired

trajectory was programmed to be a straight line with bell shape velocity from start to end
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trajectory was programmed to be a straight line with bell shape velocity from start to end
point. The learning network blocks performed the computation for the neural networks
described in paragraph 2 and 3 of “Trajectory generator” section of the Simulations.
 
We have updated Figure 2 to better indicate the environment adaptation module. In the text,
we have combined the equations for online correction into one equation causing the
confusion of the equation mismatch. We have changed the text to reflect the same notations
used in the figure.
 
Page 6: Thank you for pointing out the missing c, which has been corrected. The i and j are
dummy variables for the summations, we have added clarification for this in the text. The
learning rule for P was shown as the equation with delta P. The equation indicated the
output has been added for clarity.
 
Regarding the random order of experiments, we did not believe that the repeated exposure
of the adaptation task changed subject behavior as the experiment was relatively short
compared to most adaptation studies (20 trials per block). The randomization was used to
safe guard against any potential adaptation towards the end of the experiment. After the
experiment, we did not see any overall patterns of behavior change according to
experimental order.
 
The cursor was visible to participants under all experimental conditions during the reach.
 
For the purpose of our study, the intended movement and the target position is essentially
the same as long as the subjects were following our instructions. As you pointed out, there
are circumstances where there may be disagreements between the two terms such as in
Mazzoni and Krakauer paper where they examined the use of explicit strategies. I would
argue that Mazzoni and Krakauer were essentially giving their participants another
“invisible” target to aim for as we did for our experiment 4, and in that case, the new invisible
target becomes the intended movement. But we agree that the particular sentence in
question was poorly structured and had been rewritten for clarity.
 
As requested by both reviewers, we performed additional statistical analysis and they are
reported in the text and in the new figures 5 and 7.

 No competing interest.Competing Interests:
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