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Natural brains perform miraculously well in learning new tasks from a small number

of samples, whereas sample efficient learning is still a major open problem in the

field of machine learning. Here, we raise the question, how the neural coding scheme

affects sample efficiency, and make first progress on this question by proposing and

analyzing a learning algorithm that uses a simple reinforce-type plasticity mechanism and

does not require any gradients to learn low dimensional mappings. It harnesses three

bio-plausible mechanisms, namely, population codes with bell shaped tuning curves,

continous attractor mechanisms and probabilistic synapses, to achieve sample efficient

learning. We show both theoretically and by simulations that population codes with

broadly tuned neurons lead to high sample efficiency, whereas codes with sharply tuned

neurons account for high final precision. Moreover, a dynamic adaptation of the tuning

width during learning gives rise to both, high sample efficiency and high final precision.

We prove a sample efficiency guarantee for our algorithm that lies within a logarithmic

factor from the information theoretical optimum. Our simulations show that for low

dimensional mappings, our learning algorithm achieves comparable sample efficiency

to multi-layer perceptrons trained by gradient descent, although it does not use any

gradients. Furthermore, it achieves competitive sample efficiency in low dimensional

reinforcement learning tasks. From a machine learning perspective, these findings may

inspire novel approaches to improve sample efficiency. From a neuroscience perspective,

these findings suggest sample efficiency as a yet unstudied functional role of adaptive

tuning curve width.

Keywords: sample efficiency, neural tuning curves, population codes, gradient-free learning, reinforcement

learning

1. INTRODUCTION

Humans operate in a rich and complex world and are extremely fast in learning new tasks and
adapting to new environments. The level of generalization and speed of adaptation achieved by
human brains remain unmatched by machine learning approaches, despite tremendous progress
in the last years. How do real brains accomplish this outstanding skill of generalization and
sample efficient learning, and what are the neural mechanisms that contribute to this ability of fast
learning? Here, we investigate how neural coding supports sample efficient learning, by analyzing a
learning algorithm that exploits three bio-plausible principles for sample efficient learning, namely,
population codes of tuned neurons, continuous attractor mechanisms and probabilistic synapses.

From early on, neuroscience researchers characterized the first order response of single neurons
by neural tuning curves (Adrian and Zotterman, 1926). The neural tuning curve is defined to be
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the neurons mean firing rate as a function of some stimuli
parameter. It typically peaks for a preferred parameter value
and decays gradually as this parameter moves away from the
preferred value, such as in orientation columns in the visual
cortex (Hubel and Wiesel, 1959, 1962), spatially tuned cells
in auditory cortex (Knudsen and Konishi, 1978), direction
selective cells in motor cortex (Georgopoulos et al., 1988) and
hippocampal place and head direction cells (O’Keefe, 1976;
Ranck, 1985). In populations of tuned neurons, narrow (broad)
tuning curves imply that a small (large) fraction of neurons
is active for a given stimuli parameter. Here, we assume that
such neural populations are geometrically ordered according
to the neuron’s preferred parameter value. Then, the neural
activity resembles a localized bump activation like experimentally
observed in the compass system of the drosophila fly (Seelig and
Jayaraman, 2015; Kim et al., 2017) and theoretically studied in
continuous attractor models (Wilson and Cowan, 1973; Amari,
1977; Ben-Yishai et al., 1995; Skaggs et al., 1995; Seeholzer
et al., 2017). In this coding scheme, which we call bump
coding scheme, the center of a bump activation corresponds
to the parameter value encoded by the bump activation (see
Figure 1A), and the width of the bump is determined by the
number of active neurons in the bump. Further, we assume
that neural populations are equipped with a continuous attractor
mechanism that ensures that only one bump is active at a time.
Continuous attractor mechanisms are an established model of
cortical working memory (Seeholzer et al., 2017), and emerge
from the wiring motive of local excitation and long range
inhibition (Kim et al., 2017). As another bio-plausible ingredient,
we use probabilistic synapses. We assume a simple synaptic model

FIGURE 1 | Bump coding scheme and model setup. (A) A neural population encoding a 2-dimensional parameter. The dots represent neurons. The blue neurons

indicate a bump activation with center neuron j encoding the value (0.3, 0.6). The brown shaded area visualizes the parameter values for which neuron i is active. (B)

Network setup. Two populations A and B of neurons both encoding a one-dimensional parameter are connected by probabilistic synapses P. The green input bump

I1 with center x and width kA activated the green output bump J1 with center y and width kB. The shaded area between the two bumps visualizes the kA · kB synapses

that are updated according to the error feedback L(x, y). (C) The neural populations A and B are aligned on the x- and y-axis, respectively, such that the synapses

connecting population A to B are visualized by the (x, y)-space. The red area around the function f (x) indicates for each input x the y values that receive error feedback

L smaller than some error threshold L̂. If an input output pair (x, y) is inside the red area (e.g., for the blue sample activation), then the theoretical bump algorithm

increments the synaptic counters of the synapses between the bumps. Otherwise (e.g., for the green sample activation) it decrements the synaptic counters for the

synapses between the bumps.

consisting of a plastic synaptic probability p and a synaptic
weight w, which we fix to 1 in order to concentrate on our
main ideas. The synaptic probability corresponds to the pre-
synaptic neuro-transmitter release probability and the weight w
to the post-synaptic quantal amplitude (Llera-Montero et al.,
2019). The neuro-transmitter release probability of synapses in
the brain is highly variable and typically between 0.1 and 0.9
(Branco and Staras, 2009).

We explain now with a sample application, how these
three bio-inspired principles are integrated into a reinforce-
type (Williams, 1992), gradient-free learning mechanism.
Assume that a robot arm with two joints should learn to reach
given target positions x = (x1, x2) by applying the correct
angles ŷ = (α,β) to the joints, such that they reach the given
target position x. Consider two populations of neurons A and
B connected by probabilistic synapses. Population A and B use
the bump coding scheme to encode the target position x and
the angles y that are applied to the two joints, respectively, see
Figure 1B. The goal is to adapt the synaptic probabilities such
that every target position x is mapped to the correct angles ŷ.
A bump activation encoding x in population A is propagated
via probabilistic synapses to population B, where an abstract
continuous attractor mechanism ensures that a single bump
remains active in B. Its center y encodes the applied angles (α,β).
Note that y usually varies from trial to trial since the synapses
between population A and B are probabilistic. According to the
final arm position, the network receives a scalar error feedback
L(x, y), that depends on the input x and the output y generated by
the network. Then, the synaptic probabilities between the bumps
in population A and B are updated depending to this error
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feedback. The larger the bump width k is, the more synapses
are between the two bumps, whose probabilities are all updated
according to the same error feedback. In this way, the network
exploits the continuity of the task for sample efficient learning.

Related to this work, populations of tuned neurons have been
used to learn sensory-motor transformations (Bullock et al., 1993;
Salinas and Abbott, 1995; Baraduc et al., 2001; Baraduc and
Guigon, 2002; Sanger, 2003), extending and building on the
investigation of radial basis networks conducted in the 1980s
and 1990s (Klopfenstein and Sverdlove, 1983; Broomhead and
Lowe, 1988; Sanger, 1991, 1997, 1998; Pouget et al., 1998).
These studies use Hebbian plasticity mechanisms, that require
simultaneous activation of inputs and target outputs, whereas we
propose reinforce-type learning algorithms, that learn the correct
outputs through exploration of the output space. Furthermore,
the investigation of the relation between sample efficiency and
tuning curve width is novel.

The main contributions of this paper are summarized as
follows. We introduce a reinforce-type learning algorithm
that exploits the bump coding scheme, abstract continuous
attractor mechanisms and probabilistic synapses for sample
efficient learning of general low dimensional mappings. We
show theoretically and by simulations that if the bump width
is static during learning, then large bump width improves
sample efficiency but harms the final precision, whereas small
width impairs sample efficiency but improves final precision.
Benefits of both are accomplished, if the bump width is
dynamically decreased during the learning progress. Moreover,
we show that the obtained sample efficiency is asymptotically
optimal up to a log n factor in the limit of large population
size n. For low dimensional mappings, the bump coding
scheme achieves similar performance as a multi-layer perceptron
trained by the backpropagation algorithm (Rumelhart et al.,
1985), and it outperforms a multi-layer perceptron trained
by the reinforce algorithm (Williams, 1992). It also achieves
competitive performance on low dimensional reinforcement
learning environments. Finally, we relate our findings to
experimental observations of decreasing tuning curve width
during learning and conclude that our findings propose sample
efficiency as a functional role of the tuning curve width.

2. RESULTS

Assume that a network consisting of populations A and B
should learn a mapping f :[0, 1]dA → [0, 1]dB , e.g., mapping
target position (x̂1, x̂2) to joint angles (α,β) as illustrated
in the robotic arm task of the introduction. We consider
general mappings f , that are only restricted to be Lipschitz
continuous1. This general framework, can be applied to many
tasks including reinforcement learning as demonstrated in
section 2.2. Populations A and B, are connected by probabilistic
synapses and encode input x and output y, respectively, using a
bump coding scheme, see Figure 1 and section 3.1 for a formal

1A function f is Lipschitz continuous with Lipschitz constant C, if |f (x)− f (y)| ≤
C|x−y| for all x, y. Intuitively, this is the case if the slope of f is everywhere smaller

than C.

description. The goal is to learn the plastic synaptic probabilities,
whereas synaptic weights are assumed to be fixed. The implicit
goal of our learning algorithm is that a neuron x in population
A keeps all synapses to the neurons y in B for which |y −
f (x)| is small and decreases the synaptic probabilities of all
other synapses, see Figure 1C. This will ensure that a bump x
in population A activates a bump with center y close to f (x)
in population B.

We begin by stating our theoretical results in section 2.1 before
presenting the results obtained by simulations in section 2.2.
For the theoretical results, we use a simplified version of the
algorithm used in the simulations, because it allows a rigorous
mathematical analysis and it illustrates the conceptual ideas of
the algorithm. Both algorithm use the same basic principles and
behave qualitatively the same.

2.1. Theoretical Results
We consider the following learning mechanism with fixed bump
width k involving synaptic counters that are initialized with 0.
We refer to a neuron with preferred parameter value x as neuron
x and to a bump with center x as bump x. For every sample, a
random input bump x is activated. The probabilistic synapses
propagate the activity in A to population B, where an abstract
continuous attractor mechanism activates the bump y in B that
received highest synaptic input. The algorithm receives a scalar
error feedback L(x, y) that depends on input x and the output y,
e.g., the euclidean distance between output y and target output
f (x). Then, the counters of the synapses between the two active
bumps are decremented by 1 if the error feedback L(x, y) is
larger than some error threshold L̂ and incremented otherwise,
see Figure 1C. After observing proportional ( n

k
)dA+dB log nmany

samples, we prune all synapses with non-positive counters, that
is, we set their synaptic probabilities to 0. For a formal description
of the algorithm, we refer to section 3.

We define the error of a learned network to be the expected
error feedback E[L(x, y)] if the input is randomly chosen. If the
mapping f is Lipschitz continous and the network obtains the
euclidean distance L(x, y) = ‖y − f (x)‖2 as error feedback, the
following theorems hold.

Theorem 1 (Static bump width k). The learning algorithm with
static bump width k and euclidean error feedback learns a

mapping f :[0, 1]dA → [0, 1]dB with error smaller than 3k
n after

proportional to ( n
k
)dA+dB log n many random samples, where n is

the population size.

The approach with static bump width k ensures that each neuron
xmaintains the synapses to a small continuous interval of output
neurons around value f (x) and prunes away the other synapses.
Thus, we can reapply the same learning mechanism, this time
with smaller bump width k and smaller error threshold L̂ (for a
formal description see section 3). Repeating this procedure will
cause an input bump x to be mapped to a random bump y from
a shrinking and shrinking interval around f (x). This yields the
following theorem.

Theorem 2 (Dynamic bump width k). The learning algorithm
with dynamic bump width and euclidean error feedback learns
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the mapping f :[0, 1]dA → [0, 1]dB with error smaller than ε after
proportional to ε−dA log n many random samples, where n is the
population size.

We conclude that in order to reach error ε = 3k
n the dynamic

bump algorithm requires proportional to ε−dB times less samples
than the static bump algorithm with bump width k. We remark
that above results generalize to circular input and output spaces,
that encode for example head direction or orientation angles,
see the Supplementary Material for more details. Our proofs
show that it is not necessary that above algorithms obtain the
precise Euclidean distance as error feedback, but rather one bit
of feedback suffices, if it indicates whether the Euclidean distance
is larger than the error threshold L̂ or not. For such an algorithm,
a lower bound on the sample efficiency can be obtained by an
entropy argument.

Theorem 3 (Lower Bound). For any algorithm that obtains only
a single bit of feedback per sample, there are Lipschitz continuous
mappings f :[0, 1]dA → [0, 1]dB , such that the algorithm requires
at least proportional to ε−dA many samples to learn f with error
smaller than ε.

Then, Theorem 2 and 3 imply that the learning mechanism with
dynamic k accomplishes a sample efficiency that is asymptotically
optimal up to a log n factor. For the proofs of these theorems, we
refer to the Supplementary Material.

2.2. Empirical Results
For the simulations, we use a slightly more sophisticated learning
algorithm that follows the same underlying principles, but
differs from the algorithm that we analyze theoretically in five
aspects. Firstly, it is designed to handle more general error
feedback functions. For example, in the robotic arm task of the
introduction, the error feedback is not given by the euclidean
distance between the output angles, but by the distance between
the reached position and the target position. In turn, the
magnitude of the error feedback can change for different inputs,
and a single error threshold L̂ will not allow fast learning for all
inputs. To resolve this issue, we assume that every input neuron

i keeps track of a running mean L̂i of the error feedbacks that
were obtained when i was active. For the update of the outgoing

synapses of neuron i, L̂i is compared to the error feedback L.

Secondly, if L ≥ L̂i for a neuron i of the bump in population A,
the synapses projecting from neuron i on the bump in population
B are pruned away immediately. Thirdly, for the dynamic case,
the bump width k is adapted continuously instead of repeatingly
applying the static algorithm. Since the learning progress might
vary for different input regimes, we allow k to depend on the
input, and we set k for input x proportional to the number
of outgoing synapses of neuron x. Note that this number is a
reasonable measure of how well input x is already learned as the
precision of the output depends on the magnitude of the interval
of synapses connecting x to neurons around f (x). Fourthly, long-
time inactive synapses are pruned away, i.e., they are pruned
if the post-synaptic neuron has not been active for a couple of
times when the pre-synaptic neuron was active. Finally, synapses

of neuron i are consolidated (that is its probability is set to 1)
if its number of synapses drops below a certain threshold value.
We call this algorithm the dynamic bump algorithm. We refer to
section 3 for a formal description of the algorithm and to Figure 2
for an illustration of the evolution of the synaptic probabilities.

The static bump algorithm works analogously to the dynamic
bump algorithm, except that k is held constant during the whole
algorithm. Figure 3 empirically confirms the trade-off between
sample efficiency and final performance for static bump width k.
Larger k leads to faster learning compared to smaller k, however
reaches worse final error. The advantages of both large and small
k can be exploited by adapting the bump width dynamically
during the learning process, see Figure 3.

In order to put the sample efficiency of the bump coding
scheme into context with other coding schemes, we compare it
to the performance of a multi-layer perceptron (MLP), which
encodes information with real valued units. Figure 4 compares
performance of the dynamic bump algorithm, with a MLP
trained by the backpropagation algorithm (Rumelhart et al.,
1985) and a reinforce algorithm as described in Williams (1992).
Note that the backpropagation algorithm requires full access
to the first order derivative of the error with respect to the
parameters and thus is a first-order optimization technique,
whereas the reinforce and dynamic bump algorithm only require
a scalar error feedback and thus are zeroth-order optimization
techniques. Nevertheless the dynamic bump algorithm achieves
similar performance as the MLP trained by backpropagation
and outperforms the MLP trained by the reinforce algorithm,
Figure 4. For the backpropagation and reinforce algorithm, we
used a hyper-parameter search to determine the best parameters.
We note that this search yielded an untypically high learning
rate and small batch size for the backpropagation algorithm.
The learning rate is in the upper end of the recommended
interval [10−6, 1] and much higher than the suggested default
value of 0.01 (Bengio, 2012). This is necessary to achieve good
performance after 1,000 samples, see Figure 4.

In Figure 5, we illustrate the performance of the bump
coding scheme on reinforcement learning (RL) tasks. In RL
environments an agent should learn to interact with an
environment with the goal of maximizing some reward. At any
time step, the agent observes the current state of the environment
and outputs an action, which in turn affects the state of the
environment. The agent obtains rewards for reaching certain
states. It is unclear which actions lead to the reward, due to the
well known credit-assignment problem. A classical RL method
to mitigate this problem is the temporal difference learning
method (Sutton et al., 1998), that relies on learning a policy
function that maps states to actions and a value function that
maps states to an estimate of the future expected reward. Then,
the difference of the estimated expected future reward before and
after each action can be computed. Combined with the obtained
reward of that time step, one can estimate the reward that arose
from that specific action, which allows to update the policy.

Our RL bump algorithm uses the temporal difference learning
method. More precisely, it learns the policy with a static
bump algorithm, while the value function is stored in tabular
representation as done in the literature (Sutton et al., 1998).
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FIGURE 2 | Evolution of synaptic probabilities when learning a one dimensional mapping f (x) = x2 − 3x + 1 with the dynamic bump algorithm. Each small color plot

displays the synaptic probabilities, where input neuron is on the x-axis and output neuron on the y-axis. Blue areas visualize pruned synapses, yellow areas visualize

consolidated synapses. Input and output population consist of 100 neurons each and the output bump is 3 times as large as the input bump.

FIGURE 3 | Sample efficiency vs. final error trade-off for static bump width k. Recall that the error is defined to be the expected error feedback if the input is randomly

chosen. Plot (A) shows the evolution of the error of the static bump algorithm for different k, when learning the one-dimensional identity mapping f (x) = x with
euclidean error feedback. The dynamic bump algorithm, is labeled as “dynamic k.” Plot (B) shows the minimal error against the number of training samples required to

reach this error for different k (given as number next to the blue data points); to avoid taking into account the slow progress before final convergence, the number of

samples required to achieve 1.5 times the final error is plotted. Analogously, we plot the number of samples required by the dynamic bump algorithm to achieve 1.5

times the shown error values. For both plots, populations A and B consist of 1,000 neurons each, and the mean of 10 trials is plotted.

At any time step, the temporal difference learning method
provides an estimate of the reward arising from the action at
this time step. This estimate is used as error feedback for the
bump algorithm. Since this estimate might be off, we update the

synaptic probabilities more gradually, instead of pruning away
synapses immediately as in above algorithms. The magnitude of
the updates are chosen proportional to the reward estimates. We
refer to section 3.4 for a detailed description.
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FIGURE 4 | Comparison of the sample efficiency to a multi-layer perceptron. The learning progress of the dynamic bump algorithm, of a MLP trained with the

backpropagation algorithm and of a MLP trained with the reinforce algorithm is shown for the sinus, second-order polynomial, throw ball and robotic arm tasks in

(A–D), respectively. The tasks are described in detail in section 3.5. We plot the learning curve that achieves best performance after 1,000 samples obtained by our

hyper-parameter search. The hyper-parameters for each learning algorithm are given in the Supplementary Material. For each algorithm, we plot average and

standard deviation of 10 runs.

We evaluate the RL bump algorithm on two RL tasks, the
Mountain Car environment and the Inverted Pendulum, see

section 3.5 for a description of the tasks. The resulting learning

curves are displayed in Figure 5. We compare our algorithm

with two different deep reinforcement learning algorithms: deep

deterministic policy gradient (ddpg) (Lillicrap et al., 2015) and
proximal policy optimization (ppo2) (Schulman et al., 2017).
Both are state-of-the-art reinforcement learning algorithms that
use neural networks as a representation of the policy. For
both algorithms, we use the implementation and the standard
parameters provided by the OpenAI Baselines (Dhariwal et al.,
2017). Since these parameters do not aim at efficiently solving
the exploration problem of the Mountain Car environment,
we added an implementation of ddpg specifically tailored to
achieve sample efficiency in the Mountain-Car environment:
the parameters and implementation are taken from de Broissia
and Sigaud (2016) and the resulting curve is labeled as
sample-efficient ddpg.

We observe that our algorithm performs comparable or better
than the baselines on both environments, see Figure 5. In the
Mountain Car experiment, we observe that the OpenAI baselines
implementation are unable to make substantial progress on the
observed time scale. The sample efficient ddpg implementation
from de Broissia and Sigaud (2016) is able to reach higher
rewards, but it is very quickly outperformed by our algorithm

in terms of final performance. In the Pendulum experiment, we
observe a first phase during which the learning curve of our
algorithm is very similar to ddpg, whereas ppo2 does not make
any progress. In a second phase, the ppo2 learning curve catches
up our algorithm, while ddpg is outperformed. We close this
section with a word of caution. Figure 5 seems to indicate that
our algorithm outperforms deep policy gradient methods for
reinforcement learning tasks. However, note that both, Mountain
Car and Inverted Pendulum, have a low dimensional input space
(2 dimensions for Mountain Car, 4 for Inverted Pendulum).
Currently, our algorithm does not scale up to a higher number
of dimensions in terms of computational cost, whereas deep
policy gradient algorithms have been engineered to deal with
high-dimensional spaces.

3. METHODS

In sections 3.1–3.4, we describe the bump coding scheme and our
algorithms formally. Section 3.5, contains a description of all the
tasks used for evaluation of the algorithms.

3.1. Bump Coding Scheme
We assume that a population of binary neurons is arranged in
a grid. Intuitively, a d-dimensional parameter x is encoded by a
bump of active neurons that lay within the d-dimensional cube
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FIGURE 5 | Reinforcement learning experiments. The plots show the learning progress of different learning algorithms on the Mountain Car (A) and Inverted

Pendulum (B) task. The tasks are described in more detail in section 3.5. The RL bump algorithm is compared with the deep deterministic policy gradient algorithm
(ddpg) and the proximal policy optimization algorithm (ppo2), cf. text for implementation details. For every algorithm, the average reward per episode and its standard

deviation for 10 different random seeds are smoothed for better readability. The algorithm hyper-parameters are optimized to maximize the mean reward on the last 30

episodes for the Mountain Car, and the last 300 episodes for the Inverted Pendulum, and are given in the Supplementary Material.

with side length k and center x, see Figure 1. We note that
our results qualitatively do not depend on the precise shape of
the bump, that is, whether it is the d-dimensional cube or ball,
however our cube shaped bumps facilitate efficient simulations.
Formally, a population of nd neurons encodes values in the d-
dimensional interval [0, 1]d. Define Ai = [n], where [n] denotes
the set of integers {1, . . . , n}, and define the set of neurons to be
A = A1 × . . . × Ad. Then, a neuron i ∈ A represents the value
(i1/n, . . . id/n) in [0, 1]d. Moreover, for a ∈ [n] define Intk(a)
to be the set of integers in the interval [a − k/2, a + k/2]; to
be precise, we actually define Intk(a) as the set of integers in
the interval [max{0, a − k/2}, min{n, a + k/2}] in order to take
care of cases close to the boundary of the interval. We define
the bump of width k with center neuron i ∈ A to be Intk(i) : =
Intk(i1) × . . . × Intk(id). In the bump coding scheme of width
k the value a is encoded by the Intk(a)-activation, where an I-
activation is defined to be the state, where the neurons in I are
active and the ones not in I are inactive.

3.2. Network Architecture, Activation
Distribution, and Feedback Error Measure
In order to learn a mapping f :[0, 1]dA → [0, 1]dB , we consider
a network consisting of populations A and B equipped with
probabilistic synapses and an abstract continuous attractor
mechanism in population B. Intuitively, given a bump activation
I in population A, the attractor mechanism activates the bump
J in population B that received most synaptic input from the
bump activation in A. This way, the probabilistic synapses enable
exploration of the output space. More formally, the network
consists of population A and B consisting of [n]dA and [n]dB

neurons, respectively. These encode values according to the
bump coding scheme defined above. They are fully connected by
probabilistic synapses with weightswij fixed to value 1 and plastic
synaptic probabilities pij. Given an input x, the bump I = Intka (x)
with width kA and center x, the matrix of synaptic probabilites P
and the bump width kB in population B, we define the following
activation distribution Act(I, kB, P) that returns (J, y), where J is

the sampled bump in population B with center y. Assuming that
the bump I is active in population A, we explain now how a
bump activation J in population B is sampled. Denote by J =
{IntkB (b)|b ∈ B} the set of all possible bump activations in B
with width kB and by Xij Bernoulli random variables that are 1
with probability pij and 0 otherwise, i.e., they indicate whether
synapse (i, j) is active or not. Then, s(I, J) =

∑

(i,j)∈I×J Xij is

the total synaptic input that neurons in J receive (recall that we
assumed that all synaptic weights are constant and equal to 1),
and the abstract continuous attractor mechanism activates the
output bump J ∈ J with maximal s(I, J), where ties are broken
uniformly at random. Formally, we write (J, y) ∼ Act(I, k, P),
where J = argmaxJ∈J {s(I, J)} and y is the center of bump J. In
a machine-learning context this can be efficiently implemented
by adding a convolutional layer with suitable weights on top
of layer B. We remark that for the theoretical analysis, we
change the activation distribution slightly to be able to deal with
the dependencies between distributions s(I, J) and s(I, J′), see
Supplementary Material.

Given a bump I in population A with center x and a sampled
activation (J, y) ∼ Act(I, kb, P) the network receives some error
feedback L(x, y), where L is a function that depends on the output
y and the target output f (x), e.g., the euclidean error feedback
returns the euclidean distance between output value y and the
target value f (x). Note that the learning task is more difficult if the
precise definition of the function L is unknown to the algorithm.
The error of a network with learned synaptic probabilities P̂ is
defined to be the expected error feedback E[L(x, y)], where x is
chosen uniformly at random in A and y is sampled according to
Act(IntkA (x), kB, P̂).

3.3. The Static and Dynamic Bump
Algorithm
We first explain the algorithms used for the theoretical analysis
and then the ones used for the simulations. The goal of these
algorithms is to prune away all synapses for every input neuron
x, except the ones connecting x to some small continuous area
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around x’s target neuron f (x). The basic mechanism to do
so is to prune away synapses between the input and output
bump whenever the error feedback is larger than some error
threshold, as then the target neuron f (x) is not contained in the
output bump.

3.3.1. Algorithms for Theoretical Analysis
For the following algorithms, every synapse (i, j) has a synaptic
counter cij that indicates whether a synapse should be pruned
away. Further, the input and output bump widths are set such
that the fraction kB/kA is equal to the Lipschitz constant C of the
mapping f that is to be learned.

The static bump algorithm (theory) fixes the input width kA,
the output bump width kB and the error threshold L̂ proportional
to the desired final error ℓ and observes M = c( n

k
)dA+dB log n

many samples with random input x, where c = (dA + dB +
1)(2C)dA (

√
dA+
√
dB)

dA+dB . For every sample activation (J, y) ∼
Act(IntkA (x), P, kB), the counters cij are incremented by 1 for all
synapses between the two bumps I = IntkA (x) and J, if L(x, y) ≤
L̂ and otherwise decremented by 1. Finally, all synapses with
non-positive counters are pruned away. Intuitively, the choice
of sample size M ensures with high probability2 that any input
neuron x remains to be connected to output neurons y with
‖f (x)− y‖2 ≤ L̂.

The dynamic bump algorithm (theory) proceeds in phases and
repeatedly applies the static version, see Algorithm 1. The bump
widths k and error threshold L̂ are initially chosen large and
divided by 2 in every phase. Intuitively, this causes any input
neuron x to be connected to a shrinking and shrinking area
around target output neuron f (x).

3.3.2. Algorithms for Simulations
The following algorithms can deal with error feedback functions
that differ in magnitude for different input regimes and adapt
the bump width in a more continuous manner. We give a short
overview of the mechanisms used in the algorithms. Firstly, every

neuron keeps track of its own error threshold L̂i. L̂i is the running
average with decay factor α of the error feedbacks obtained when
neuron i was active. Further, a mechanism to prune long-time
inactive synapses is implemented with synaptic counters dij.

The dynamic bump algorithm sets for every sample the input
bump width kA and output bump width kB both equal to
a constant fraction of the number of synapses of neuron x.
The static bump algorithm sets the bump widths to some fixed
constant but otherwise proceeds analogously as follows. Any
sample activation consists of input and output bumps I and J with
centers x and y, respectively, and error feedback L(x, y). For each
sample, the neurons i ∈ I update their error threshold according

to L̂i = αL(x, y) + (1 − α)L̂i. Synapses (i, j) between bumps I

and J are pruned away if L(x, y) ≥ L̂i. Further, synapses (i, j)
with i ∈ I and j /∈ J increase their synaptic counter dij by 1
and the ones with i ∈ I and j ∈ J reset dij = 0. Then, long-
time inactive synapses (i.e., dij ≥ θprune) are pruned away. Finally,
synapses (i, j) are consolidated, that is, pij is set to 1, if the number

2With high probabilitymeans with probability tending to 1 as n tends to∞.

of synapses of input neuron i drops below a threshold value.
The procedure stops as soon the mean of the L̂i drops below the
desired precision ℓ.

The hyper-parameters of the algorithm need to be tuned to
yield good performance. We optimized them using a coarse grid
search for each task. We discuss the influence of the hyper-
parameters on performance and give the hyper-parameters used
for Figure 4.

Algorithm 1: Dynamic bump algorithm for theoretical
analysis. It learns a Lipschitz mapping f : [0, 1]dA → [0, 1]dB .
Hyper/parameters: Lipschitz constant or upper bound on
Lipschitz constant C, desired precision ℓ, 0 < ck ≤
2/(3(
√
dA +

√
dB)), c = 2dA (dA + dB + 1) · Vol(SdB (2/ck +√

dA/2 +
√
dB/2)), where Vol(Sd(r)) denotes the euclidean

volume of the d-dimensional ball with radius r.

1 L̂0 = 1

2 while L̂s ≥ ℓ/2 do

3 L̂s = L̂s−1/2; kBs = ckL̂s; kAs = kBs /C; cij = 0
for all (i, j) ∈ A× B;

4 forM = c

(

n

kAs

)dA

log n samples do

5 x ∈u.a.r A; I = IntkAs (x); (J, y) ∼ Act(I, P, kBs );

6 if L(x, y) ≥ L̂ then cij = cij − 1 for all (i, j) ∈ I × J;
else cij = cij + 1 for all (i, j) ∈ I × J;

7 for (i, j) ∈ I × J do
8 if cij ≤ 0 then pij = 0

Algorithm 2: Dynamic bump algorith used for the
simulations. It learns a Lipschitz mapping f : [0, 1]dA →
[0, 1]dB . Hyper/parameters: Lipschitz constant or upper
bound on Lipschitz constant C, desired precision ℓ, running
average factor α, cA, cB, θprune, θsyn, L̂init .

1 for i ∈ A do L̂i = L̂init

2 while
∑

L̂i

n ≥ ℓ do

3 x ∈u.a.r. A; kB = number-synapses(x)/cB;
kA = number-synapses(x)/cA;

4 I = IntkA (x); (J, y) ∼ Act(I, P, kB);
5 for i ∈ I do

6 L̂i = αL(x, y)+ (1− α)L̂i;
7 dij = 0 for all j ∈ J; dij = dij + 1 for all j /∈ J;

8 if L(x, y) ≥ L̂i then pij = 0 for all j ∈ J for j ∈ B do

9 if dij ≥ θprune then pij = 0

10 if number-synapses(i) ≤ θsyn then

Consolidate synapses (i, j) of neuron i

3.4. Reinforcement Learning Bump
Algorithm
In this section, we describe our RL bump algorithm, which
combines the classical temporal difference learning method
(Sutton et al., 1998) with the bump coding scheme. The building
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blocks of temporal difference learning are learning a policy that
maps states to actions and learning a value function v that
estimates the expected future reward v(St) for states St . Here,
it is assumed that the agent observes the whole state St of the
environment. To learn these mappings, one computes the return
Gt , that intuitively is the difference between the estimated future
reward v(St) and the real future reward. The k-step temporal
difference method estimates the real future reward using the
bootstrap estimate v(St+k) and computes Gt as

Gt ← Rt+1 + . . .+ Rt+k + v(St+k)− v(St),

where Ru denotes the reward received at time u. Then, the return
Gt is used to update the value function, which is stored in a
tabular representation (Sutton et al., 1998).

v(St)← v(St)+ αGt ,

where α is a hyper parameter regulating the magnitude of the
update. Further, the return Gt is used to update the policy, that
in our case is learned with a bump coding algorithm with static
bump width that updates the synaptic probabilities gradually. If
at time step t, the activated bumps were I and J, we update the
probabilities pij for all (i, j) ∈ I × J according to

pij ←
{

pi,j + (0.9− pi,j)min(βGt , 1) if Gt ≥ 0

pi,j + (pi,j − 0.1)max(βGt ,−1) if Gt < 0
,

where β is a hyper parameter regulating the magnitude of the
update. Intuitively, this update increases pij proportional to Gt

and proportional to the distance of pij to 0.9 if Gt ≥ 0, and
decreases pij proportional to Gt and proportional to the distance
of pij to 0.1 if Gt ≤ 0. Note that due to the clipping of βGt to
[−1, 1], the invariant is maintained that all probabilities belong
to the interval [0.1, 0.9]. The structure of these updates is very
similar to policy gradient methods (Sutton et al., 1998), using the
reinforce algorithm. However, the reinforce algorithm does not
directly apply to our model as it is internally non differentiable,
see Williams (1992).

3.5. Description of Tasks
3.5.1. Low Dimensional Mappings With Immediate

Feedback
As 1-dimensional mappings f , we consider the identity function
f (x) = x, a sinus function f (x) = sin(x) and a second order
polynomial f (x) = x2 − 3x + 1. For all functions, we consider
the absolute distance L(x, y) = |f (x)−y| as error feedback, where
x and y are input and output of the network.

In the throw ball task, the network has to learn to throw
a ball to a certain distance. The target distance is given as a
1-dimensional input to the network. The networks gives a 2-
dimensional output, that consists of the vertical throwing angle
and the initial speed of the ball. The error feedback is the
absolute difference between the distance where the ball touches
the ground and the target distance. Note that the optimal output
is underdetermined, as for any angle in (0,π/2) there exists a
speed such that any target distance can be hit.

In the robotic arm task, the network learns how to control
a simple robotic arm with two degrees of freedom. The arm
is composed of two rigid moving parts and is connected to
a fixed anchorage point. As we restrict to movements in the
plane, the agent only has to control angles, one at each joint.
The target position is given as input in Cartesian coordinates
and the network outputs two angles that are applied to the two
joints. The feedback is given by the euclidean distance between
the actual position of the arm and the target position.

3.5.2. Reinforcement Learning Tasks
The RL environments used for assessing the RL bump
algorithm are from the OpenAI Gym (Brockman et al., 2016)
toolkit: the continuous version of the classical Mountain
Car control problem (MountainCarCountinuous-v0), and the
Inverted Pendulum environment from the MuJoCo suite
(InvertedPendulum-v2). In the mountain car task the goal
is to reach the top of a hill, that can only be reached by
obtaining momentum when driving down the neighboring hill.
The network receives as input the position and speed of the car
and outputs the acceleration that is applied to the car. There is
a large positive reward if the car reaches the top of the hill and
a small negative reward for the fuel use in every time step. In
the inverted pendulum task the goal is to balance an inverted
pendulum on a cart. The network receives 4-dimensional input
describing position and velocity of the cart and pendulum, and
it outputs the acceleration applied to the cart. As long as the
pendulum does not fall to the ground, there is a positive reward
in every time step.

4. DISCUSSION

In this section, we first relate our work to related work from the
field of machine learning that studies sample efficient learning,
then we discuss the bio-plausibility of our proposed coding
scheme and learning algorithms, and finally we discuss the
insights gained about the bio-plausible mechanisms used in
this study.

4.1. Sample Efficient Learning in Machine
Learning
How to improve sample efficiency of learning algorithms is a
major topic in the field of machine learning in general and the
field of reinforcement learning in particular (Botvinick et al.,
2019). Data samples are often limited, and training of artificial
networks is computationally costly. A common approach to
improve sample efficiency is to handcraft artificial networks to
the task at hand. The most famous example are convolutional
neural networks (LeCun and Bengio, 1995; Krizhevsky et al.,
2012), where the translational invariance property of images
is hand-wired into the convolutional network architecture.
Another successful approach is to store all observed samples or
the neural states that encode these samples. Then, inputs are
classified according to the most similar samples in storage. This
idea is present in non-parametric approaches such as the nearest
neighbor methods (Bishop, 2006), as well as in deep neural
networks augmented with external memory systems (Graves
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et al., 2014) and attention mechanisms (Bahdanau et al., 2014;
Vaswani et al., 2017). In reinforcement learning this idea is
known as episodic reinforcement learning (Lengyel and Dayan,
2008; Blundell et al., 2016; Gershman and Daw, 2017; Pritzel
et al., 2017). Further, an approach to improve sample efficiency
is meta learning (Schaul and Schmidhuber, 2010), which is also
often referred to as “learning to learn.” In the meta learning
setting, an outer learning system adjusts parameters or learning
mechanisms of an inner learning system in order to improve
the performance and efficiency of the later (Schmidhuber et al.,
1996; Baxter, 1998; Thrun and Pratt, 1998; Hochreiter et al., 2001;
Schweighofer and Doya, 2003). The outer learning system usually
performs updates in a slow timescale, whereas the inner learning
system can adapt fast to new environments, e.g., evolutionary
algorithms can optimize learning architectures or loss functions
to improve their sample efficiency (Stanley and Miikkulainen,
2002; Jaderberg et al., 2018).

Our approach is orthogonal to all these approaches. In
essence, our work shows that the coding scheme of a network
affects its sample efficiency and that adapting the coding scheme
during learning can improve its sample efficiency.

4.2. Bio-plausibility of Our Coding Scheme
and Learning Mechanisms
The proposed coding scheme and learning algorithms are of
abstract nature and we do not intend to argue that they might
be implemented in biological systems precisely in this form.
However, we do claim that neural implementations of the basic
concepts used by our model are plausible and the brain might
use similar mechanisms for computation.

Our primary assumption that information is encoded and
processed by populations of tuned neurons is supported by the
abundance of such neurons across brain areas (Hubel andWiesel,
1962; O’Keefe, 1976; Knudsen and Konishi, 1978; Ranck, 1985;
Georgopoulos et al., 1988). The bump coding scheme described
in section 3 requires that geometrically close-by neurons
have close-by preferred stimuli parameters. Such geometrically
ordered networks are indeed present in real neural network, such
as the drosophila fly compass system (Seelig and Jayaraman, 2015;
Kim et al., 2017). The underlying network-wiring that gives rise
to bump-like activation patterns is generally believed to follow
the circuit-motive of local excitation and long-range inhibition,
as suggested by experimental evidence (Kim et al., 2017) and
theoretical findings (Wilson and Cowan, 1973; Amari, 1977; Ben-
Yishai et al., 1995). Note however, that the geometrical ordering
of the neurons is not necessary for the results presented in this
work. Indeed, the geometrical arrangement can be arbitrary if
network-wiring supports activity patterns consisting of neurons
with similar preferred stimuli parameters. Such network wiring
consists of excitatory connections between neurons that are
active for similar stimuli and inhibition that limits the total
activity. It can be found across brain areas and animal species
(Weliky et al., 1995; Mysore et al., 2010; Ko et al., 2011), and
is often assumed by theoretical studies (Ben-Yishai et al., 1995;
Skaggs et al., 1995; Knierim and Zhang, 2012). It is conceivable
that such experimentally observed wiring motives implement a

version of the abstract continuous attractor mechanism used in
this paper.

The dynamic bump algorithm requires a dynamic adaptation
of the bumpwidth during the learning process. Experimental and
theoretical studies give evidence that the tuning curve width is
controlled by inhibition (Suga et al., 1997; Knierim and Zhang,
2012; Lee et al., 2012). Thus, controlling the strength of inhibition
in the system yields a straight forward explanation of how the
bump width could be adjusted during the learning progress.

Moreover, the assumption of constant weights and binary
neurons are mere abstractions for mathematical simplicity. Due
to the on-off nature of binary neurons, we approximated the
bell shaped tuning curves by rectangular tuning curves. It seems
plausible that the results would translate qualitatively to networks
of rate neurons with bell shaped tuning curves. Stable bump
like activity patterns also can be produced by spiking networks
(Seeholzer et al., 2017). We leave extensions of our algorithms
that are more bio-plausible for future investigations. Moreover,
we note that all results from this work also hold if the populations
are sparsely instead of fully connected. As long as the bumpwidth
is broad enough, sufficiently large population codes give rise to
stable learning mechanisms for sparsely connected populations
(Gauy et al., 2017).

Furthermore, our plasticity rules are plausible in the sense that
they solely depend on pre- and post-synaptic activity, a global
reward feedback and memory traces of these quantities. All the
neuronal and synaptic counters used in our algorithms require
only local storage of activity and reward feedback traces.

4.3. Functional Role of Tuning Curve Width
A large body of literature in theoretical and experimental
neuroscience investigated tuning curve shape under the aspect
of optimal coding (Seung and Sompolinsky, 1993; Brunel and
Nadal, 1998; Panzeri et al., 1999; Eurich et al., 2000; Bethge et al.,
2002, 2003; Todorov, 2002; Sanger, 2003; Harper and McAlpine,
2004; Johnson and Ray, 2004; Seriès et al., 2004; Lánskỳ and
Greenwood, 2005; Brown and Bäcker, 2006; Montemurro and
Panzeri, 2006; Toyoizumi et al., 2006; McDonnell and Stocks,
2008; Geisler et al., 2009; Nikitin et al., 2009; Yarrow and Seriès,
2015). Also the width of tuning curves was analyzed from an
information theoretical viewpoint. Hinton et al. (1986) and
Zhang and Sejnowski (1999) established a dependence between
optimal tuning width and the dimensionality of the encoded
parameter, Pouget et al. (1999) and Butts and Goldman (2006)
showed that optimality of tuning width heavily depends on the
level of noise and covariance of the noise in the system, and Yaeli
andMeir (2010) found that optimal tuning width depends on the
prior uncertainty and on the length of the decoding time window.
Such studies can explain the sharpening of tuning curves that is
observed in a variety of experimental set-ups (Spitzer et al., 1988;
Wagner, 1990; Ringach et al., 1997; Menz and Freeman, 2003;
Wang et al., 2005; Samonds et al., 2009).

In this work, we introduce sample efficiency as a novel notion
of optimality. If the neural code is optimized for sample efficient
learning, then the model analyzed in this paper predicts that
the tuning curves sharpen during the process of learning. In
fact, this phenomena is known to occur in the inferior temporal
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cortex, where tuning curves of shape selective neurons sharpen
during acquaintance to new objects (Booth and Rolls, 1998;
Freedman et al., 2005), as well as in many sensory areas during
development (Brugge et al., 1981; Tavazoie and Reid, 2000;
Mrsic-Flogel et al., 2003). The precise relation between tuning
curve width and sample efficiency likely depends on the applied
plasticitymechanisms. Nonetheless, for any plasticitymechanism
that requires pre- and post-synaptic activity, the tuning curve
width yields an upper bound on the number of synaptic weight
updates, because it limits the number of active neurons per
sample. Therefore, the basic principle that larger tuning curve
width leads to more synaptic updates per sample and thus faster
learning, may apply to many plasticity mechanisms.

4.4. Functional Role of Probabilistic
Synapses
The functional role of probabilistic synapses is highly debated
(Llera-Montero et al., 2019). The proposed functional roles
include regularization and improved generalization in deep
neural networks (Wan et al., 2013; Blundell et al., 2015)
and energy saving constraints (Harris et al., 2012). Further,
probabilistic synapses can give rise to a good exploration
exploitation trade-off in reinforcement learning (Seung, 2003;
Blundell et al., 2015; Kappel et al., 2018), and synaptic sampling
can be seen as sampling from some posterior distribution
(Aitchison and Latham, 2015; Kappel et al., 2015, 2018). Our
model is in line with the last two proposals. In our model,
probabilistic synapses combined with an continuous attractor
mechanism encode the uncertainty of the learned input-output
mapping and implement the variability and exploration that is
required for reward-based learning.

4.5. Conclusion
In this work, we asked how sample efficient learning is affected
by the neural coding scheme. We showed that population codes
with tuned neurons support sample efficient learning for low
dimensional tasks with immediate reward feedback and low
dimensional reinforcement learning tasks. For these tasks, our
gradient-free learning algorithm is competitive to multi-layer
perceptrons trained by backpropagation. These findings might
inspire an integration of tuning curve coding schemes into

machine learning approaches, especially, if data-samples are
limited and no access to gradient information is given. For
our learning mechanisms, we found that tuning curve width
severely influences the sample efficiency. We showed that for
static tuning widths, there is a trade-off between sample efficiency
and final precision. Broad tuning curves give rise to sample
efficient learning, whereas narrow tuning curves account for high
final precision. Moreover, we showed that dynamic adaptation of
the tuning width results in both high sample efficiency and high
final accuracy. These results propose sample efficient learning as
a functional role of the tuning curve width.
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