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The neuroprotective effects of human
bone marrow mesenchymal stem cells
are dose-dependent in TNBS colitis
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Abstract

Background: The incidence of inflammatory bowel diseases (IBD) is increasing worldwide with patients experiencing
severe impacts on their quality of life. It is well accepted that intestinal inflammation associates with extensive damage
to the enteric nervous system (ENS), which intrinsically innervates the gastrointestinal tract and regulates all gut
functions. Hence, treatments targeting the enteric neurons are plausible for alleviating IBD and associated
complications. Mesenchymal stem cells (MSCs) are gaining wide recognition as a potential therapy for many diseases
due to their immunomodulatory and neuroprotective qualities. However, there is a large discrepancy regarding
appropriate cell doses used in both clinical trials and experimental models of disease. We have previously
demonstrated that human bone marrow MSCs exhibit neuroprotective and anti-inflammatory effects in a guinea-pig
model of 2,4,6-trinitrobenzene-sulfonate (TNBS)-induced colitis; but an investigation into whether this response is
dose-dependent has not been conducted.

Methods: Hartley guinea-pigs were administered TNBS or sham treatment intra-rectally. Animals in the MSC treatment
groups received either 1 × 105, 1 × 106 or 3 × 106 MSCs by enema 3 hours after induction of colitis. Colon tissues were
collected 72 hours after TNBS administration to assess the effects of MSC treatments on the level of inflammation and
damage to the ENS by immunohistochemical and histological analyses.

Results: MSCs administered at a low dose, 1 × 105 cells, had little or no effect on the level of immune cell infiltrate and
damage to the colonic innervation was similar to the TNBS group. Treatment with 1 × 106 MSCs decreased the
quantity of immune infiltrate and damage to nerve processes in the colonic wall, prevented myenteric neuronal loss
and changes in neuronal subpopulations. Treatment with 3 × 106 MSCs had similar effects to 1 × 106 MSC treatments.

Conclusions: The neuroprotective effect of MSCs in TNBS colitis is dose-dependent. Increasing doses higher than
1 × 106 MSCs demonstrates no further therapeutic benefit than 1 × 106 MSCs in preventing enteric neuropathy
associated with intestinal inflammation. Furthermore, we have established an optimal dose of MSCs for future
studies investigating intestinal inflammation, the enteric neurons and stem cell therapy in this model.
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Background
Crohn’s disease and ulcerative colitis are idiopathic
inflammatory bowel diseases (IBD) characterized by
chronic relapsing inflammation of the gastrointestinal
(GI) tract [1]. Crohn’s disease manifests mostly in the
ileum and colon, but can affect any region of the GI tract.
Inflammation is discontinuous, focal and transmural pro-
gressing to the development of fistulas, abscesses, and
strictures [2]. In contrast, ulcerative colitis is characterized
by colonic mucosal inflammation extending proximally
from the rectum [3]. Fundamental symptoms reported by
IBD patients include abdominal pain, diarrhea, bloody
stools, fecal urgency and rectal bleeding, as well as sys-
temic symptoms of weight loss, fever, and fatigue [4, 5].
Furthermore, the risk of colorectal cancer increases as a
complication of IBD [6].
The incidence of IBD is an evolving global concern,

highest in westernized nations, such as Canada, Australia
and countries in northern Europe, and increasing in devel-
oping nations in conjunction with their industrialization
[7]. The peak age for IBD onset is 15 to 40 years and al-
though not generally associated with mortality, the relent-
lessness of the disease negatively impacts on the patient’s
quality of life [8]. Furthermore, both direct and indirect
expenditures of IBD are substantial economic burdens on
healthcare systems worldwide [9]. Conventional therapy
for IBD includes anti-inflammatory drugs, corticosteroids,
biologics, antimicrobial therapy and immunomodulators,
which aim to treat symptoms rather than the underlying
pathological mechanisms of the disease. Furthermore,
these medications demonstrate long-term toxicity and/or
failure to induce and maintain remission [10–12].
Abnormalities in the enteric nervous system (ENS)

have been suggested to play a role in IBD pathogenesis
for more than 50 years [13]. Comprising a complex
network of neurons and glial cells embedded in the gut
wall, the ENS intrinsically innervates the GI tract and is
responsible for regulating and coordinating gut functions
independently of the central nervous system [14].
Results from clinical and experimental models of IBD
have reliably demonstrated enteric neuronal loss, axonal
degeneration, glial cell hyperplasia, neuronal hyperex-
citability and altered neurotransmission associated
with intestinal inflammation [15–22]. Inflammation-
induced changes to the neurochemical coding of my-
enteric neurons, specifically cholinergic and nitrergic
subpopulations, disrupt GI functions and intestinal
motility [23–25]. Furthermore, structural and functional
alterations to the ENS persist beyond the resolution of
active inflammation [26, 27]. These findings suggest that
inflammation-induced insults to the ENS are integral in
the generation of IBD symptoms and that the disease
severity may be reduced via therapeutic strategies target-
ing the enteric neurons.
Due to unique therapeutic characteristics, mesenchymal
stem cells (MSCs) have emerged as exciting candidates for
cellular therapy against a range of immune-mediated and
neurodegenerative disorders, including IBD [28–32].
Accumulating evidence has revealed that the protective
mechanisms and endogenous regeneration initiated by
MSCs are attributable to their capacity to produce and
release an array of bioactive soluble factors acting in a
paracrine manner to directly stimulate target cells and/or
provoke nearby cells to emit functionally active mediators
[33–35]. Further potential advantages of MSCs for cellular
therapy include: in vitro expansion capacity, ease of isola-
tion from adult tissue sources, low immunogenicity,
capability for in vitro genetic modification and a safe and
feasible profile for transplantation into humans [36–38].
While many studies report the effectiveness of MSC

treatments in attenuating the mechanisms of disease,
some MSC therapies are reported as being ineffective or
only demonstrating short-term effectiveness [39–42].
Various factors, including cellular dose and timing of ad-
ministration of MSCs, influence therapeutic efficacy of
these cells [43]. Hence, it was suggested different doses
of MSCs might have distinct immune or protective ef-
fects [44]. There is great variation among clinical trials
and experimental models of disease in the injected dos-
age of MSCs [45, 46], suggesting that MSCs can effect-
ively treat diseases in a dose-dependent manner [47–51].
In addition, defining an optimal MSC dose for both pre-
clinical and clinical studies extends to benefits such as
reduced production costs, less tissue required for MSC
expansion, a lower chance of MSC mutation and a re-
duced likelihood of MSC accumulation in the filtering
organs.
While it has been confirmed that MSCs migrate to

sites of intestinal inflammation where they assist in the
restoration and repair of the epithelial barrier and
damaged tissue via anti-inflammatory actions [51–55],
there are only a few studies examining the effects of
MSC-based therapies in attenuating inflammation-
induced enteric neuropathy [25, 35, 56, 57]. In these stud-
ies, it was concluded that locally applied bone marrow
(BM)-MSCs administered at a dose of 1 × 106 are
neuroprotective towards enteric neurons compromised
by 2,4,6-trinitrobenzene-sulfonate (TNBS)-induced in-
flammation [25, 35, 57]. These results provide the
foundation for examining the neuroprotective poten-
tial of MSC therapy in intestinal inflammation. However,
no studies have investigated the dose-response relation-
ship of MSCs in protecting enteric neurons from damage
and/or death induced by colitis. Therefore, the aim of this
study was to investigate at which dose (1 × 105, 1 × 106 or
3 × 106) human BM-MSCs are most beneficial in pro-
tecting and repairing enteric neurons following induc-
tion of colitis. This knowledge will define the optimal
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MSC dosage for treatment of enteric neuropathy associ-
ated with TNBS-induced inflammation in a guinea-pig
model of colitis, as well as contribute towards future inves-
tigations into the mechanisms of MSC-stimulated enteric
neuroprotection.

Methods
Animals
Male and female Hartley guinea-pigs weighing 140–280 g
were obtained from South Australian Health and Medical
Research Institute (SAHMRI, Adelaide, SA, Australia) and
randomly assigned to experimental groups. All animals
were housed in a temperature-controlled environment
with 12-hour day/night cycles and had ad libitum access
to food and water. All animal experiments in this study
complied with the guidelines of the National Health and
Medical Research Council (NHMRC) Australian Code of
Practice for the Care and Use of Animals for Scientific
Purposes under approval of the Victoria University
Animal Experimentation Ethics Committee (approval num-
ber AEETH 12-012). All efforts were made to minimize
animal suffering.

Cell culture and passaging
MSCs derived from human BM-MSC cell lines BM-7025
and BM-7081 (Tulane University, New Orleans, LA, USA)
were plated at an initial density of 60 cells/cm2 and incu-
bated in complete culture medium (minimum essential
medium (α-MEM) supplemented with 16.5% MSC-
qualified fetal bovine serum (FBS), 100 U/mL penicillin/
streptomycin, and 100X GlutaMAX) (all purchased from
Gibco, Life Technologies, Mulgrave, VIC, Australia) at
37 °C. Expansion medium was replenished every 48–72
hours for 10–14 days until the cells were 70–85% conflu-
ent (maximum). MSCs were rinsed in 5 mL sterile
phosphate-buffered solution (PBS) prior to incubation
with 3 mL TrypLE Select (Gibco, Life Technologies,
Mulgrave, VIC, Australia) for 3 minutes at 37 °C to detach
cells. Enzymatic activity was neutralized by 8 mL of stop
solution (α-MEM+ 5% FBS) and MSCs were collected
and centrifuged at 450 g for 5 minutes at room
temperature. Cells were then resuspended in fresh culture
medium and counted using a haemocytometer under a
light microscope.

MSC characterization
MSCs were cultured to the fourth passage for all experi-
ments and characterized for their expression of surface
antigens, differentiation potential, and colony-forming
ability as previously described [25, 57]. All MSCs utilized
in this study met criteria for defining in vitro human
MSC cultures proposed by the International Society for
Cellular Therapy (ISCT) [58].
Induction of colitis
For the induction of colitis, TNBS (Sigma-Aldrich, Castle
Hill, NSW, Australia) was dissolved in 30% ethanol to a
concentration of 30 mg/kg and administered intra-rectally
7 cm proximal to the anus (total volume of 300 μL)
by a lubricated silicone catheter [21]. For TNBS
administration, guinea-pigs were anaesthetized with
isoflurane (1–4% in O2) during the procedure. Sham-
treated guinea-pigs underwent the same procedure
without administration of TNBS.
MSC treatments
Guinea-pigs in the MSC-treated groups were anaesthe-
tized with isoflurane 3 hours after TNBS administration
and administered MSC therapies by enema into the colon
via a silicone catheter. MSCs were administered at a dose
of 1 × 105, 1 × 106 or 3 × 106 cells in 300 μL of sterile PBS.
The peak of ethanol-induced epithelial damage occurs at
3 hours in TNBS-induced colitis [59], therefore this time
point was selected for the administration of MSCs.
Animals were held at an inverted angle following MSC
treatments to prevent leakage from the rectum and were
weighed and monitored daily following treatment.
Guinea-pigs were culled via stunning and exsanguination
72 hours after TNBS administration [20]. Sections of the
distal colon were collected for histological and immuno-
histochemical studies.
Tissue preparation
Following dissection, tissues were immediately placed in
oxygenated PBS (0.1 M, pH 7.2) containing an L-type
Ca2+ channel blocker, nicardipine (3 μm) (Sigma-Aldrich,
Castle Hill, NSW, Australia), to inhibit smooth muscle
contraction. Tissues were cut open along the mesenteric
border and then processed for whole-mount longitudinal
muscle-myenteric plexus (LMMP) preparations and cross
sections.
LMMP preparations
Colon tissues were pinned flat with the mucosal side up
and stretched to maximal capacity without tearing in a
Sylgard-lined Petri dish. Tissues were fixed overnight at
4 °C in Zamboni’s fixative (2% formaldehyde and 0.2%
picric acid) and subsequently washed for 3 × 10 minutes
in dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Castle
Hill, NSW, Australia) followed by 3 × 10 minutes in
0.1 M PBS to remove fixative. Zamboni’s fixative was
chosen for tissue fixation to minimize neural tissue
autofluorescence. Distal colon samples were dissected to
expose the myenteric plexus by removing the mu-
cosa, submucosa and circular muscle layers prior to
immunohistochemistry.
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Cross sections
Tissues for cross sections were pinned with the mucosal
side up in a Sylgard-lined Petri dish, without stretching.
Tissues for immunohistochemistry were fixed as described
above and subsequently frozen in liquid nitrogen-cooled
isopentane and optimum cutting temperature (OCT) com-
pound (Tissue-Tek, Torrance, CA, USA). Samples were
stored at -80 °C until they were cryosectioned (30 μm) onto
glass slides for immunohistochemistry. Tissues for histology
were fixed in 10% buffered formalin overnight at 4 °C and
stored in 70% ethanol until paraffin embedding.

Immunohistochemistry
Immunohistochemistry was performed on whole-mount
LMMP preparations and cross sections of the distal
colon as previously described [25, 35]. After a 1-hour in-
cubation in 10% normal donkey serum (NDS) (Merck
Millipore, Melbourne, VIC, Australia) diluted in 0.1 M
PBS-0.1% Triton X-100 at room temperature, the sam-
ples were washed with 0.1 M PBS-0.1% Triton X-100
(2 × 5 minutes) and incubated with primary antibodies
(Table 1) diluted in 2% NDS and 0.1 M PBS-0.1% Triton
X-100 overnight at room temperature. Tissues were then
washed in 0.1 M PBS-0.1% Triton X-100 (2 × 5 minutes)
prior to incubation with secondary antibodies (Table 1)
(diluted in 2% NDS and 0.1 M PBS-0.1% Triton X-100)
for 2 hours at room temperature. Following 3 × 10 -
minutes washes in 0.1 M PBS-0.1% Triton X-100,
LMMP preparations were mounted on glass slides with
fluorescent mounting medium (DAKO, North Sydney,
NSW, Australia).
Table 1 Antibodies used in this study

Host species Dilutio

Primary antibodies

Anti-β-Tubulin class III Rabbit 1:1000

Anti-CD45 (clone IH-1) Mouse 1:200

Anti-choline acetyltransferase (ChAT) Goat 1:500

Anti-Hu (clone 15A7.1) Mouse 1:500

Anti-neuronal nitric oxide synthase (nNOS) Goat 1:500

Anti-human leucocyte antigen
(HLA)-A,B,C (conjugated to fluorescein
isothiocyanate (FITC))

Human 1:50

Secondary antibodies

Alexa Fluor 594 Donkey anti-mouse 1:200

Alexa Fluor 594 Donkey anti-rabbit 1:200

FITC 488 Donkey anti-goat 1:200

FITC 488 Donkey anti-mouse 1:200

LMMP longitudinal muscle-myenteric plexus
Histology
After fixation, tissues were paraffin embedded, sectioned
at 5 μm, deparaffinized, cleared, and rehydrated in
graded ethanol concentrations. For standard haematoxy-
lin and eosin (H&E) staining, sections were immersed in
xylene (3 × 4 minutes), 100% ethanol (3 minutes), 90%
ethanol, (2 minutes), 70% ethanol (2 minutes), rinsed in
tap water, haematoxylin (4 minutes), rinsed in tap water,
Scott’s tap water (1 minute), eosin (3 minutes), rinsed in
tap water, 100% ethanol (2 × 1 minute), xylene (2 × 3 mi-
nutes) and mounted on glass slides with distrene plasti-
cizer xylene (DPX) mountant.

Imaging
Confocal microscopy was undertaken on an Eclipse Ti
confocal laser scanning system (Nikon, Tokyo, Japan).
Fluorophores were visualized by using a 488 nm excita-
tion filter for FITC and a 559 nm excitation filter for
Alexa 594. Z-series images were acquired at a nominal
thickness of 0.5 μm (512 × 512 pixels) with × 20 (dry,
0.75) or × 40 (oil immersion, 1.3) lenses. H&E-stained
colon sections were visualized using an Olympus BX53
microscope (Olympus, Notting Hill, VIC, Australia) and
images were captured with CellSense™ software.

Quantitative analyses of immunohistochemical and
histological data
In whole-mount LMMP preparations, the total number
of myenteric neurons immunoreactive (IR) for Hu, neur-
onal nitric oxide synthase (nNOS) and choline acetyl-
transferase (ChAT) were counted within eight randomly
n Supplier Application in this study

Abcam, Melbourne, VIC, Australia Cross sections

Abcam, Melbourne, VIC, Australia Cross sections

Merck Millipore, Bayswater, Australia LMMP preparations

Merck Millipore, Bayswater, VIC, Australia LMMP preparations

Novus Biologicals, Littleton, CO, USA LMMP preparations

BioLegend, San Diego, CA, USA Cross sections

Jackson Immunoresearch Labs,
West Grove, PA, USA

LMMP preparations

Jackson Immunoresearch Labs,
West Grove, PA, USA

Cross sections

Jackson Immunoresearch Labs,
West Grove, PA, USA

LMMP preparations

Jackson Immunoresearch Labs,
West Grove, PA, USA

Cross sections
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captured images per preparation at × 20 magnification
(total area 2 mm2), as well as per ganglia (average of ten
ganglia per animal). Infiltration of leucocytes throughout
the colon wall was assessed by counting the total num-
ber of CD45-IR cells within the mucosa and muscle
layers in cross sections (total area 1.5 mm2). The density
of nerve fibres was determined by measuring β-tubulin
(III)-IR in eight randomly captured images at × 20 mag-
nification. All images were captured under identical
acquisition exposure time conditions and calibrated to
standardized minimum baseline fluorescence. Images
were converted from red, green, and blue (RGB) to gray-
scale 8 bit then to binary; changes in fluorescence from
the baseline were measured using Image J software
(National Institutes of Health, Bethesda, MD, USA). The
area of immunoreactivity was then expressed as a per-
centage of the total area examined. Gross morphological
damage in H&E-stained colon sections was assessed by
histological grading of four parameters: mucosal flatten-
ing (0 = normal, 3 = severe flattening), occurrence of
haemorrhagic sites (0 = none, 3 = frequent sites), loss of
goblet cells (0 = normal, 3 = severe loss of cells) and vari-
ation of the circular muscle (0 = normal, 3 = considerable
thickening of muscular layer) [25]. Quantitative analyses
were conducted blindly.

Statistical analysis
Statistical differences were determined by Student’s t test
(two-tailed) or one-way ANOVA with Bonferroni post
hoc test for multiple group comparisons using Prism
v6.0 (Graphpad Software Inc., La Jolla, CA, USA). Data
were considered statistically significant when P < 0.05.
Data were presented as mean ± standard error of the
mean (SEM), if not specified otherwise.

Results
MSCs migration and engraftment at the site of inflammation
The capacity of MSCs to migrate and engraft to the area
of tissue damage and inflammation was assessed in
Fig. 1 MSC homing within the inflamed colon. The migration and engraftm
in sections of the guinea-pig colon was confirmed using anti-HLA-A,B,C an
colitis (a-c). Scale bars = 100 μm, n= 4/group/time point. HLA-A,B,C human leu
2,4,6-trinitrobenzene sulfonic acid
sections of the distal colon from guinea-pigs treated with
1 × 105, 1 × 106 or 3 × 106 MSCs administered by enema
3 hours after the induction of TNBS colitis. Transmural
migration of MSCs within colon cross sections was
identified by labelling with an antibody against human
leucocyte antigen (HLA)-A,B,C, which detects major
histocompatibility complex class I (MHC class I) anti-
gens expressed by all human nucleated cells (Fig. 1).
MSCs successfully engrafted into the intestinal wall evi-
dent by localization of HLA-A,B,C-positive cells in the
colon sections collected at 72 hours post induction of
colitis (Fig. 1a-c). HLA-A,B,C-positive cells were present
mostly in the mucosal lamina propria in colon sections
from guinea-pigs treated with 1 × 105 MSCs (Fig. 1a).
When administered at higher doses (1 × 106 and 3 × 106),
transmural migration and engraftment of human MSCs
into the colon wall to the level of the myenteric ganglia
was evident (Fig. 1b-c).

Effects of MSC treatment on tissue repair
Changes to the colonic architecture 72 hours after induction
of TNBS-induced colitis were evaluated by gross morpho-
logical assessment of H&E-stained colon sections (Fig. 2).
Continuous epithelial cell lining, regular structural arrange-
ments of goblet cells and crypts and defined colonic layers
were evident in H&E-stained colon cross sections from
sham-treated guinea-pigs (histological score 0–1) (Fig. 2a).
In contrast, sections from guinea-pigs in the TNBS-only
group displayed disruptions to the epithelial lining, goblet
cell loss, glandular distortion and flattening of crypts (histo-
logical score 2) (Fig. 2b). Sections from animals in all MSC-
treated groups revealed accelerated healing of the mucosa
and repair to levels comparable with sham-treated guinea-
pigs (histological score 0–1 for all) (Fig. 2c-e).

Dose-dependent effects of MSC treatments on leucocyte
infiltration in the inflamed colon
The severity of colitis and the anti-inflammatory effect
of MSC treatments were assessed by quantitative
ent of MSCs (white arrows) to the site of TNBS-induced inflammation
tibody specific to human MHC class I at 72 hours post induction of
cocyte antigen, IR immunoreactive, MSCs mesenchymal stem cells, TNBS



Fig. 2 Gross morphological changes in the distal colon assessed in H&E-stained cross sections. A complete and continuous epithelial lining (black
arrows) and regular arrangement of colonic layers was apparent in sections from sham-treated animals (a). Flattening of the glands, disruption
to the epithelial lining (dotted black arrows) and goblet cell loss were evident in sections from TNBS-administered guinea-pigs at 72 hours post
induction of colitis (b). H&E-stained sections from 1 × 105, 1 × 106 and 3 × 106 MSC-treated animals revealed accelerated repair and restoration of
the colonic architecture (c-e). Scale bars = 50 μm, n = 4/group/time point. MSCs mesenchymal stem cells, TNBS 2,4,6-trinitrobenzene sulfonic acid
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analyses of CD45+ leucocytes in colon cross sections
(Fig. 3). TNBS administration produced an increase in
leucocytes within the mucosa and muscular layers at
72 hours when compared to sections from sham-treated
guinea-pigs (mucosa: P < 0.001 and muscle: P < 0.001)
(Table 2, Fig. 3a-b, f-g). The TNBS-induced increase in
number of leucocytes in the mucosa and muscular layers
was reduced by all MSC treatments compared to the
TNBS-only group (P < 0.001 for all). However, leucocyte
numbers in both the mucosa and muscular layers of 1 ×
105 MSC-treated animals were higher compared to
sham-treated, 1 × 106 MSC-treated and 3 × 106 MSC-
treated guinea-pigs (P < 0.001 for all) (Table 2, Fig. 3a-g).

Dose-dependent effects of MSC treatment on nerve fibre
regrowth and enteric neuroprotection
Nerve fibres innervating smooth muscles and mucosa
were identified in cross sections of the guinea-pig distal
colon by labelling with an antibody specific to neuronal
microtubule protein β-tubulin (III) (Fig. 4). Regularly
distributed β-tubulin (III)-IR fibres were observed within
the mucosal gland cores, submucosal and muscular layers
of colon sections from sham-treated guinea-pigs (Fig. 4a).
Following TNBS administration, β-tubulin (III)-IR fibres
within the mucosa were disordered, patchy, and arranged
irregularly (Fig. 4b). Quantitative analysis confirmed a re-
duction in β-tubulin (III)-IR fibre density in both mucosa
(P < 0.001) and muscle (P < 0.001) layers of the colon
sections from TNBS-administered guinea-pigs when com-
pared to sections from sham-treated animals (Table 2,
Fig. 4f-g). Treatment with 1 × 105 MSCs improved the
nerve fibre density in the mucosa (P < 0.001) compared to
the TNBS-only administered group. However, the density
of fibres in both the mucosa and muscle was still lower
compared to the sham-treated group (P < 0.001 for both)
(Table 2, Fig. 4c, f–g). In contrary, the morphology of β-
tubulin (III)-IR fibres in mucosal and muscular layers of
colon sections from guinea-pigs treated with 1 × 106

and 3 × 106 MSCs were comparable to those in sec-
tions from sham-treated animals (Figs. 4d-e). When
quantified, β-tubulin (III)-IR fibre density in mucosa
and muscles in colon sections from 1 × 106 and 3 ×
106 MSC-treated guinea-pigs was higher compared to
both TNBS-only and 1 × 105 MSC-treated guinea-pigs
(P < 0.001 for all, Fig. 4f–g).
To investigate whether 1 × 105, 1 × 106 and 3 × 106

MSC treatments were effective in preventing loss of
myenteric neurons, neuronal cell bodies were labelled
with the pan-neuronal marker anti-Hu antibody in
whole-mount LMMP preparations of the distal colon



Fig. 3 Leucocyte infiltration in colon cross sections. Sections of the guinea-pig distal colon were labelled with pan-leucocyte marker anti-CD45 to
observe the effects of MSC treatments on leucocyte infiltration. CD45-IR leucocytes were visualized within the mucosa and muscular layers of
distal colon sections from guinea-pigs collected at 72 hours post induction of colitis (a-e). Scale bars = 100 μm. The total number of CD45-IR cells
per 1.5 mm2 area quantified in the mucosa (f) and muscular (g) layers of the colon cross sections. ###P < 0.001 when compared to sham-treated
guinea-pigs, ***P < 0.001 when compared to TNBS-only administered guinea-pigs, ^^^P < 0.001 when compared to 1 × 105 MSC-treated
guinea-pigs. n = 4/group/time point. IR immunoreactive, MSCs mesenchymal stem cells, TNBS 2,4,6-trinitrobenzene sulfonic acid
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(Fig. 5). The number of Hu-IR neurons was counted per
ganglion and per 2 mm2 area. The number of Hu-IR my-
enteric neurons was decreased in colon preparations from
TNBS-only guinea-pigs compared to sham-treated ani-
mals (ganglia: P < 0.05; area: P < 0.01) (Table 2, Fig. 5a-b,
f-g). Treatment with 1 × 105 MSCs did not prevent my-
enteric neuronal loss associated with colitis (Table 2,
Fig. 5c, f-g). However, treatments with 1 × 106 and 3 × 106

MSCs attenuated neuronal loss associated with TNBS-
induced inflammation (ganglia: P < 0.01 for both; area:



Table 2 Dose-dependent effects of MSC treatment on leucocyte infiltration, nerve fibre density and number of myenteric neurons
in the inflamed distal colon

Sham TNBS TNBS + 1 × 105 MSCs TNBS + 1 × 106 MSCs TNBS + 3 × 106 MSCs

Total no. CD45-IR cells

Mucosa 341 ± 34 927 ± 31### 686 ± 23***### 368 ± 27***^^^ 425 ± 25***^^^

Muscle 33 ± 4 131 ± 1### 83 ± 5***### 32 ± 6***^^^ 29 ± 6***^^^

β-tubulin (III)-IR fibre density

Mucosa 3.31 ± 0.09 1.68 ± 0.05### 2.54 ± 0.05***### 3.39 ± 0.08***^^^ 3.35 ± 0.04***^^^

Muscle 5.54 ± 0.17 4.03 ± 0.11### 3.93 ± 0.07### 5.67 ± 0.10***^^^ 5.50 ± 0.12***^^^

Total no. of Hu-IR myenteric neurons

Ganglia 124 ± 2 108 ± 5# 104 ± 2## 128 ± 3**^^ 127 ± 4**^^

Area 1498 ± 13 1330 ± 41## 1312 ± 20### 1510 ± 19***^^ 1513 ± 12***^^^

Total no. of nNOS-IR myenteric neurons

Ganglia 22 ± 1 27 ± 1## 27 ± 1### 20 ± 1***^^ 22 ± 1**^^^

Area 262 ± 12 318 ± 7### 317 ± 5### 277 ± 6**^^ 246 ± 3***^^^

Proportion of nNOS-IR myenteric neurons

Ganglia 17 ± 1 26 ± 2### 27 ± 1### 16 ± 1***^^^ 18 ± 1***^^^

Area 17 ± 1 24 ± 1### 24 ± 1### 18 ± 1***^^^ 16 ± 1***^^^

Total no. of ChAT-IR myenteric neurons

Ganglia 67 ± 1 52 ± 2## 57 ± 2## 64 ± 2**^ 65 ± 3**^

Area 749 ± 29 545 ± 24### 585 ± 23## 708 ± 29**^ 743 ± 14***^^

Proportion of ChAT-IR myenteric neurons

Ganglia 54 ± 1 49 ± 1 55 ± 1 50 ± 1 52 ± 4

Area 50 ± 2 41 ± 1## 45 ± 2 47 ± 2* 49 ± 1*

MSC mesenchymal stem cell, TNBS 2,4,6-trinitrobenzene sulfonic acid, IR immunoreactive, nNOS neuronal nitric oxide synthase, ChAT Choline acetyltransferase
#P < 0.05, ##P < 0.01, ###P < 0.001 when compared to sham-treated guinea-pigs
*P < 0.05, **P < 0.01, ***P < 0.001 when compared to TNBS-only administered guinea-pigs
^P < 0.05, ^^P < 0.01, ^^^P < 0.001 when compared to 1 × 105 MSC-treated guinea-pigs
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P < 0.001 for both) compared to the TNBS group
(Table 2, Fig. 5d-e, f-g).

Dose-dependent effects of MSC treatments on inhibitory
and excitatory myenteric neurons
Changes in inhibitory and excitatory myenteric muscle
motor and interneurons underlie inflammation-induced
colonic dysmotility, therefore we investigated the effects
of MSC-based therapies on these two major subpopula-
tions of neurons. Inhibitory neurons were labelled with
anti-nNOS antibody in whole-mount LMMP prepara-
tions of the distal colon (Fig. 6). The number of nNOS-
IR neurons per ganglion and per area was increased in
the myenteric plexus from the TNBS-only group com-
pared with sham-treated animals (ganglia: P < 0.01; area:
P < 0.001). The proportion of nNOS-IR neurons to the
total number of Hu-IR neurons was increased in TNBS-
only guinea-pigs compared with sham-treated (P < 0.001
for all) (Table 2, Fig. 6a-b, f-i). The number and propor-
tion of nNOS-IR neurons were comparable between
TNBS-only administered guinea-pigs and 1 × 105 MSC-
treated animals (Table 2, Fig. 6c). Thus, nNOS-IR
neurons were elevated in preparations from 1 × 105

MSC-treated animals compared to sham-treated (P <
0.001 for both ganglia and area), 1 × 106 MSC-treated
(P < 0.01 for both ganglia and area) and 3 × 106 MSC-
treated (P < 0.001 for both ganglia and area) guinea-pigs
(Table 2, Fig. 6f-i). Correspondingly, the proportion of
nNOS-IR neurons was also increased (P < 0.001 for all).
Both 1 × 106 and 3 × 106 MSC treatments prevented the
increase in the total number (1 × 106 - ganglia: P < 0.001;
area: P < 0.01; 3 × 106 - ganglia: P < 0.01; area: P < 0.001)
and proportion (P < 0.001 for all) of nNOS-IR neurons
compared to the TNBS-only group (Table 2, Fig. 6d-e, f-i).
Excitatory muscle motor and interneurons were identi-

fied using ChAT immunoreactivity in whole-mount
preparations of the distal colon (Fig. 7). Quantification
of ChAT-IR neurons revealed a decrease in the TNBS-
only group compared to sham-treated guinea-pigs (gan-
glia: P < 0.01; area: P < 0.001) (Table 2, Fig. 7a-b, f, h).
The number of ChAT-IR neurons in preparations from
1 × 105 MSC-treated guinea- pigs was comparable to the
TNBS-only group, indicating that this dose was not
effective in preventing the TNBS-induced decrease in



Fig. 4 Nerve fibres in cross sections of the distal colon. Distribution of fibres labelled by neuron-specific anti-β-tubulin (III) antibody in colon
sections from sham-treated, TNBS-only, 1 × 105 MSC-treated, 1 × 106 MSC-treated and 3 × 106 MSC-treated guinea-pigs at 72 hours post induction
of colitis (a-e). Scale bars = 100 μm. β-tubulin (III)-IR fibres were quantified in the mucosa (f) and muscular (g) layers of the colon. ###P < 0.001
when compared to sham-treated guinea-pigs, ***P < 0.001 when compared to TNBS-only administered guinea-pigs, ^^^P < 0.001 when compared to
1 × 105 MSC-treated guinea-pigs. n = 4/group/time point. IR immunoreactive, MSCs mesenchymal stem cells, TNBS 2,4,6-trinitrobenzene sulfonic acid
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ChAT-IR neurons (Table 2, Fig. 7c, f, h). ChAT-IR
neurons were reduced in 1 × 105 MSC-treated animals
compared to sham-treated (P < 0.01 for both ganglia
and area), 1 × 106 MSC-treated (P < 0.05 for both gan-
glia and area) and 3 × 106 MSC-treated (ganglia: P < 0.05;
area: P < 0.01) guinea-pigs. Treatment with 1 × 106 MSCs
(P < 0.01 for both ganglia and area) and 3 × 106 MSCs
(ganglia: P < 0.01; area: P < 0.001) prevented the TNBS-
induced loss of ChAT-IR neurons with numbers compar-
able to the sham-treated group (Table 2, Fig. 7d-e, f, h).
When quantified per ganglia, there were no differences be-
tween any groups in the proportion of ChAT-IR neurons
to total number of neurons (Fig. 7g). However, when quan-
tified per area (Fig. 7i), the proportion of ChAT-IR neurons



Fig. 5 Effects of MSC treatments on the total number of myenteric neurons. Myenteric neurons were identified by anti-Hu antibody in whole-mount
LMMP preparations of the distal colon from sham-treated, TNBS-only, 1 × 105 MSC-treated, 1 × 106 MSC-treated and 3 × 106 MSC-treated guinea-pigs
72 hours post induction of colitis (a-e). Scale bars = 100 μm. The total number of Hu-IR neurons were counted per ganglion (average of ten ganglia)
(f) and per 2 mm2 area (g) of the colon. #P < 0.05, ##P < 0.01, ###P < 0.001 when compared to sham-treated guinea-pigs, **P < 0.01, ***P < 0.001 when
compared to TNBS-only administered guinea-pigs, ^^P < 0.01, ^^^P < 0.001 when compared to 1 × 105 MSC-treated guinea-pigs. n = 4/group/time
point. IR immunoreactive, LMMP longitudinal muscle-myenteric plexus, MSCs mesenchymal stem cells, TNBS 2,4,6-trinitrobenzene sulfonic acid
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to Hu-IR neurons was reduced in TNBS-only administered
animals when compared to sham-treated (P < 0.01), 1 × 106

MSC-treated (P < 0.05) and 3 × 106 MSC-treated (P < 0.05)
guinea-pigs.
Discussion
In this study, we compared different doses of human
BM-MSCs for their neuroprotective efficacy in a guinea-
pig model of TNBS-induced colitis. Both 1 × 106 and



Fig. 6 Effects of MSC treatments on nNOS-IR myenteric neurons. Inhibitory myenteric neurons were identified by anti-nNOS antibody in whole-mount
LMMP preparations of the distal colon from sham-treated, TNBS-only, 1 × 105 MSC-treated, 1 × 106 MSC-treated and 3 × 106 MSC-treated guinea-pigs
at 72 hours post induction of colitis (a-e). Scale bars = 100 μm. The total number of nNOS-IR neurons was counted per ganglion (average of ten
ganglia) (f) and per 2 mm2 area (h) of the colon. The proportion of nNOS-IR neurons to Hu-IR neurons per ganglia (g) and per 2 mm2 area (i).
##P < 0.01, ###P < 0.001 when compared to sham-treated guinea-pigs, **P < 0.01, ***P < 0.001 when compared to TNBS-only administered guinea-pigs,
^^P < 0.01, ^^^P < 0.001 when compared to 1 × 105 MSC-treated guinea-pigs. n = 4/group/time point. LMMP longitudinal muscle-myenteric plexus,
nNOS neuronal nitric oxide synthase, IR immunoreactive, MSCs mesenchymal stem cells, TNBS 2,4,6-trinitrobenzene sulfonic acid
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3 × 106 MSC treatments demonstrated therapeutic
efficacy in the accelerated repair of colonic architecture,
reduced leucocyte infiltration transmurally through the
colon wall, regeneration of nerve fibres, and were equally
neuroprotective in the amelioration of myenteric neur-
onal loss and changes to the neurochemical coding of
their subpopulations. When administered at a dose of
1 × 105, BM-MSCs offered some therapeutic benefit in
healing of the colonic architecture, protection of nerve
fibres and the offset of CD45-IR cells in the mucosa, how-
ever, were less effective in the attenuation of neuropathy
at the level of the myenteric plexus. Thus, a dose of
1 × 106 MSCs is necessary to ameliorate the effects of
TNBS-induced inflammation at the level of the



Fig. 7 Effects of MSC treatments on ChAT-IR myenteric neurons. Excitatory myenteric neurons were identified by anti-ChAT antibody in whole-mount
preparations of the distal colon from sham-treated, TNBS-only, 1 × 105 MSC-treated, 1 × 106 MSC-treated and 3 × 106 MSC-treated guinea-pigs (a-e).
Scale bars = 100 μm. The total number of ChAT-IR neurons were counted per ganglion (average of ten ganglia) (f) and per 2 mm2 area (h) of the colon.
The proportion of ChAT-IR neurons to Hu-IR neurons per ganglia (g) and per area (i). ##P < 0.01, ###P < 0.001 when compared to sham-treated guinea-
pigs, **P < 0.01, ***P < 0.001 when compared to TNBS-only administered guinea-pigs, ^P < 0.05, ^^P < 0.01 when compared to 1 × 105 MSC-treated
guinea-pigs. n = 4/group/time point. ChAT choline acetyltransferase, IR immunoreactive, MSCs mesenchymal stem cells, TNBS 2,4,6-trinitrobenzene
sulfonic acid
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myenteric plexus; further increases in dose provide
consistent efficacy without promotion of benefit.
In IBD patients with fistulae and luminal inflammation

it has been demonstrated that therapy with both BM and
adipose MSCs is safe, feasible and efficacious [60–64].
However, there is inconsistency regarding the most effect-
ive dose; some studies report reduced disease activity and
fistula closure with doses ranging from 3 × 106–60 × 106

MSCs [60, 61, 65, 66]. Additionally, some studies
have reported positive outcomes with dose regimes
based relative to fistula size (dose range 1 × 106–4 ×
107 cells/cm length of fistula (average number of
injected cells: 20 × 106–15.8 × 107)) [63, 67, 68] or pa-
tient bodyweight (1 × 106–2.7 × 106 cells/kg) [62, 64].
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In experimental models of colitis, BM-MSCs derived
from rats [52–54, 69–71], mice [55, 72–74], guinea-
pigs [56] and humans [25, 35, 56, 57, 75, 76] have
been investigated for therapeutic efficacy. In addition,
some studies have assessed adipose MSCs derived
from these species [51, 56, 70, 77–80], as well as hu-
man umbilical cord, umbilical cord blood and gingiva
[75, 81–83]. Overall, intravenous, intraperitoneal and
local administration of MSCs from various sources and spe-
cies have been reported to ameliorate experimental colitis
however, similarly to clinical trials, there is no consistency
regarding the most efficacious dose. Studies report
therapeutic efficacy in ameliorating colitis following MSC
application with doses of 2 × 103 [69], 2 × 104 [54], 5 × 105

[71], 0.5 × 106 [76], 1 × 106 [25, 35, 51, 55–57, 72–74, 76,
78, 79, 81, 83], 2 × 106 [70, 75, 80, 82], 5 × 106 [51, 53],
1 × 107 [52, 77] MSCs.
In this study, we employed MSCs derived from human

BM. Human MSCs are the most characterized, clinically
applied as a potential regenerative cell therapy [84] and
defined based upon three minimal criteria (i) plastic ad-
herence, (ii) trilineage differentiation, (iii) surface expres-
sion of CD73, CD90, CD105 and absence of expression
of CD45, CD34, CD14 or CD11b, CD79α or CD19, and
human leucocyte antigen (HLA)-DR [58]. MSCs used in
this study were validated according to these guidelines
issued by the International Society for Cellular Therapy.
On the other hand, MSCs from animal origin have been
defined as cells that fulfil the first two criteria [45].
Comparison of animal and human-derived MSCs has
revealed a high degree of concordance [85–87]. How-
ever, differences have been reported in genomic stability
[88, 89], differentiation potential [90], surface antigen
expression and immunoregulatory capabilities [91] mak-
ing it difficult to directly extrapolate the results obtained
on animal MSCs to human MSCs. MSCs were originally
derived from the BM, are the most frequently investi-
gated cell type [92] and are often designated as the gold
standard in the treatment of various inflammatory con-
ditions [93–96]. Furthermore, human BM-MSCs are the
most therapeutic in the treatment of enteric neuropathy
and plexitis associated with TNBS-induced colitis [57].
Of particular relevance to the therapeutic application

of MSCs is their fate post-implantation. Ambiguity seen
in the efficacy of MSCs, in both animal studies and
clinical trials, with therapies being ineffective or only
temporarily effective could be due to suboptimal appli-
cation of MSCs. Previous studies have indicated MSC ef-
ficacy may be affected by the timing of delivery [28] and
administration during the earlier phases of inflammation
is favourable for therapeutic results [97–99]. Therefore,
in consistency with our previous studies, BM-MSCs
were administered 3 hours after TNBS; the time point
when substantial mucosal damage occurs [59].
The migratory and homing capacity of MSCs is facili-
tated by their expression of a wide array of chemokine
receptors and adhesion molecules that respond to
chemoattractant signals released from host cells at the
site of injury [97]. MHC class I molecules are expressed
on the surface of viable human MSCs promoting im-
mune rejection and assisting in engraftment into dam-
aged tissue via the absence of co-stimulatory ligands/
receptors and release of immunosuppressive factors [45,
100, 101]. MSC migration to the area of inflammation
and subsequent engraftment into the damaged tissue is
an inaugural part of the tissue repair/regeneration
process and indispensable for therapeutic efficacy. In this
study, we labelled sections of the guinea-pig colon with
anti-HLA-A,B,C antibody to evaluate the successful mi-
gration and engraftment of MSCs within the inflamed
intestinal wall. MSCs engrafted into the mucosa at the
initial site of TNBS-induced inflammation in all MSC-
treated groups. However, in sections from guinea-pigs
administered 1 × 106 or 3 × 106 MSCs, HLA-A,B,C-posi-
tive cells were observed at the level of the myenteric
plexus in addition to the mucosal layer. The successful
migration and engraftment of enema-applied MSCs into
the inflamed colonic wall observed in our study is con-
sistent with previous reports demonstrating implant-
ation of locally administered MSCs into target tissues,
especially in inflammatory conditions [52, 102]. Sub-
sequently, the outcomes of the treatment were more
pronounced in animals treated with 1 × 106 and 3 ×
106 MSCs compared to those treated with 1 × 105

MSCs.
Reduced disease activity, endoscopic and histopatho-

logic severity of colitis, and infiltration of neutrophils
into the colon are commonly evaluated to determine the
effectiveness of MSC treatments in both clinical trials
and experimental models of IBD. Within these parame-
ters examining the therapeutic efficacy of various MSC
doses at the level of the mucosa only, we could conclude
that BM-MSCs ameliorate experimental colitis at a dose
as low as 1 × 105 MSCs. However, previous studies have
reported marked structural and functional changes to
the ENS in IBD accompanied by infiltration of inflam-
matory cells to the submucosa and myenteric plexus
[103–105]. Alterations to the ENS persist long after
resolution of acute intestinal inflammation reflected
through changes in gut function, colonic dysmotility,
hypersensitivity and dysfunction [104, 106], and my-
enteric plexitis has been shown to be predictive of IBD
recurrence [103, 105]. Therefore, we further investigated
the therapeutic efficacy of varying doses of BM-MSCs at
the level of the myenteric plexus.
In this study, MSCs were effective in reducing leuco-

cyte infiltration to the myenteric plexus when adminis-
tered at doses of 1 × 106 and 3 × 106, but not at a dose of
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1 × 105. It may be proposed that while some immuno-
modulatory effect is occurring following application of
1 × 105 MSCs, it is not strong enough to combat all in-
flammation since leucocyte numbers were reduced at
the mucosal level in this group, but not at the myenteric
level. While the immunomodulatory mechanisms of
MSCs have not been completely elaborated, it is known
that in order for MSCs to wield their immunosuppres-
sive capacities, they must be induced by inflammatory
cytokines within a pro-inflammatory microenvironment
[107]. The increased numbers of leucocytes in the co-
lonic wall following induction of TNBS colitis provided
sufficient pro-inflammatory stimuli for activation of
MSCs. Hence, the weaker influence demonstrated by the
lower dose of MSCs suggests that the anti-inflammatory
effect was hindered by a smaller quantity of MSCs rather
than their immunomodulatory capacity. This is reflected
by localization of MSCs within the inflamed colon where
HLA-A,B,C-positive cells were evident in the mucosa
only in sections from 1 × 105 MSC-treated animals.
It is generally considered that the anti-inflammatory

properties of MSCs function via direct interaction with
target cells and/or production of diverse soluble factors
[34, 108]. Many of the MSC-associated biological effects
are mediated by paracrine mechanisms engaging the re-
lease of cytokines, chemokines and growth factors [34,
109, 110] and may be exerted by the induction and
stimulation of endogenous host progenitor cells to im-
prove the regenerative process [72, 111]. In animal
models of colitis, MSC application efficiently reduces T
helper 1 and T helper 17 responses and downregulates
pro-inflammatory cytokines (such as tumour necrosis
factor alpha (TNF-α), interleukin (IL)-1β, IL-6, IL-17, in-
ducible nitric oxide synthase (iNOS), cyclooxygenase-2
(COX-2) and interferon gamma (IFN-γ) while enhancing
the numbers of regulatory T cells and upregulating anti-
inflammatory cytokines (such as IL-10) [112–115]. The
proportion of mucosal and peripheral regulatory T cells
was also increased after MSC treatment of CD fistulae
[63]. These findings suggest that the paracrine actions of
MSCs have an anti-inflammatory affect in IBD associ-
ated with inhibition of nuclear factor kappa B (NF-κB)
signalling pathways. Furthermore, paracrine actions of
MSCs have be shown to diminish free radicals and im-
pede oxidative stress, prevent apoptosis via the extrinsic
death receptor signal pathway and the intrinsic mito-
chondrial signal pathway and stimulate endogenous
mechanisms of intestinal epithelial repair [111, 112].
It remains unclear whether changes to the ENS are the

cause or the consequence of inflammation; however, in
this study TNBS-induced plexitis was associated with
damage to nerve fibres and loss of myenteric neurons, as
well as changes in their subpopulations. Similar to the lim-
ited anti-inflammatory effect discussed above, sections
from animals treated with 1 × 105 MSCs revealed some
nerve fibre regrowth, but not to the level of sham-treated
animals. In contrast, significant regeneration and regrowth
of nerve fibres in the colon were associated with 1 × 106

and 3 × 106 MSC treatments in this study. MSCs improve
axonal and nerve regeneration through the production of
local neurotrophic factors for induction of axonal growth,
including brain-derived neurotrophic factor, nerve growth
factor and insulin-like growth factor-1 [116, 117]. Hence,
differences in the level and areas of MSC engraftment
demonstrated in sections from 1 × 105 MSC-treated
animals compared to 1 × 106 and 3 × 106 MSC-treated
guinea-pigs maybe associated with a reduction in the
expression of neurotrophic factors. However, this needs to
be further investigated.
Our study demonstrated a persistent loss of myenteric

neurons to be associated with TNBS-induced inflamma-
tion in the distal colon of guinea-pigs 72 hours after
induction of colitis. Consistent with our findings, the
quantity of myenteric neurons was found to be reduced
in the guinea-pig intestine subsequent to intra-rectal ad-
ministration of TNBS in previous studies [16, 21, 25, 35,
56, 57]. In this study, neuronal loss was not prevented
following treatment with 1 × 105 MSCs and the number
of myenteric neurons was comparable to the TNBS-only
administered group. On the other hand, doses of 1 × 106

and 3 × 106 MSCs prevented the neuronal loss associated
with TNBS-induced inflammation. Similarly, MSCs have
been shown to prevent neuronal apoptosis [118], in-
crease the survival of motor neurons in amyotrophic lat-
eral sclerosis (ALS) [119, 120] and reduce the loss of
dopaminergic neurons in Parkinson’s disease [121]. Fur-
thermore, in a dose-dependent study, 1 × 106 BM-MSCs
was optimal to reduce the extent of neural loss in mice
with ALS [50].
Enteric neuropathy in intestinal inflammation may be

influenced by excessive nitric oxide [122], while
inflammation-associated loss of ChAT-IR neurons has
been associated with decreases in the number of my-
enteric neurons [15, 19, 123, 124]. An increase in the
total number of nNOS neurons, as well as a decrease in
the number of ChAT neurons was revealed 72 hours
after the induction of colitis. These results are consistent
with previous studies using tissues from IBD patients
and experimental animals describing alterations in the
neurochemical coding of enteric neurons [16, 23, 24,
125, 126]. In this study, treatment with 1 × 105 MSCs
was not effective in attenuating changes in the neuro-
chemical coding of excitatory and inhibitory myenteric
neurons. However, the increase in nNOS-IR neurons, as
well as the loss of ChAT-IR neurons was attenuated by
1 × 106 and 3 × 106 MSCs. The neurons of the myenteric
plexus are primarily responsible for coordinating muscu-
lar contraction [14] and prevention of changes to
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neurochemical coding by MSC treatments has been
associated with alleviating TNBS-induced changes to
colonic motility [25]. Thus, attenuating changes in the
subpopulations of myenteric neurons may alleviate
dysmotility associated with intestinal inflammation.
In consistency with our findings, MSCs have been

reported to reduce neurological defects and promote
functional recovery in experimental models of neurode-
generative diseases [127–131]. While the exact mecha-
nisms of MSC neuroprotection remain unknown, MSCs
can act via paracrine mechanisms secreting neuro-
regulatory molecules, cytokines, growth factors and che-
mokines, which provide neuroprotective and neurores-
torative effects [132]. These effects include enhancing
neuronal viability, promoting regeneration of nerve fi-
bres and inducing the proliferation and differentiation of
endogenous neural progenitor cells [133–135]. Further-
more, studies investigating the MSC secretome suggest
that numerous bioactive factors secreted by MSCs mediate
neuroprotection via tropic support, immunomodulation
and anti-apoptosis [134, 135]. The exact MSC-mediated
signalling network responsible for neuroprotection of
enteric neurons requires further investigation.
In this study, we have observed distinct differences

between MSC doses in preventing enteric neuropathy
associated with intestinal inflammation. From these re-
sults, we can determine that a 1 × 105 dose of BM-MSCs
is not adequate, whereas doses of 1 × 106 and 3 × 106

demonstrate anti-inflammatory and neuroprotective
qualities in TNBS-induced colitis. Although the 3 × 106

dose MSCs contained triple the quantity of cells than
the 1 × 106 dose, no differences were evident between
the magnitude of cells homing to and engrafting at the
site of tissue injury. This suggests a dose saturation
indicating that although there is a greater number of
cells being transplanted in vivo, only the required
number migrates and engrafts into the inflamed areas of
TNBS-induced colitis. This is consistent with a previous
MSC study which revealed the engraftment of osteopro-
genitor cells to be saturated and concluded that higher
doses of cells would be an ineffective strategy to improve
engraftment [136]. Furthermore, high-dose inhibition of
cytokines has also been observed with high concentra-
tions of MSCs [137–139].

Conclusions
In this study we have essentially determined an optimal
dose of MSCs for enteric neuroprotection in TNBS-
induced colitis. We have demonstrated that the neuro-
protective and anti-inflammatory effect of BM-MSCs is
dose-dependent in TNBS-induced colitis; BM-MSCs
have the ability to prevent inflammatory insults to the
ENS when administered at a dose of 1 × 106 cells 3 hours
after induction of colitis, with no further benefit gained
from a higher dose. The findings of this study are im-
portant for further investigations into the mechanisms
of MSC-based enteric neuroprotection, as well as immu-
nomodulation within the inflamed colon, further enab-
ling MSC therapy to continue to advance forward in
future studies.
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