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Mass-spectrometry-based proteomics presents some unique challenges for batch effect correction. Batch
effects are technical sources of variation, can confound analysis and usually non-biological in nature. As
proteomic analysis involves several stages of data transformation from spectra to protein, the decision on
when and what to apply batch correction on is often unclear. Here, we explore several relevant issues
pertinent to batch effect correct considerations. The first involves applications of batch effect correction
requiring prior knowledge on batch factors and exploring data to uncover new/unknown batch factors.
The second considers recent literature that suggests there is no single best batch effect correction
algorithm---i.e., instead of a best approach, one may instead ask, what is a suitable approach. The third
section considers issues of batch effect detection. And finally, we look at potential developments for
proteomic-specific batch effect correction methods and how to do better functional evaluations on batch
corrected data.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Batch effects (BEs) are unwanted variation in data produced
from technical sources such as the machine type and/or experi-
menter. BEs are sometimes referred to as technical bias. If undealt
with or mishandled (using inappropriate correction methods), BEs
may confound analysis, and lead towards mis-estimation of effect
sizes (e.g., the magnitude of difference of protein expression level
between different phenotypes). In more severe cases, it can lead
towards false positives (proteins that are not differential are
selected) and false negatives (proteins that are differential are
not selected) [1]. In general, BEs are complex, and effective mitiga-
tion is highly context dependent [2,3]. It is also surprising that
even as technologies and analytical methods advance, BEs seem
to become more pertinent and relevant [4].

Advancement of biomedical science is dependent on high
throughput profiling of biological states. Being able to characterize
the unique complement of genes, proteins and metabolites being
expressed in samples of interest may allow us to understand the
causal factors and functional characteristics underpinning a dis-
ease or phenotype. Since proteins are the functional units of cells,
being able to assay the protein complement is especially critical.
But unlike gene expression profiling (which is matured), proteome
profiling (i.e., the complete set of proteins relevant to a phenotype)
is ostensibly more challenging.

The current prevailing technology for proteome profiling is
mass-spectrometry (MS)-based proteomics [5]. This is a powerful
technology that involves a series of complex sample processing,
data acquisition, and data analysis steps: Proteins are first
extracted from samples and digested into smaller manageable
fragments known as peptides. These peptides are then labelled
and/or ionized (depending on the proteomic setup) and detected
in the first MS dimension. This is known as MS1. Selected (or all
isolatable) peptides are then fragmented into even smaller frag-
ments, before being captured in a second MS dimension. This is
known as MS2. Both MS1 and MS2 data are then combined and
integrated to identify the peptides in a process known as
peptide-spectrum matching. The identified peptides are then
reassembled using protein assembly algorithms to produce pro-
teins [6]. The afore-described procedures are typically known as
tandem-MS, or MS/MS. Many other variations of this setup exist
but in general, are no less complex nor involve fewer steps.

Mass-spectrometry-based proteomics presents some unique
challenges for BE correction. The complexity of steps and processes
in MS-based proteomics can introduce various levels and intermin-
gling of technical biases and errors, therefore making effective BE
correction difficult. For example, if peptides from different samples
are analyzed on different MS machines, or if the digestion proce-
dure involves different reagent lots [7], different levels of BEs are
introduced into the data. Since each step may introduce different
BEs, this means it is important to collect as much meta-
information as possible. Information such as who handled which
samples, and which machines were used to acquire spectra, are
important, as such information are essentially batch factors that
could be evaluated for non-negligible BEs. Conversely, such
multi-tiered issues pertaining to BEs also means that there remains
ample opportunity for creative and interesting BE correction
strategies in proteomics. We discuss some interesting issues and
potential solutions.
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2. Do (Should) I know everything about my batch effect?

Many popular batch-effect correction algorithms (BECAs) e.g.,
ComBat [8] and Harman [9] require explicit input of batch factors
i.e., how the data is divisible by batch. If prior knowledge on batch
factors is not available, an alternative is to use Surrogate Variable
Analysis (SVA) [10,11]. SVA estimate information correlated with
class information (i.e., the biological information we want to
retain), treats all non-correlated sources of variation as batch, and
removes them accordingly. One may imagine such an approach
while powerful, is not very satisfying. Suppose if class information
is modulated and/or correlated with other sources of variation, SVA
may overcorrect. Jaffe et al. reported that by defining the biological
effect of interest to be the average change in expression with treat-
ment, SVA removes many individual sample-specific expression
traits and even secondary effects of interest [12].

Hence, to use SVA well, one needs to know how to precisely
define and carefully specify biological effects of interest. If we are
interested in exploring the impact of additional factors on the out-
come of interest, then these additional factors would also have to
be specified in the SVA model [12]. Unfortunately, this is not a
straightforward process. Also, to explore these additional factors,
prior knowledge on the structure of these additional factors is
required. If these additional factors are not specified (or known),
then they must be inferred.

And what can be done if batch effects are suspected but not
known? The BatchI approach offers an interesting possibility
[13]. BatchI attempts to dynamically discover batch structures or
batch factors by partitioning a series of data (e.g., proteomics
expression matrices) into sub-series corresponding to estimated
batches. Estimated batches in turn, are based on attempts to split
data with maximal dispersion between batches within maintaining
minimal within batch dispersion. This approach allows us to
explore and understand our data better by discovering unknown/
unreported BEs. This information is very helpful as it may pin-
point potential flaws in our experimental processes. Whilst BEs
should be removed eventually to help us advance our understand-
ing of biology, understanding the sources and structure of BEs are
also very important. BatchI is available online as an R package at
https://kiiaed.aei.polsl.pl/index.php/pl/oprogramowanie-zaed.
3. Is there a best batch effect correction algorithm for
proteomics data?

To date, many benchmark studies have been performed on
high-throughput datasets across a variety of BECAs. These are
mostly limited to bulk sequencing [14] and single-cell sequencing
data [15] but some work has also been performed on proteomics
datasets [3].

The results are varied: For example, Luo et al’s study on
microarray gene expression data suggests that ratio-based are
superior especially on imbalanced data [14]. We conducted a sim-
ilar battery of BECAs evaluated on proteomics data but found
otherwise [3]. In our evaluation, only ComBat was able to perform
adequately well for imbalanced data, while SVA and Harman suf-
fered heavily. However, we also note the performance of BECAs
are dependent on data innate characteristics, but also compatibil-
ities with normalization and data transformation approaches [3].

https://kiiaed.aei.polsl.pl/index.php/pl/oprogramowanie-zaed
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There may not be a universal best batch correction approach.
Instead, we advocate it is first important to study and explore
the data itself first. This can be done via simple exploratory
approaches such as the side-by-side boxplots for visualizing corre-
lations of batch effects with principal components on data [16],
and also the side-by-side barcharts for investigating gene-gene
correlations [7]. After which, we may then propose the most
appropriate BECA for the data. To achieve this, it is important to
understand the assumptions made by the BECA (e.g., does it treat
BEs as constant or noisy? Additive, multiplicative or mixed?),
and whether any prior data processing or normalization approach
is compatible with these assumptions.

In proteomics data, there is an added consideration known as
drift effects, which are particular to the nature of MS instrumenta-
tion. This is critical when dealing with experiments involving large
sample sizes, typically in the order of hundreds [17]. Unlike tradi-
tional BEs which are dependent on specific (discrete) machines,
reagent lots or experimenters, drift effects manifest as ‘‘continuous
effects” over time (one way to imagine this is that time is a factor
with many levels). When visible across hundreds of samples
ordered by running sequence, drift effects can be adjusted by base-
line correction or regression methods. One needs to be careful
when performing this form of correction should there be multiple
classes in data, especially if the data comes with very strong class
effects. In such cases, it may be worthwhile distributing different
class samples evenly across the running sequence to avoid biasing
the correction.

If there is no perfect BECA and we know BECAs are also affected
by other processing steps, then are there acceptable procedures or
protocols for general use?

If there is no perfect BECA and we know BECAs are also affected
by other processing steps, then are there acceptable procedures or
protocols for general use? Interestingly in proteomics, we are only
aware of one recently published set of principles or best practices
by Cuklina et al [17] which integrated perspectives and insights
from several other published works. Batch correction is ultimately
not a straightforward procedure and should never be seen as such.
Earlier, we stated that we should identify a BECA suitable for the
data. That is one aspect, but another important point is to also align
the batch correction process with the larger research goal. For
example, if the goal is to correct data for subsequent use in a
machine learning task, it would make sense to preserve much
of the original data scale and data integrity (you would not want
to change it greatly using methods such as SVA). It would also
make sense not to use ratio-based batch correction methods as
these would effectively merge information across classes, which
makes classification tasks such as class prediction impossible.

If functional analysis is the goal, such that we are primarily
concerned with advancing our knowledge of the underlying biol-
ogy (following comparative analyses between samples of different
classes (e.g., cancer versus normal)), then some useful approaches
do exist, which do not necessary require batch correction. One
approach is to use strong discretization normalization
approaches---one example, the gene fuzzy scoring (GFS) method
reduces each sample such that only proteins ranked in the top
10 % (based on abundance) are given a value of 1, those between
10 and 15 % are interpolated between 0 and 1, and those falling
over 15 % are assigned a value of 0, and thus ignored [18]. The idea
is that each sample can be uniquely represented by its top proteins,
and that these top proteins should be fairly conserved amongst
samples within the same class, but not in the opposing class. Since
values are set between 0 and 1, BEs which alters expression counts
will have lessened effects. We can extend the idea by representing
each sample in terms of those networks and systems enriched for
those top proteins with non-zero values [16]. Indeed, we found
that network-based approaches may have some resistance against
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BEs. However, methods like GFS or networks are not panaceas and
do come with cost. GFS is a brutal procedure resulting in massive
loss of information: absolute expression information is converted
into binaries, 80–85 % of proteins are converted to 0s if they are
not top ranked in the tissue. But GFS is very stable and can produce
similar results on feature selection even if we relax its cutoff
parameters [19]. It is suitable for noisy or challenging data.
Network-based approaches can further improve the reproducibil-
ity of methods such as GFS [16], but are constrained by the avail-
ability of high-quality network information.

In practice, many uses principal components analysis (PCA)
scatterplots to visually inspect for the presence of BEs but go no
further than that. This method can be extended systematically
for the calculation of correlations between principal components
(PCs) and BEs [19–20]. PCs are projections of high-dimensional
data that are orthogonal and thus, independent of each other. It
serves as a very powerful dimensionality reduction method. But
also can be used for dealing with BEs in a very simple and intuitive
way: Suppose if the first PC (PC1) is the batch-correlated PC, we
can simply drop it from analysis, and use the remaining PCs for
functional and clustering analyses [18–22] (i.e., we treat the PCs
like independent features directly).
4. When is the best time to remove my batch effects?

In Cuklina et al’s paper, there was considerable discussion on
when is the best time to tackle BEs [17]. Proteomics comprises sev-
eral steps, from spectra acquisition to peptide-spectra matching
and finally protein assembly and quantitation. One can decide
the most appropriate or strategic window to perform BE
correction.

Unfortunately, there is little in current literature on optimal
correction window for proteomics. But there are some interesting
observations. Graw et al reported that in their studies, BE is more
prevalent in the raw peptide data than in the filtered protein data
[23]. This seems to suggest in part, some important batch informa-
tion is lost during the transition from spectra to protein. Another
related observation comes from Brenes et al, where they reported
missing value inflation when attempting to integrate data from
multiple batches [24]. They highlighted the issue is aggravated at
the peptide level, which comes as no surprise. However, this may
mean that seemingly lower missingness at the protein level is
probably due to different peptides mappable to the same protein,
found across different samples. If BE information is not consis-
tently distributed across peptides for each protein, then this may
lead also to subsequent errors in estimation and correction.

These observations do not guarantee early batch correction
(e.g., at spectra or peptide level) brings better outcomes. Dealing
with raw data also presents challenges: E.g., if we are dealing
directly with spectra or peptides, we will also be dealing with
higher dimensionality, noise and missingness issues as well.

So, do we need early correction? For most intents and purposes,
late BE correction (at protein level appears) works reasonably well
and is commonly practiced anyway. Does this therefore mean that
we can safely do away with early BE correction?

We do not think so. Recently, we demonstrated that by deliber-
ately mis-imputing missing data by borrowing information from
other batches, we effectively convert structured batch variation
into noise, increasingly the overall variability at the sample level,
and increasing the chance of incurring false positives/negatives
during functional analysis [25]. Although we did not perform these
simulations at the peptide level, it is not unfathomable to think
that mistakes incurred due to MVI at peptide level, would also have
similar effects. Thus, we believe there is benefit in developing
approaches that can help enhance peptide level imputation and
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support early BE correction. However, more development is
needed.
5. Is there a reliable measure for batch effect besides looking at
scatterplots?

PCA coupled with two or three-dimensional scatterplots are a
common visual for BE detection. But this approach only works if
variance correlated with BEs are accounted by the top 2–3 PCs. If
BEs are subtle and not correlated with the top 2–3 PCs, then the
scatterplots will not work well. Moreover, it is important to note
that interpretation of PCA scatterplots does take some skill. Since
PCA projects data into orthogonal PCs, the PCs are by construction,
independent. This also implies that when constructing scatterplots
based on different PCs, sample distributions can appear very differ-
ent. Moreover, if BEs are correlated with multiple lower PCs, then it
is inefficient to plot all PCs to discover batch-correlated variance
visually.

The limitations of PCA scatterplots above have spurred search
for more convenient and readily interpretable visual aids. Methods
like t-Distributed Stochastic Neighbor Embedding (t-SNE) [26] and
Uniform Manifold Approximation and Projection (UMAP) [27]
embed high-dimensional data into low-dimensional non-linear
manifolds, are becoming increasingly popular, especially in the sin-
gle cell-omics arena. UMAP and t-SNE preserve local structures in
data even when converting from high-dimension to low-
dimension space. This preservation of local information allows an
intuitive visual scan for any BEs in data, absolving the need to scan
for the correction BE correlated dimensions. But this does not mean
UMAP and t-SNE are perfect. These methods do not preserve global
structures well. And so, distances and positions between t-SNE or
UMAP clusters are effectively meaningless and not interpretable.

Thus, we feel there is no perfect visualization method, and so,
we strongly encourage careful exploration and not to simply rely
only on the top 2-3PCs if PCA is used. Or to place undue faith
and confidence in UMAP or t-SNE clusters. To further explore data
visually for BEs at various levels of granularity, we also recommend
use of side-by-side boxplots for visualizing correlations of batch
effects with principal components on data [16], and the side-by-
side barcharts for investigating gene-gene correlations [7].

Finally, beyond visualizations, statistical methods are useful.
For example, we may devise a systematic test for PCs correlated
with BEs so that we can identify which orthogonal factors are batch
correlated or confounded with class information. This would give
us a much better understanding of our data, and also provide us
with some targeted mitigation approaches for batch correction
[28]. Information across PCs can also be summarized using meth-
ods like Principal Variance Component Analysis (PVCA) [29] or
guided PCA (gPCA) [30]. Such approaches are complementary with
visualizations based on PCA scatterplots, t-SNE and UMAP.
6. Many batch effect correction algorithms use specialized
distributions. What about for proteomics?

Recently, we see the rise of dedicated BECAs catered for RNA-
seq data (and also, single cell -omics). ComBat-seq is an update
of the highly popular ComBat algorithm [31]. ComBat-seq uses a
negative binomial regression model that retains the integer nature
of count data in RNA-seq, making the batch corrected data compat-
ible with typical RNA-seq differential expression methods that
requires integer counts [31]. Changing the background statistical
model is highly beneficial --- ComBat-seq corrected data produces
improves statistical power while also allowing better control of
false positives. And is also very useful in other practical applica-
tions such as machine learning data optimization [32]. Like
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ComBat-seq, svaseq is an update of the popular sva method cater-
ing for count data from RNA-seq experiments [11]. Proteomics
data, like RNA-seq data, may not follow well theoretical distribu-
tions either. We believe BE correction in proteomics would greatly
benefit too if proteomic-specific versions of ComBat or SVA were
developed, perhaps soon.

Of late, there also seems to be increased interest in one-step BE
correction methods (which is prevalent in the single-cell -omics
domain [4,15]). In one-step approaches, batch information is
directly accommodated into the analysis. This is in contrast to tra-
ditional two-step approaches where data is processed or batch cor-
rected prior to the formal or final analysis (two-step correction)
[4]. In gene expression analysis, traditional two-step approaches
while more interpretable and can lead towards richer representa-
tions of batch information, also induces correlation structures in
the BE corrected data, which, if ignored, can produce false posi-
tives/negatives during functional analysis [33]. Although one-step
approaches seem to be up-and-coming in bulk and single cell
RNA-seq, it appears that such integrative one-step approaches
are lacking in proteomics. Therefore, we think this is also an inter-
esting development for the future.
7. Post-evaluative: How do I know my batch effect correction
was successful?

BE correction while important, is only part of a much larger ana-
lytical pipeline. When analyzing high-throughput proteomics data,
we are often more interested in the end point, which is to identify
interesting proteins that may be causal or important for a particu-
lar disease. Therefore, a successful outcome is to retain class infor-
mation, while minimizing BE confounding.

BE correction is usually deemed successful if batch separation is
not observable visually or detectable by PCAmethods such as PVCA
[29] or gPCA [30]. It is also important to check for retention of class
information and how different are the outputs from the BE cor-
rected data against the original. Besides showing batch correla-
tions, gPCA and PVCA can also be tweaked to reveal class
information (This is achievable by simply substituting the batch
factor with class factor instead). We can also use methods such
as root-mean-square deviation (RMSD) or normalized root-mean-
square deviation (nRMSD) to evaluate change---this is useful for
checking if the data has changed so dramatically post batch pro-
cessing that we may suspect possible over-correction (or mis-
correction).

There is also value in checking how differential proteins chan-
ged before and after BE correction. Normally, BE correction will
result in both changes in the differential protein list, and their cor-
responding effect sizes. For differential proteins found in both pre
and post batch corrected data (shared), it is useful to note if there is
an increment in the effect size, making these proteins more readily
detectable (and possibly useful as biomarkers). It is also useful to
perform functional analysis based on gene ontology [34], gene sets
[35] or biological pathways [36,37] on the shared proteins, and
those which are found only in the pre-batch and post-BE correction
complements. If the batch correction is meaningful, we would
expect the post-BE complement to have more in common with
shared protein functionalities, than with the pre-batch comple-
ment. While such analysis are not quantitatively tractable, it does
serves as a sanity check.
8. Case study of (early) peptide batch correction

To explore the benefits of early batch correction (albeit in a
rather raw manner), we benchmark several pipelines on the BXD
Mouse Liver Aging dataset developed by Williams et al. [38]



Fig. 1. Summary of all workflows used in this study (A) Protein-level BE correction. (B). (A) Peptide-level BE correction prior to protein assembly. (C) Peptide-level BE
correction where ambiguous peptides are first retained for batch estimation, and then discarded before protein assembly.
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(PXD009160; accessed on November 2021) which was also fea-
tureed in Cuklina et als’ proBatch paper [17].

8.1. Dataset

The BXD Mouse Liver Aging Dataset describes a low hetero-
geneity DIA-SWATH dataset with 2 biological classes (high-fat diet
and chow diet) and seven distinct but balanced batches through
non-sequential runs. There is also signal drift attributed to a long
series of runs. We downloaded the processed peptide matrix
(‘‘E1801171630_matrix.xlsx”), which contained minimal missing
values at the peptide-level. Drift was corrected by fitting and cor-
recting from a LOESS curve for each batch.
Fig. 2. Evaluating BE correction across two methods. (A) A line plot showing the relations
bottom panels shows associations with batch effects and class effects respectively. (B) Ba
For both (A) and (B), an ideal method is one that promotes class effects while demoting

4373
8.2. Batch correction using ComBat

To correct for BEs, we used the Python implementation of Com-
Bat [8], pyCombat [39], available at https://epigenelabs.github.io/
pyComBat/. The ComBat algorithm is a location-scale method that
assume a Gaussian-like distribution and uses an empirical Bayes
method to estimate and correct for additive and multiplicative BEs.

8.3. Analysis pipelines

The overall methodology is shown in Fig. 1.We evaluate three
scenarios: The first reviews direct BE correction on peptide prior
to protein assembly (Fig. 1A). The second is the typical Protein-
hip between PCs and associative p-values based on Kruskal-Wallis test. The top and
rcharts of guided PCA (gPCA) delta values for batch (top) and class (bottom) effects.
batch effects.

https://epigenelabs.github.io/pyComBat/
https://epigenelabs.github.io/pyComBat/
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level BE correction (Fig. 1B). The third scenario depicted in Fig. 1C
explores the value of ambiguous peptides in batch correction
where we perform peptide-level BE correction where ambiguous
peptides are first retained for batch estimation, and then discarded
before protein assembly.

8.4. Evaluating batch effect correction

For quantifying BEs, we used guided PCA (gPCA) by Reese et al.
[30]. Guided PCA uses singular value decomposition to estimate
discrete factor associated variance, such as batch or biological
class. The method guides the dimension reduction process towards
the highest representation of batch variance. Batch associated vari-
ance is then derived by comparing guided PCA variance (batch
variance, PC1) to unguided PCA variance (total variance, PC1), to
derive the delta metric [30].

Our second approach is to perform univariate statistical testing
on each principal component (PC). For example, we may run the
Kruskal-Wallis (KW) H-test across PC 1 to n for a given data [28],
to test correlations with batches and class covariates. This
approach allows us to identify which PC was correlated with BEs
before and after correction---an effective BE correction approach
should demote the PC. Conversely, an effective BE correction
should also promote the PC correlation with class effects.

8.5. The impact of early correction is not immediately appreciable

At least on this data, the Kruskal Wallis H-test suggests that
protein-level correction and peptide-level correction are highly
correlated with each other for both between-classes test and
between-batches test (Fig. 2). All scenarios improve class differen-
tiation while demoting batch effects when evaluated against
uncorrected data. None of the seemingly sensible strategies e.g.,
retaining ambiguous peptides for batch estimation or early correc-
tion on methods demonstrate clear superiority.

8.6. Case study verdict

In this case study, despite the attractiveness and apparent logic
of alternative batch correction scenarios, we do not see any advan-
tage. This is not to say these other scenarios do not work univer-
sally. Perhaps, there are specific use cases and scenarios where
some scenarios could manifest superiority to others. However, this
warrants deeper investigation, and development of gold-standard
scenarios so that we may better interpret the results. This is also
valuable, as it will help the community determine the best course
of BE correction given their data.

9. Conclusion

BE correction is a highly complex data processing step, impor-
tant for proteomic analysis. Despite the advent of better data
acquisition technologies, BE correction problems persist. There is
no single best way for performing BE correction---it is therefore
important to understand the nature of the dataset, while also keep-
ing in mind how different normalization methods and BE correc-
tion methods affect each other. Finally, while ideas such as early
batch correction seems attractive and sensible, it did not work well
in our case study and may not apply to every dataset.
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