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Summary

Susceptibility to obesity is linked to genes regulating neurotransmission, pancreatic β-cell 

function, and energy homeostasis. Genome-wide association studies identified an association 

between body mass index and two loci near Cell Adhesion Molecule1 (CADM1) and Cell 
Adhesion Molecule2 (CADM2), genes encoding membrane proteins mediating synaptic assembly. 

We show these respective risk variants associate with increased CADM1 and CADM2 expression 

in the hypothalamus of human subjects. Expression of both genes is elevated in obese mice and 

induction of Cadm1 in excitatory neurons facilitated weight gain while exacerbating energy 

expenditure. Loss of Cadm1 protected mice from obesity and tract-tracing analysis revealed 

Cadm1-positive innervation of POMC neurons via afferent projections originating from beyond 

the arcuate nucleus. Reducing Cadm1 expression in the hypothalamus and hippocampus promoted 

a negative energy balance and weight loss. These data identify roles for Cadm1-mediated neuronal 

input in weight regulation and provide insight into the central pathways contributing to human 

obesity.

Obesity is one of the leading global health threats with a projected burden on public health 

that appears interminable1. Numerous reports support a crucial role for genetic susceptibility 

to the risk for obesity and related metabolic disorders including type 2 diabetes2,3,4. Recent 

studies have now identified ~100 susceptibility loci, which associate with body mass index 

and map near genes known to function in the central nervous system5,6,7. Among the genes 

identified in these studies are CADM1 and CADM2 (also known as SynCAM1 and 

SynCAM2, respectively)7, which encode two immunoglobulin domain-containing, adhesion 

proteins that mediate synaptic assembly in the central nervous system8,9,10. In this study, 

we illustrate how increased expression of both Cadm1 and Cadm2 in regions of the brain 

facilitates weight gain and how targeting their expression can provide new insight into the 

mechanisms leading to human obesity.

SNPs associate with increased CADM genes

Recent genome-wide association studies (GWAS) identified two single nucleotide 

polymorphisms (SNPs) (rs12286929) and (rs13078807) in proximity to CADM1 and 

CADM2, respectively, which associate with increased body mass index (BMI) in human 

subjects6,7. The SNP rs12286929 is located in an intergenic region 17 kb downstream of the 

3’ end of CADM1 and the SNP rs13078807 is located in the second intron of CADM2. We 

analyzed expression quantitative trait locus (eQTL) data from 10 distinct regions of the brain 

available from the GTEx consortium and observed that both risk alleles (the alleles 

associated with increased BMI) are associated with increased mRNA expression of their 

proximal genes in the hypothalamus and cerebellum of human subjects: CADM1 
(hypothalamus (Allelic effect: 10% s.d., P=0.05) and cerebellum (Allelic effect: 17% s.d., 

P=0.02)) and CADM2 (hypothalamus (Allelic effect: 19% s.d., P=0.05) and cerebellum 

(Allelic effect: 30% s.d., P=0.004)) (Fig. 1a,b and Supplementary Fig. 1a,b)11. Cadm1 and 

Cadm2 have been shown to interact via their extracellular domains (Supplementary Fig. 
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2a)9,12 and thus might act synergistically. We therefore evaluated how altered expression of 

these genes contributes to the regulation of body weight using rodent models.

Consistent with our eQTL analysis, we observed increased Cadm1 and Cadm2 protein levels 

in isolated synaptosomes from hypothalamus, cerebellum, and hippocampus of obese and 

insulin-resistant Lepob/ob mice compared to lean littermate controls (Fig. 2a and 

Supplementary Fig. 2b,c and 10,11). Since administration of a low-carbohydrate, ketogenic 

diet has been shown to improve insulin sensitivity and random blood glucose levels in 

Lepob/ob animals13, we tested its impact on neuronal Cadm1 expression. Feeding 16-week-

old Lepob/ob animals this diet for 60 days reduced the expression of Cadm1 in the 

hippocampus (hpc) and cerebellar regions, whereas the diet elicited no change in wild-type 

(WT) mice (Supplementary Fig. 2d-g and 10-14).

These results show that increased neuronal expression of Cadm1 and Cadm2 in the human 

and mouse brain associates with elevated body weight and indicate that these two genes may 

play a significant role in maintaining energy balance. The reduction of Cadm1 expression in 

multiple brain regions of Lepob/ob mice on a ketogenic diet also underscores the highly-

regulated nature of Cadm1 and suggests it may contribute to adaptive or homeostatic 

plasticity within neuronal networks in accordance to nutrient state.

Cadm1 regulates energy homeostasis

To understand the endogenous function of Cadm1, we first characterized a global loss-of-

function mouse model (Cadm1KO) and observed a reduction in body weight compared to 

littermate controls starting by post-natal day 3 (Fig. 2b-d and Supplementary Fig. 3a). A 

concomitant decrease in Cadm2 expression independent of changes on its mRNA level 

indicates Cadm1 may contribute to the stability of Cadm2 and its function (Fig. 2c), 

consistent with their physical association. Cadm1KO mice had a lower proportion of body 

fat compared to controls but indistinguishable random glucose and insulin levels 

(Supplementary Tables 1 and 2). Body length was slightly lower in KO mice (9.1±0.1 WT 

vs. 8.5±0.1 cm Cadm1KO mice, P-value<0.05 at age 12 weeks) in addition to the body 

weight to length ratio suggesting the decrease in body mass was due to both reduced growth 

rate and adipose mass (Supplementary Fig. 3b and Supplementary Table 2). We performed 

insulin, glucose, and pyruvate tolerance tests (ITT, GTT, and PTT, respectively) and 

observed lower glucose levels in Cadm1KO mice compared to controls suggesting systemic 

insulin sensitivity was improved (Supplementary Fig. 3c-e). We next tested sensitivity to 

leptin, another potent regulator of energy homeostasis. Intraperitoneal administration of 

leptin resulted in a greater decrease of both body mass and food intake in Cadm1KO mice 

(Supplementary Fig. 3f,g). Moreover, consistent with improved sensitivity to leptin, basal 

plasma leptin levels were significantly lower and plasma adiponectin levels were elevated in 

mutant animals compared to controls (Supplementary Table 1).

As insulin and leptin signaling within the brain both influence body mass and energy 

homeostasis14,15,16, we next addressed whether energy expenditure rates were altered in 

Cadm1KO animals. O2 consumption, CO2 production, energy expenditure and locomotor 

activity were all higher in Cadm1KO mice, while food intake, core body temperature and 
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nutrient partitioning (based on respiratory exchange rate (RER)) were normal 

(Supplementary Fig. 3h-k). Evaluation of energy expenditure using analysis of covariance 

(ANCOVA), as plotted in relation to lean body mass, confirmed the increased rates in 

Cadm1KO animals (Fig. 2e)17. When energy expenditure was plotted in relation to 

locomotor activity, this comparison confirmed Cadm1KO animals maintain increased energy 

expenditure and this elevated rate is directly correlated to increased activity (Supplementary 

Fig. 3l,m). Similar to Cadm1KO mice, global deletion of Cadm2 in mice (Cadm2KO) also 

resulted in lower body weight, and increased insulin sensitivity, glucose tolerance, and 

energy expenditure without any change in food intake; further suggesting Cadm1 and 

Cadm2 may interact to coordinately contribute to body weight regulation (Supplementary 

Fig. 3n-y and 14 and Supplementary Table 2).

Pro-opiomelanocortin (POMC)-expressing neurons are among the most studied cells in the 

brain due to their regulatory role in glucose utilization and energy expenditure18,19. In wild-

type C57BL/6 mice, we observed ~12% of POMC-expressing neurons were positive for 

Cadm1 immunostaining (Supplementary Fig. 4a,b). Meanwhile no changes in the expression 

of the hypothalamic neuropeptides Pomc, Npy, and Agrp were observed in Cadm1KO mice 

in contrast to Lepob/ob controls (Supplementary Fig. 4c). As several studies have now 

reported on Cadm1 function in neuronal signaling and plasticity20,21, we sought to 

determine whether the POMC neurons within the arcuate nucleus (ARC) were functionally 

altered in Cadm1KO mice and we first analyzed miniature excitatory and inhibitory post-

synaptic currents (EPSC and IPSC, respectively). Recordings of IPSCs in POMC neurons 

from Cadm1KO mice in comparison to littermate controls, showed a significant reduction in 

IPSC frequency without any effect on mean amplitude, while no difference was observed in 

EPSCs derived from their glutamatergic inputs (Supplementary Fig. 4d,e and 11). We then 

quantified the number of synapses in contact with these neurons. Loss of Cadm1 resulted in 

a significant increase in the number of asymmetric excitatory synapses (2.3±0.5 in WT and 

7.1±0.9 synapses in Cadm1KO, P-value<0.001) at POMC neurons (Supplementary Fig. 4f-

h), distinct from the reported very mild reduction of excitatory synapse number in 

hippocampal CA1 neurons20. The increase in excitatory contacts at POMC neurons in 

Cadm1KO mice and the absence of any change in mEPSCs frequency in these neurons may 

indicate that many of the observed excess connections are ‘silent’ and thereby yield an 

increased capacity for synaptic plasticity22. Homeostatic changes in synaptic plasticity 

and/or the imbalance of excitation and inhibition in the brain20,23, may conceivably 

underlie the effects on energy homeostasis in Cadm1KO mice, a hypothesis further tested 

below.

Induction of Cadm1 promotes weight gain

To date, the contribution of Cadm1 and Cadm2 in both glutamatergic and GABAergic 

populations to energy homeostasis has not been directly addressed (Supplementary Fig. 5a-

e). Previous studies have shown the role of Cadm1 in synaptic plasticity and the balance of 

network excitability is derived from its expression in excitatory neurons20,21. Based on 

these results, we directly tested whether increasing Cadm1 expression in a subset of 

glutamatergic neurons contributes to energy homeostasis by generating a mouse line bearing 

a transgene encoding Cadm1 under the control of seven tandem doxycycline-responsive 
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elements (Tg-Cadm1) (Fig. 2f and Supplementary Fig. 5f). These mice were crossed to also 

carry alleles expressing vesicular glutamate transporter 2 (Slc17a6)-Cre (where the 

recombinase is under control of the endogenous Slc17a6 promoter) and lox-rtTA (where the 

reverse tetracycline transactivator is expressed in the presence of Cre recombinase) and 

treatment of doxycycline via drinking water resulted in over-expression of Cadm1 in many 

brain regions including a ~2-3-fold increase in the hypothalamus (Fig. 2f,g and 

Supplementary Fig. 12). Tg-Cadm1 mice exhibited increased body weight and adipose mass 

~30 days after initiation of high-fat-diet feeding compared to controls (Fig. 2h and 

Supplementary Table 2). The induction of Cadm1 expression in Vglut2-expressing 

excitatory neurons reduced energy expenditure and locomotor activity and attenuated insulin 

sensitivity and glucose tolerance further suggesting the higher Cadm1 levels observed in 

Lepob/ob mice contributed to the obesity, insulin resistance, and hyperglycemia (Fig. 2i-m 

and Supplementary Fig. 5f,g). Increasing Cadm1 levels promoted Cadm2 expression as well 

as their co-localization, without any effect on Cadm2 mRNA levels, providing further 

evidence that the stability of Cadm2 is dependent upon Cadm1 expression (Fig. 2g and 

Supplementary Fig. 5h-j). As observed in Cadm1KO and Cadm2KO mice, the effect on 

body weight in Tg-Cadm1 mice was associated with an alteration in energy expenditure and 

not in food intake (Fig. 2n).

To further distinguish the function of Cadm1 in specific neuronal populations, we next 

eliminated its expression in either Vglut2-expressing excitatory or Vgat-expressing 

inhibitory neurons (by crossing Slc17a6-Cre and vesicular gamma-aminobutyric acid 

(GABA) transporter (Slc32a1)-Cre mouse lines with a Cadm1 conditional allele, Slc17a6-

Cre, Cadm1fl/fl and Slc32a1-Cre, Cadm1flox/flox, respectively) (Supplementary Fig. 6a-d and 

14)19. Similar to Cadm1KO animals, Slc17a6-Cre, Cadm1flox/flox mice recapitulated the 

effects on body mass, insulin and pyruvate challenge, energy expenditure, and activity (Fig. 

3a-f, Supplementary Fig. 6e,f, and Supplementary Table 2). Infrared image analysis showed 

Slc17a6-Cre, Cadm1flox/flox mice exhibited elevated body temperatures in the eye, inguinal 

subcutaneous adipose tissue (iSAT) and interscapular brown adipose tissue (BAT) regions 

after exposure to cold without affecting food intake (Fig. 3g-k). In comparison to Slc17a6-

Cre, Cadm1flox/flox mice, loss of Cadm1 in Slc32a1-Cre+ neurons resulted only in reduced 

insulin sensitivity compared to controls (Supplementary Fig. 6g-l). No changes were 

observed in body weight, glucose tolerance, energy expenditure, or food intake indicating 

that the effect of altered Cadm1 expression on body weight and energy homeostasis appears 

to be derived from its expression in Vglut2-expressing excitatory neurons.

Reduction of Cadm1 protects from obesity

Underscoring the functional importance of Cadm1 in excitatory neurons, Slc17a6-Cre, 

Cadm1flox/flox mice were protected from diet-induced obesity and insulin resistance after 

challenging these mice with a high-fat regimen (Fig. 4a-d). To accurately assess the impact 

of Cadm1 on systemic insulin sensitivity and tissue-specific glucose turnover rates in 

response to this diet, we performed hyperinsulinemic-euglycemic clamp studies on Slc17a6-

Cre, Cadm1flox/flox animals after 8 weeks of feeding. Basal blood glucose and insulin levels 

did not differ with Cadm1 status; however, after clamping glucose levels at 120 mg/dl, the 

glucose infusion rate was significantly elevated in Slc17a6-Cre, Cadm1flox/floxl animals 
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confirming improved overall insulin sensitivity (Supplementary Fig. 6m,n). While basal 

hepatic glucose output was unchanged, clamped hepatic output was significantly decreased 

(Supplementary Fig. 6o). In addition, consistent with improved hepatic insulin sensitivity, no 

differences were observed in hepatic glucose uptake, rate of glycolysis or glycogen synthesis 

or insulin levels at the end of the clamp between Slc17a6-Cre, Cadm1flox/flox and WT 

animals (Supplementary Fig. 6p). The ability to reverse obesity and improve glucose 

homeostasis after targeting neuronal Cadm1 expression was further shown after we crossed 

Slc17a6-Cre, Cadm1flox/flox mice onto the Lepob/ob background (ob/MUT) and observed 

lower body mass, circulating random glucose and plasma insulin levels compared to 

Lepob/ob littermates (Fig. 4e-g, Supplementary Fig. 12 and Supplementary Table 2). Results 

from an ITT, and energy expenditure and liver gene expression analysis also showed 

ob/MUT mice were more insulin sensitive and the increased β-cell mass symptomatic of an 

insulin-resistant state was significantly reversed in comparison to Lepob/ob controls (Fig. 4h-

k). While Lepob/ob mice exhibit several metabolic alterations beyond weight gain and 

hyperglycemia, these results further illustrate loss of Cadm1 in excitatory neurons protected 

mice from both diet and genetically-induced obesity and insulin resistance by improving 

energy expenditure, glucose homeostasis, and insulin sensitivity independent of any change 

in food intake (Fig. 4l). Importantly, these observations establish Cadm1 as a potential target 

in the brain for therapeutic intervention in alleviating the complications associated with 

diabetes and obesity.

Cadm1 functions in multiple neuronal circuits

Cadm1 is present throughout the brain and has been shown to regulate synapse formation, 

morphology, plasticity, and network excitability20,24,21. The broad expression pattern of 

Slc17a6-Cre suggests Cadm1 may contribute to energy homeostasis via multiple brain 

regions. To elucidate the circuits that contribute to Cadm1 function in systemic energy 

homeostasis we analyzed the effects of Cadm1 loss in Vglut2+ excitatory neurons on 

hippocampal synapse number and function. In spite of its described role in hippocampal 

synapse formation during the post-natal period, synapse numbers in this region were 

unchanged in adult Slc17a6-Cre, Cadm1flox/flox mice compared to littermate controls 

(Supplementary Fig. 7a,b)20. Post-synaptic density length and postsynaptic density protein 

95 (PSD-95) expression were decreased in the hippocampus of Slc17a6-Cre, Cadm1flox/flox 

animals suggesting that Cadm1 function may vary with age, cellular context, or metabolic 

state (Supplementary Fig. 7c,d and 15). Electrophysiologic analysis revealed increased basal 

synaptic transmission supporting resent observations on Cadm1 in synaptic transmission by 

balancing excitatory and inhibitory transmission (Supplementary Fig. 7e)21. In addition, we 

observed increased long-term depression (LTD) and long-term potentiation (LTP) supporting 

previous observations on the role of Cadm1 in synaptic plasticity (Supplementary Fig. 7f, 

g)20 and on the promotion of hippocampal plasticity by locomotor activity in rodents25,26. 

These observations suggest that Cadm1 regulates energy and glucose homeostasis by 

modulating excitatory synapse function in the hippocampus.

To directly address the role of Cadm1 in the regulation of body weight and energy 

homeostasis in hippocampal excitatory neurons, we specifically eliminated its expression in 

this brain region via stereotactic injection of a Cre recombinase-expressing adeno-associated 
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virus (rAAV8/CamKII-mCherry-Cre) (Fig. 5a,b). The AAV co-expressed mCherry which 

allowed visualization of Cre expression in the dentate gyrus and to a lesser extent in the CA3 

region of the hippocampus. Approximately 15 days after delivery of the AAV, floxed Cadm1 
mice (flox/flox) mice exhibited lower body weight compared to controls (Fig.5c and 

Supplementary Fig. 8a and 15). Similar to previous Cadm1 loss-of-function models, energy 

expenditure rate was observed elevated after targeting Cadm1 in the hippocampus and 

confirmed with ANCOVA after plotting against lean body mass and locomotor activity (Fig. 

5d,e and Supplementary Fig. 8b). These data directly demonstrate a crucial role for Cadm1 

expressed in excitatory hippocampal neurons in the regulation of body weight and energy 

expenditure that is independent of an effect on feeding behavior (Fig. 5f).

We executed a similar strategy in the hypothalamus to delineate the contribution of Cadm1 

to the regulation of body weight in this brain region and we first performed tracing 

experiments to identify the origins of axonal projections to POMC neurons in the ARC 

(Supplementary Fig. 8c). Stereotactic delivery of a mCherry-expressing AAV to the 

paraventricular nucleus of the hypothalamus (PVH) region identified axonal inputs to 

POMC neurons expressing Cadm1 (Fig. 5g-j and Supplementary Fig. 10). We then directly 

eliminated hypothalamic Cadm1 expression by injection of the AAV-Cre into the PVH and 

the ventromedial nucleus of the hypothalamus (VMH) of floxed Cadm1 mice (flox/flox) 

(Fig. 5k,l and Supplementary Fig.8d). Similar to Cadm1 deletion in the hippocampus, lower 

body weight and increased energy expenditure was observed ~15 days post-injection in 

floxed Cadm1 mice compared to controls (Fig. 5m-o and Supplementary Fig. 8e,f and 15). 

Neither insulin sensitivity nor food intake was altered indicating these neuronal regions may 

be distinct with respect to Cadm1 function in energy homeostasis (Fig. 5p and 

Supplementary Fig. 8g). Despite the fact that our tracing analysis did not identify a 

significant number of hippocampal inputs to POMC neurons in the arcuate nucleus, we did 

observe hippocampal inputs to the PVH in the hypothalamus (Supplementary Fig.8h). 

Tracing analysis also identified axonal tracts originating from the hypothalamus to the 

dentate gyrus of the hippocampus suggesting the existence of a closed-loop circuit between 

these regions expressing Cadm1 being involved in energy homeostasis (Supplementary Fig. 

8i). Additionally, Cadm1-positive afferent inputs originating from the habenular nuclei, a 

key site regulating voluntary locomotor activity and motivational behavior, were observed on 

POMC-neurons (Supplementary Fig. 8j-m)27. Given the fact that the medial habenula is 

functionally connected to the hippocampus via strong efferent projections from septal 

nuclei28, habenular input to POMC-neurons provides an important bridge between the 

hippocampus and hypothalamus, indicating that Cadm1 function in energy homeostasis 

extends to circuits beyond the ARC.

To determine the contribution of Cadm1 in energy homeostasis in more distinct 

hypothalamic populations, we conditionally deleted its expression using established Cre-

expressing mouse lines. The specific deletion of Cadm1 using transgenic Pomc, Agrp, and 

Sim1-Cre lines (which express Cre recombinase under control of the respective promoters in 

neurons of the ARC or PVH) all resulted in no significant changes in metabolic parameters 

including insulin sensitivity and in the case of POMC neurons, may reflect the low 

abundance of Cadm1 in these specific cell types29,30,31 (Supplementary Fig. 9a-c). Cadm1 
was deleted in Lepr-Cre+ cells (Lepr-Cre, Cadm1flox/flox) and in spite of broader expression 
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beyond the hypothalamus, the mutant mice in the steady state did not exhibit any phenotypic 

changes (Supplementary Fig. 9d-g)32. However, crossing this line into the Lepob/ob 

background (ob/Lepr-Cre, Cadm1flox/flox) resulted in increased random-fed and fasted blood 

glucose levels as well as increased random plasma insulin levels (Supplementary Fig. 9h,i). 

Ob/Lepr-Cre, Cadm1flox/flox mice consistently showed higher glucose levels in all tolerance 

tests indicating an exacerbation of insulin resistance compared to Lepob/ob controls 

(Supplementary Fig. 9j-l). Meanwhile, body composition, pancreatic β-cell mass, energy 

expenditure rate, locomotor activity, and food intake were all indistinguishable between ob/

Lepr-Cre, Cadm1flox/flox and Lepob/ob littermates (Supplementary Fig. 9m-o and 

Supplementary Table 2). These results demonstrate that the role of Cadm1 in Slc32a1-Cre+ 

and Lepr-Cre+ cells is distinct from its function in Slc17a6-Cre+ cells with respect to the 

maintenance of insulin sensitivity, energy expenditure, and glucose homeostasis and the 

function of Cadm1 is dependent on a diverse set of neurons distributed throughout the brain 

beyond the traditional neuronal circuits controlling energy expenditure and body weight 

within the hypothalamus.

The precise mechanisms causing obesity remain unknown. It is clear that neuronal pathways 

regulating energy homeostasis and signaling are key contributors and genome-wide 

association studies have been successful in identifying genes essential to understanding 

fundamental aspects of our metabolism33,34. Here we illustrate how increased expression of 

Cadm1 in the brain is relevant to weight gain and that reducing its expression in both the 

hippocampus and hypothalamus can trigger a negative energy balance. The expression of 

both Cadm1 and Cadm2 in several neuronal circuits may indicate the maintenance of our 

body weight is intertwined with motor control and coordination, motivational and learning 

behavior, spatial navigation, cognition and memory. This is further supported by several 

studies now showing Cadm1 contributes to synaptic plasticity and the excitatory and 

inhibitory balance of specific networks20,21. Spatially modulated cells (i.e. place cells, 

border cells and grid cells) in hippocampal-entorhinal circuits contribute to the formation of 

environment-specific memory maps during spatial orientation and may constitute key 

circuits in the regulation of energy homeostasis35,36. Future investigations will determine 

how the brain is capable of integrating these neuronal circuits together with our physiology 

and whether targeting Cadm1 in specific regions is a viable therapeutic strategy for reversing 

obesity in humans37.

Methods

Animals

Mice were housed in groups of 3-5 animals and maintained on a 12-hour light/dark cycle 

with ad libitum access to regular chow food, high fat diet (containing 60% kcal fat, cat. no. 

E15741-347, ssniff Spezialdiäten GmbH), or ketogenic diet (cat. No. E15149-30, ssniff 

Spezialdiäten GmbH) in accordance with the Landesamt für Gesundheit und Soziales 

(LAGeSo). All experimental procedures were approved under protocols G 0357/10, G 

0204/14, O 0405/09, and T 0436/08. Cadm1KO mice38 were characterized after 

backcrossing for four generations to C57BL/6 and then crossed to Lepob/ob and POMC-

eGFP expressing mice (Jackson Labs). Cadm2KO mice were generated by the trans-NIH 
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Knock-Out Mouse Project (KOMP) and obtained from the KOMP Repository 

(www.komp.org). Slc17a6-Cre, Slc32a1-Cre, Lepr-Cre, Agrp-Cre, Sim1-Cre, and Pomc-Cre 

expressing mice were purchased (Jackson Labs) and directly crossed to Cadm1-floxed mice 

that were previously crossed to C57BL/6 (Jackson Labs) for four generations. To generate 

Tg-Cadm1 mice, full-length Cadm1 cDNA flanked by seven repeats of the doxycycline-

responsive element was inserted into pTRE-Tight vector (Clontech) prior to microinjection. 

Positive founders were crossed to Slc17a6-Cre and ROSA26-rtTA mice (Jackson Labs). All 

experiments implemented Cre-expressing mice as controls to account for potential metabolic 

abnormalities 39. Results were consistent in both genders however data from female mice is 

not shown.

Analytic Procedures

Quantification of metabolic parameters—Guinea pig anti-insulin (Dako A0564, 

1:500), and rabbit anti-glucagon (Millipore AB932, 1:500) antibodies for 

immunofluorescence were used on paraffin-embedded pancreata fixed in 4% 

paraformaldehyde (PFA). Plasma glucose levels were obtained with the One Touch 

glucometer (Bayer). Plasma and total pancreatic insulin measurements were measured by 

radioimmunoassay or ELISA as described (Millipore, Crystal Chem)40. Plasma leptin was 

measured by ELISA (Peprotech) and adiponectin by radioimmunoassay (Millipore).

Antibodies for western blot analysis—The following primary antibodies were used 

for western blotting at 1:1000 dilution: Cadm1 (MBL CM004-3), Cadm2 (Sigma 

SAB4501053), β-Actin (Sigma A1978), GAPDH (Abcam ab8245), γ-Tubulin (Sigma 

T6557), PSD95 (NeuroMab UCDavis 075 028). Variance in the banding patterns of Cadm 

proteins in different panels may result from variation in acrylamide percentage or levels of 

protein glycosylation. Image densitometry of 16-bit TIF images for all western blots was 

performed using ImageJ.

Primary cell cultures—Primary neurons were derived from hippocampi of mice at age 

post-natal day 2 and dissected in cold HBSS (Invitrogen), followed by digestion with papain. 

After centrifugation, tissue pellet was resuspended in Neurobasal (Invitrogen) supplemented 

with B27 (Invitrogen) and Glutamax (Invitrogen) for plating. Hippocampal cells were 

cultured in 24-well dishes with 12 mm coverslips (5000 cells per coverslip) coated with 

poly-D-lysine and laminin and immunohistochemistry was performed as described 

previously 41. After post-fixation in 4% PFA, sections were blocked with 10% BSA/PBS, 

then incubated with primary antibody overnight at 4°C, followed by the fluorochrome-

conjugated secondary antibodies for 1 hour. Fluorescence was imaged under a confocal 

microscope (Zeiss LSM700). Digtal images were analyzed with Fiji/ImageJ.

Mouse Phenotyping

All phenotyping analysis was performed in a ‘blinded’ manner; genotypes were unknown to 

the investigator during the experimentation and age of animals is stated in figure legends. All 

genotypes were present during all experiments and randomization was implemented to the 

extent that all animals were identified by number prior to analysis.
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Body composition and energy expenditure analysis—Body composition analysis 

was measured using Minispec Model LF90 II (6.5 mHz) (Bruker Instruments). VO2, VCO2, 

food intake and locomotor activity were measured using the PhenoMaster System (TSE, 

Germany) and energy expenditure was analyzed as previously described using ANCOVA 17. 

Animals were placed into individual cages with weight sensors quantifying ad libitum access 

to food. VO2 and VCO2 level were measured for one minute in a 9 min interval for 4 

consecutive days and locomotor activity was measured continuously by breaks of light 

beams. The first 24 hours of measuring time was excluded from the analysis to allow for 

acclimation to the new cage environment. Measurement of energy expenditure was 

normalized to lean body mass as previously described42.

Tolerance tests—Glucose and pyruvate tolerance tests were performed following an 

overnight fast (16 hours) and injected intraperitoneally with either glucose (2g/kg body 

weight) or pyruvate (2g/kg body weight in saline) as described 40. Insulin tolerance tests 

were performed after same day fast (6 hours) by injecting insulin (Sigma) intraperitoneally 

(0.75 U/kg body weight). Murine leptin (Peprotech) (0.75 μg/g body weight) was injected 

intraperitoneally twice daily (09:00 and 19:00) for 3 days. Body weight and food intake 

were measured daily at 08:30.

In vivo clamp studies—Clamp studies were performed as described 43. Plasma [3H] 

glucose was measured by scintillation counting of ZnSO4/Ba(OH)2 deproteinized serum, 

dried to remove 3H2O. Calculations were obtained as follows: Basal and insulin-stimulated 

whole body glucose turnover rates = ([3-3H] glucose infusion (in dpm)) / (plasma glucose 

specific activity (dpm per mg)) at the end of the basal period and during the final 30 min of 

the clamp, respectively. Hepatic glucose production = (rate of total glucose appearance) – 

(glucose infusion rate). Plasma concentration of 3H2O = 3H counts [wet] – [dry]. Whole 

body glycolysis was defined by the rate of increase in plasma 3H2O concentration by linear 

regression of measurements between 90-140 minutes. Whole body glycogen synthesis = 

(whole body glucose uptake) - (whole body glycolysis). Tissue 14C-2-deoxyglucose-6-

phosphate content was measured following sample homogenizing, and the 

supernatant’s 14C-2-deoxyglucose-6-phosphate was separated from 2-deoxyglucose by ion-

exchange column.

In vivo cold exposure analysis—Cold challenge was performed as described 

previously 44. Briefly, 12-week-old mice were kept at 6°C for 14 consecutive days in a light 

and humidity-controlled climate chamber (TSE Systems) and fed chow diet ad libitum.

Tracing analysis and AAV injections

Stereotaxic injections were performed on 5-8-week old mice and all data incorporated into 

the analysis was obtained from animals that were examined histologically for mCherry 

expression in the appropriate nuclei. For POMC-eGFP/Slc17a6-Cre mice, rAAV2/EF1a-

DIO-hChR2(H134R)-mCherry (UNC Vector Core, titer 6.6x1012 vg/ml) was unilaterally 

injected into the dentate gyrus (DG) of the hippocampus, and paraventricular nucleus of the 

hypothalamus (PVH) respectively (n=4); rAAV5/EF1a-DIO-hChR2(H134R)-mCherry 

(UNC Vector Core, titer 5x1012 vg/ml) was unilaterally injected into the habenular nuclei 
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(Hb) (n=4). Briefly, the mouse was anesthetized with ketamine (120 mg/kg), Xylazine (10 

mg/kg) and an i.c. injection of analgesic Methamizol (200 mg/kg). Next, an incision on the 

head skin was performed and animals were placed in a stereotactic frame (Angle Two, 

Leica) while maintained at a temperature of 37.5 °C with a heating pad during the whole 

operation. A small craniotomy was performed over the DG with coordinates: 1.8 mm 

posterior, 1.3 mm lateral to Bregma; Hb: 1.6 mm posterior, 0.36 lateral to Bregma; PVH: 0.7 

mm posterior, 0.24 lateral to Bregma. A glass injection pipette with a ~10-20 μm diameter 

tip containing the AAV solution was then inserted to the following depths: 1.8 mm (for DG), 

2.7 mm (for Hb), and 4.8 mm (for PVH). Using an oil piston (MO-10; Narishige) connected 

to this injection glass pipette 0.1 to 0.4 μl of virus was injected at a rate of 50 to 100 nl per 

minute. The injection pipette stayed in place for about 10 min to allow the pressure to 

equilibrate after the injection and then removed. Post-injection, the incision site was stitched 

with suture thread and the mice recovered on a heating pad at 37.5 °C with access to water 

with Methamizol (0.5 mg/ml) for 24 hours. Floxed Cadm1 (flox/flox) mice and littermate 

controls were stereotaxically injected with rAAV8/CamKII-mCherry-Cre resulting in 

expression of the mCherry-Cre fusion protein (UNC Vector Core). Mice were anesthetized 

with Ketamine HCl/Xylazine HCl (50/5 mg/kg, intraperitoneally) and restrained in a Kopf 

stereotaxic frame (David Kopf Instruments). Small holes with the size of the injection needle 

were drilled into the skull, and injections were done bilaterally with 1µl of vector per brain 

region. The rAAV8/CamKII-mCherry-Cre was administered (0.5 μL for the PVH and 1 µl 

for the dentate gyrus, titer: 4.7×1012 virus genome/ml) into the dentate gyrus (coordinates: 

−1.7 mm from bregma, ±1.5 mm lateral, −2.2 mm from the surface of the skull) and PVH 

(coordinates: −0.82 mm from bregma, ±0.5 mm lateral, −5.0 mm from the surface of the 

skull). Animals/samples were excluded if proper injection of the AAVs could not be 

validated by reporter expression and immunohistochemistry.

Immunohistochemistry and image analysis

Mice were transcardially perfused with 50 ml saline solution (0.85% NaCl, 0.025% KCl, 

0.02% NaHCO3, pH 6.9, 0.01% heparin, body temperature) followed by 50 ml cold 

(7-15ºC) freshly depolymerized 4% PFA in 0.1 M PBS, pH 7.4. Brains were post-fixed 

overnight in the same fixative and placed in a mixture of 20% glycerol and 2% dimethyl 

sulfoxide in 0.4 M PBS for 24 h for cryoprotection. Frozen horizontal or coronal sections 

(40 µm) were collected in 0.1 M PBS. The following antibodies were used for 

immunohistochemistry: Cadm1 (MBL CM004-3, 1:500), Cadm2 (Sysy 243203, 1:500), 

POMC (Phoenix H-029-30, 1:500), Synaptophysin (Sysy 100011, 1:500), Vasopression 

(Millipore AB1565, 1:1000), NeuN (Abcam ab177487, 1:500; Millipore MAB377, 1:100), 

Map2 (Sysy 188004, 1:1000), Vgat (Sysy 131004, 1:500), mCherry (Abcam ab125096, 

1:500), GFP (Thermo Fisher A11120, 1:500) and VGLUT2 (Sysy 135402, 1:500) were 

used. Sections were washed 3x in PBS (3x15 min each) followed by washing several times 

in PBS containing 0.3 % Triton-X-100 (9x20 min each). Sections were pre-incubated with 

PBS containing 5% NGS and 0.3 % Triton X-100 for 1 h, and subsequently incubated with 

primary antibody at 4°C for 48 h. Then, sections were washed 9 times for 20 min each in 

0.3 % Triton-X-100 in 0.1 M PBS, and incubated with Alexa-conjugated secondary 

antibodies (1:400) for 12 h using standard techniques. Finally, sections were mounted on 

gelatin-coated glass slides and cover-slipped in Immu-Mount. Immunofluorescent images 
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were acquired using a Leica SP5 confocal microscope, equipped with a 488 nm argon laser, 

a 561 nm DPSS laser and a 633 red Helium Neon laser. To detect fluorescence emission 

sections were scanned at a resolution of 1024 x 1024 pixels with 8-bit sampling in sequential 

scanning frame-by-frame mode. Cadm1 expression levels were quantified in ImageJ by 

measuring the mean gray value of fluorescence intensity within the ROI using 20x Plan-

Apochromat objective. For high-resolution 3D analysis, samples were scanned using Plan-

Apochromat 63x/1.32 Oil DIC objective at a resolution of 1024 x 1024 pixels with 8-bit 

sampling in sequential scanning frame-by-frame mode. Single optical sections were 

acquired using identical acquisition settings, with the pinhole of 1 Airy Unit. Stacks of 8-29 

optical sections yielded voxel dimensions between 100 and 400 nm for the X, Y and Z 

planes. 3D reconstructions were generated with Amira Software (FEI Visualization 

Sciences). First, the cell body of the POMC-positive neurons was reconstructed using Amira 

surface editor. Synaptic input was defined by the reconstruction of AAV-mCherry positive 

varicosities in the same image using Isosurface module. The likely synaptic contact was 

defined by color-coding the surface of AAV-mCherry positive varicosities found within 250 

nm from POMC-positive cell body. Subsequently, the surface of “250nm-distant” AAV-

mCherry positive varicosities was mapped onto POMC-positive cell body using “map 

distance” tool.

Analysis of Cadm1 and Vglut2 fluorescent profiles

Overlap of fluorescent intensity profiles of Cadm1 and Vglut2 was measured using the line 

scan function of ImageJ on an x–y plane of a single optical section. Subsequently line 

profiles were analyzed using custom-developed Python script. In detail, the percentage of 

overlap between Cadm1 and Vglut2 was analyzed according to the following algorithm: 

 Firstly, all fluorescent values were 

normalized by scaling them from 0-1000 and the penalty values were calculated by taking 

the absolute value of the difference between the lead curve (Vglut2) and the follow curve 

(Cadm1)  The “Events” of fluorescent puncta were defined by the 

presence of high y-values of the lead curve. To account for the overlap of two curves in these 

areas the penalty values were multiplied with the square of the lead y-value, giving the term: 

 Next, a measurement for the differences between the two 

curves was generated by taking the sum of all penalty values (sum1): 

 The penalty was restricted to the interval 0-100% by 

dividing the actual penalty value by the maximum possible penalty (sum2): 

Electron microscopy analysis

8-week old mice were anesthetized and transcardially perfused with 4% formaldehyde and 

2.5% glutaraldehyde in PBS. Brains were isolated and post-fixed in the same solution 

overnight at 4°C after rinsing in PBS, and then embedded into 5% agar and sliced coronally 

(200 μm sections). Vibratome slices containing hippocampi were post-fixed in 1% OsO4 and 

1.5% potassium hexacyanoferrat, followed by dehydration in a methanol gradient and 

propylene oxide, and flat embedded in epoxy resin. After polymerization the CA1 pyramidal 
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cell layer and adjacent stratum radiatum were trimmed and ultrathin sectioned. Sections 

were collected on coated slotted grids and analyzed using a Zeiss 900 transmission electron 

microscope. Synaptic density was determined by the dissector method 45. Neuropil images 

with an area of ≈190 µm2 from adjacent sections with defined thickness were aligned, a 

dissector grid was superimposed onto the images and the appearance of the postsynaptic 

density was used as a “counting cap”. At least 20 dissectors were analyzed per animal and 

density of synaptic profiles was estimated in 2-D by counting number of profiles in 160 

neuropil fields.

Quantification of excitatory and inhibitory synapses was performed as previously described 

46. Mice were perfused using Somogyi-Takagi fixative; the brain was removed and a tissue 

block containing the hypothalamus was sectioned. EGFP (derived from the POMC-eGFP 

transgene) was stained using an anti-GFP antibody for signal amplification (Molecular 

Probes A-11120, 1:500) and ABC Elite Kit (Vector Labs). Sections were subsequently 

osmicated, dehydrated and ultrathin sections obtained using a microtome. Images were 

acquired using a Tecnai 12 Biotwin (FEI Company) electron microscope. Non-symmetric 

(excitatory) and symmetric (inhibitory) synapse numbers on POMC neurons were quantified 

in a double-blinded fashion using the dissector technique. Synapses were only quantified if a 

clear identification of pre- and postsynaptic membranes was possible and synaptic vesicles 

in the presynaptic bouton were visible. Synapses without a clear non-symmetric or 

symmetric specialization were excluded from the analysis.

Electrophysiological analysis

For EPSCs and IPSCs, the entire brain from 3-week old animals was removed and 

immediately submerged in ice cold, carbogen-saturated (95% O2 / 5% CO2) aCSF (in mM: 

2.5KCl, 126 NaCl, 1.3 MgCl2, 2.0 CaCl2, 1.2 KH2PO4, 21.4 NaHCO3, 10 glucose). Coronal 

sections (300 μm) were cut with a Leica VT1000S Vibratome and then incubated in 

oxygenated aCSF at room temperature for at least 1 hr before recording. Whole-cell voltage-

clamp recordings from POMC-eGFP neurons (identified with the POMC-eGFP 

transgene)47 were performed using a Multiclamp 700B amplifier (Molecular Devices) and 

filtered with an eight-pole Bessel filter at 6 kHz. Both voltage and current signals were 

sampled at 50 kHz using an Axon 1440A interface device (Molecular Devices) and the data 

were acquired using Clampex 10.2 software (Molecular Devices). Electrodes were pulled 

using a micropipette puller (Sutter Instruments) from thick-walled borosilicate glass 

GC150F capillaries (Harvard Apparatus) to a resistance of ~3 MΩ. Series resistance 

compensation ranged from 50 to 70% and recordings were discarded if the series resistance 

exceeded 10MΩ. Electrodes were filled with an internal solution of composition (in mM) 

140 CsCl, 4 NaCl, 0.5 CaCl2, 10 HEPES, 5 EGTA, 2 Mg-ATP, QX-314-Br 3, pH 7.3 with 

CsOH, and osmolarity of 290mOsM. Cells were visualized using an infrared differential 

interference contrast (DIC) optics equipped with equipped ORCA-R2 camera (Hamamatsu) 

mounted on a Slicescope (Scientifica) with a 40X water-immersion objective. Neurons were 

voltage clamped at −70 mV. In order to record IPSCs, the aCSF composition included 3 mM 

kynurenic acid (Sigma) to block excitatory glutamatergic activity. EPSCs were recorded in 

presence of Picrotoxin (Tocris) 100 μM in order to block both GABA and Gly evoked 

currents. Both experimental conditions included TTX 0.5 μM (Tocris) to isolate miniature 
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events. Events were excluded from the analysis if their amplitude was less than 3 standard 

deviations of the baseline noise and if there were overlapping events within 50 ms (for 

IPSCs) or 10ms (for EPSCs). All miniature events were automatically detected with 

Clampfit 10, followed by manual inspection of single events. For frequency distributions a 

minimum of 200 events were analyzed.

For MPP-DG recordings, 6-8-week old WT and Cadm1Slc17a6 mice were used for acute 

hippocampal field electrophysiology. Mice were decapitated after cervical dislocation and 

the brain extracted into ice cold dissection ‘cutting’ solution containing (in mM): 2.5 KCl, 

1.25 NaH2PO4, 24 NaHCO3, 1.5 MgSO4, 2 CaCl2, 25 glucose, 250 sucrose. 350 µm sagittal 

brain slices prepared from both hemispheres were transferred to a resting chamber 

containing solution in which 250 mM sucrose was replaced with 120 mM NaCl (pH = 

7.35-7.4) and incubated to recover before recordings. Recordings performed at room 

temperature (22-24°C) in the submerged chamber, supplied with continuously bubbled 

solution with an exchange of 3-5 ml per min. Stimulating (1-1.5 MΩ) and recording (1.5-2.5 

MΩ) electrodes filled with solution were placed in inner part of molecular layer of DG and 

medial perforant path (MPP) to DG field excitatory postsynaptic potentials (fEPSPs) were 

recorded. Basal stimulation of 0.2 ms electrical pulses was delivered at every 30 sec for at 

least 10 minutes to monitor stabile baseline recordings. Only the responses which show 

paired pulse depression were considered as MPP and were studies further to evaluate 

synaptic transmission and plasticity. The stimulus response curves made as a measure of 

basal synaptic transmission in which stimulation intensity was increased from 10 to 100 µA, 

reaching maximal responses at around 60-70 µA for both genotypes. For LTP and LTD 

recordings, baseline stimulation was set to elicit 50 % of maximal fEPSP (30-40 µA) and 

GABAergic antagonist picrotoxin (100 μM) was applied to recording solution at least 30 

minutes before the LTP and LTD induction. Stimulation intensity was doubled during LTP, 

LTD induction using stimulation intensities at which maximal fEPSPs were detected (60-70 

µA). 5 x HFS were delivered every 30 seconds each HFS containing 100 pulses at 100Hz for 

LTP induction and LFS containing 900 pulses at 1Hz stimulation was used for LTD 

induction. LTP and LTD was calculated as % increase of fEPSP slope 50-60 min after 

application of induction protocol as compared to the initial -10-0 min of baseline. The data 

were recorded at a sampling rate of 10 kHz, low-pass filtered at 3 kHz and analyzed using 

PatchMaster software and EPC9 amplifier (Heka Elektronics).

eQTL analysis

We have downloaded currently unpublished eQTL data from the GTEx consortium analysis 

version 6, including results from ten distinct brain regions48. We specifically queried the 

data for association tests that were performed for genes CADM1 and CADM2 against SNPs 

rs12286929 and rs13078807. Adjustment for multiple hypothesis testing using the method 

of Benjamini and Hochberg showed that all associations were significant (FDR <= 15%)49. 

Boxplots were obtained through the GTEx portal.

Statistical analysis

All results are expressed as mean ± s.e.m. Comparisons between data sets with two groups 

were evaluated using an unpaired Student’s t-test. One-way and two-way repeated-measures 
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ANOVA analysis has been performed using GraphPad Prism Software Version 6.07 for 

comparisons of three or more groups. Post hoc statistics were performed using Sidak’s 

multiple comparison test. A P-value of less than or equal to 0.05 was considered statistically 

significant. The presented data met the assumptions of the statistical tests used. Normality 

and equal variances were tested using GraphPad Prism software. No statistical methods were 

used to pre-determine sample sizes but our sample sizes are similar to those reported in 

previous publications 17, 29–31, 40, 43.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
BMI risk SNPs associate with increased CADM1 and CADM2 expression in the 

hypothalamus of human subjects. Boxplots show the 25% and 75% quantiles of normalized 

mRNA expression levels (y-axis), solid horizontal lines indicate the median, and whiskers 

indicate the 10% and 90% quantiles. (a) Elevated expression of CADM1 associates with risk 

allele (G) of rs12286929 in hypothalamus. (b) Genotype dependent expression levels of 

CADM2 for the SNP rs13078807. The risk allele (G) is associated with higher expression 

levels in human hypothalamus. Statistical analyses are described in the Methods and 

Supplementary Table 3.
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Figure 2. 
Induction of Cadm1 in excitatory neurons increases body weight. (a) Western blot analysis 

of Cadm1 and Cadm2 in total and synaptosome-enriched lysates from hypothalamus of 4-

week-old Lepob/ob mice and littermate controls. (b) Western blot analysis of Cadm1 and 

Cadm2 in total and synaptosome-enriched lysates from hippocampus of 3-week-old 

Cadm1KO and control littermates. (c) qRT-PCR analysis of Cadm1 and Cadm2 expression 

in hippocampus of 5-week old Cadm1KO mice, Cadm1−/+ (heterozygous) and control 

littermates (WT) (n=3-4). (d) Body weight curves of Cadm1KO mice (n=10) and littermate 

controls (n=10). (e) Energy expenditure of individual animals plotted against lean body mass 

(LBM) in 12-week old Cadm1KO (n=9) and littermate controls (n=10). (f) Western blot 

analysis of Cadm1 and Cadm2 in total lysates from hypothalamus, cerebellum, and 

hippocampus of 14-week-old Tg-Cadm1 mice and control littermates. (g) Quantification of 

Cadm1 and Cadm2 expression from cultured primary hippocampal neurons from Tg-Cadm1 

mice (n=5) and wild-type littermate controls (n=5) after 5 days of treatment with 

doxycycline. (h) Body weight curves of Tg-Cadm1 mice (n=5) and littermate controls (n=8) 

upon doxycycline treatment at 4 weeks of age. High fat diet feeding was initiated on day 25 

of doxycycline treatment. (i) Energy expenditure of individual animals plotted against lean 

body mass (LBM) in 16-week old Tg-Cadm1 mice (n=7) and littermate controls (n=10). (j) 
Quantification of locomotor activity measured in 16-week old Tg-Cadm1 mice (n=7) and 
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controls (n=8). (k) Energy expenditure of individual animals plotted against locomotor 

activity in 16-week old Tg-Cadm1 mice (n=7) and littermate controls (n=10). (l) Blood 

glucose measurements during an insulin tolerance test (ITT) on 20-week old Tg-Cadm1 

mice (n=5) and control littermates (n=6). (m) Glucose measurements during a glucose 

tolerance test (GTT) on 18-week old Tg-Cadm1 mice (n=5) and littermates (n=7). (n) 

Quantification of food intake in 16-week old Tg-Cadm1 mice (n=7) and littermates (n=8). 

All results are presented as mean ± s.e.m. *P<0.05, ** P<0.01, *** P<0.001. Boxplots show 

median, lower and upper quartiles (box), and minimum and maximum (whiskers). Statistical 

analyses are described in the Methods and Supplementary Table 3.
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Figure 3. 
Loss of Cadm1 in excitatory neurons impacts body weight, energy homeostasis and 

thermogenesis. (a) Body weight curves of Slc17a6-Cre, Cadm1flox/flox mice (n=12) and 

littermate controls (n=14) from age 4-12 weeks. (b) Glucose measurements during an ITT 

on 12-week old Slc17a6-Cre, Cadm1flox/flox mice (n=5) and control littermates (n=6). (c, d) 

Quantification of O2 consumption, CO2 production, RER, energy expenditure, locomotor 

activity, and food intake in 12-week old Slc17a6-Cre, Cadm1flox/flox mice (n=9) and 

littermate controls (n=10). (e) Energy expenditure of individual animals plotted against lean 
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body mass from 12-week old Slc17a6-Cre, Cadm1flox/flox mice (n=9) and littermate controls 

(n=10). (f) Energy expenditure of individual animals plotted against locomotor activity in 

12-week old Slc17a6-Cre, Cadm1flox/flox mice (n=9) and littermate controls (n=10). (g) 

Inguinal subcutaneous adipose tissue (iSAT) temperature measurements from 12-week old 

Slc17a6-Cre, Cadm1flox/flox mice (n=5) and control littermates (n=8) during cold challenge. 

(h) Brown adipose tissue (BAT) temperature measurements from 12-week old Slc17a6-Cre, 

Cadm1flox/flox mice (n=5) and control littermates after (n=8) during cold challenge. (i) 
Temperature measurements of BAT, iSAT and eye regions from 12-week old Slc17a6-Cre, 

Cadm1flox/flox mice (n=5) and control littermates after (n=8) after one week exposure to 

cold. (j) Representative near-infrared analysis of 12-week old Slc17a6-Cre, Cadm1flox/flox 

mice and control littermates after one week cold exposure. (k) Quantification of daily food 

intake of Slc17a6-Cre, Cadm1flox/flox mice (n=5) and control littermates after (n=8) after 

cold exposure. All results are presented as mean ± s.e.m. *P<0.05 and **P<0.01. Boxplots 

show median, lower and upper quartiles (box), and minimum and maximum (whiskers). 

Statistical analyses are described in the Methods and Supplementary Table 3.
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Figure 4. 
Loss of neuronal Cadm1 protects from diet and genetically-induced obesity and insulin 

resistance. (a) Body weight curves of Slc17a6-Cre, Cadm1flox/flox mice (n=10) and 

littermate controls (n=6) on high fat diet (HFD). (b) Glucose measurements during an ITT 

from 16-week old Slc17a6-Cre, Cadm1flox/flox mice (n=7) and control littermates (n=10) 

after 10 weeks on HFD. (c) Energy expenditure from individual animals plotted against lean 

body mass in 16-week old Slc17a6-Cre, Cadm1flox/flox mice (n=9) and littermate controls 

(n=10) after 10 weeks on HFD. (d) Energy expenditure from individual animals plotted 

against locomotor activity in 16-week old Slc17a6-Cre, Cadm1flox/flox mice (n=9) and 

littermate controls (n=10) after 10 weeks on HFD. (e) Western blot analysis of Cadm1 and 

Cadm2 in total and synaptosome-enriched lysates from hypothalamus of 12-week-old 

Slc17a6-Cre, Cadm1flox/flox crossed onto the Lepob/ob background (ob/MUT) mice and 

Lepob/ob littermates. (f) Body weight curves of ob/MUT mice (n=5) and Lepob/ob littermate 
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controls (n=9) from 4-12 weeks of age. (g) Random glucose and plasma insulin 

measurements in ob/MUT mice (n=4) and Lepob/ob littermate controls (n=8). (h) Glucose 

measurements during an ITT on 12-week old ob/MUT mice (n=5) and control Lepob/ob 

littermates (n=9). (i) qRT-PCR analysis of G6pc and Pck1 expression in liver of 12-week old 

ob/MUT mice (n=4) and control Lepob/ob littermates (n=4). (j) Quantification of pancreatic 

β-cell mass (βCM) in ob/MUT mice (n=3) and littermate Lepob/ob controls (n=4) from 12 

weeks of age. Immunohistochemistry of representative pancreatic sections from wild-type 

(WT), Lepob/ob and ob/MUT mice after detection of insulin (green). (k) Energy expenditure 

from individual animals plotted against lean body mass in 12-week old ob/MUT mice (n=5) 

and Lepob/ob littermates (n=6). (l) Quantification of food intake measured in 12-week old 

ob/MUT mice (n=5) and littermate Lepob/ob controls. (n=6). All results are presented as 

mean ± s.e.m. *P<0.05 and **P<0.01. Boxplots show median, lower and upper quartiles 

(box), and minimum and maximum (whiskers). Statistical analyses are described in the 

Methods and Supplementary Table 3.
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Figure 5. 
Targeting Cadm1 expression in the hippocampus and hypothalamus reduces body weight. 

(a) Representative coronal brain section of Cadm1 floxed mice after stereotaxic rAAV8-

CaMKIIa-mCherry-Cre (AAV-Cre) injection in the dentate gyrus (DG) and CA3 regions to 

target Cadm1 expression in hippocampal neurons. (b) Co-localization of mCherry with 

NeuN and Vglut2 after delivery of AAV- CaMKIIa-Cre to the hippocampus. (c) Body 

weight curves of floxed Cadm1 mice (flox/flox) (n=6) and control littermates (+/?) (n=6) 

after delivery of AAV-Cre to the hippocampus. (d) Energy expenditure from individual 

animals plotted against lean body mass in 9-week old floxed Cadm1 mice (flox/flox) (n=7) 

and control littermates (+/?) (n=6) after delivery of AAV-Cre to the hippocampus. (e) Energy 

expenditure from individual animals plotted against activity measured in 9-week old floxed 
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Cadm1 mice (flox/flox) (n=7) and control littermates (+/?) (n=6) after delivery of AAV-Cre 

to the hippocampus. (f) Quantification of food intake measured in floxed Cadm1 mice (flox/

flox) (n=7) and control littermates (+/?) (n=6) after delivery of AAV-Cre to the 

hippocampus. (g) Stereotactic delivery of a mCherry-expressing AAV to paraventricular 

nucleus (PVH) (red) reveals PVH efferent projections to eGFP-positive POMC neurons 

(green) within the Arc region of the hypothalamus. Dotted white circle outlines the cell body 

of an eGFP-POMC-positive cell, used for 3D reconstruction. (h) Surface rendering of Amira 

3D reconstruction of an eGFP-POMC-positive cell body receiving afferent input from the 

PVH. Cell is represented in red, while the synaptic input is color-coded, with the cold to 

warm colors spreading from 0 to 250nm distance between axonal varicosities and the soma 

(see color-coded horizontal bar for the distance definition). (i) Histograms show the number 

of anterograde AAV-mCherry-labelled PVH axonal varicosities found within the distance of 

250nm from the POMC-positive cell body. (j) Double immunostaining of Cadm1 and 

mCherry or synaptophysin (Syp) indicates that PVH regions provide Cadm1-positive 

efferent projections to the ARC region of hypothalamus. POMC-eGFP transgenic mice 

received an AAV-mCherry injection to the PVH, and were subsequently immunostained for 

Cadm1 (green) and mCherry (red) or synaptophysin (magenta). (k) Representative coronal 

brain section of Cadm1 floxed mice after stereotaxic injection of AAV8-CaMKIIa-mCherry-

Cre to hypothalamic neurons in the PVH, and ventromedial hypothalamus (VMH) regions to 

drive Cre expression to excitatory neurons in these regions. Section is showing mCherry 

expression and staining for vasopressin (green) and nuclei counterstained with DAPI (blue). 

(l) Confocal imaging of mCherry (red) and vasopressin (green). (m) Body weight curves of 

floxed Cadm1 mice (flox/flox) (n=9) and control littermates (+/?) (n=11) after delivery of 

AAV-Cre to the hypothalamus. (n) Quantification of energy expenditure (EE) adjusted to 

lean body mass (LBM) in 10-week old floxed Cadm1 mice (flox/flox) (n=10) and control 

littermates (+/?) (n=9) after delivery of AAV-Cre to the hypothalamus. (o) Quantification of 

energy expenditure (EE) adjusted to locomotor activity in 10-week old floxed Cadm1 mice 

(flox/flox) (n=10) and control littermates (+/?) (n=9) after delivery of AAV-Cre to the 

hypothalamus. (p) Quantification of food intake measured in floxed Cadm1 mice (flox/flox) 

(n=10) and control littermates (+/?) (n=9) after delivery of AAV-Cre to the hypothalamus. 

All results are presented as mean ± s.e.m. *P<0.05 and **P<0.01. Boxplots show median, 

lower and upper quartiles (box), and minimum and maximum (whiskers). Statistical 

analyses are described in the Methods and Supplementary Table 3.
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