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Abstract

Background: Chrysanthemum (Chrysanthemum morifolium) black spot disease caused by Alternaria alternata
is one of the plant’s most destructive diseases. Dual RNA-seq was performed to simultaneously assess their
transcriptomes to analyze the potential interaction mechanism between the two species, i.e., host and
pathogen.

Results: C. morifolium and A. alternata were subjected to dual RNA-seq at 1, 12, and 24 h after inoculation,
and differential expression genes (DEGs) in both species were identified. This analysis confirmed 153,532 DEGs
in chrysanthemum and 14,932 DEGs in A. alternata, which were involved in plant-fungal interactions and
phytohormone signaling. Fungal DEGs such as toxin synthesis related enzyme and cell wall degrading enzyme
genes played important roles during chrysanthemum infection. Moreover, a series of key genes highly
correlated with the early, middle, or late infection stage were identified, together with the regulatory network
of key genes annotated in the Plant Resistance Genes database (PRGdb) or Pathogen-Host Interactions
database (PHI-base). Highly correlated genes were identified at the late infection stage, expanding our
understanding of the interplay between C. morifolium and A. alternata. Additionally, six DEGs each from
chrysanthemum and A. alternata were selected for quantitative real-time PCR (qRT-PCR) assays to validate the
RNA-seq output.

Conclusions: Collectively, data obtained in this study enriches the resources available for research into the
interactions that exist between chrysanthemum and A. alternata, thereby providing a theoretical basis for the
development of new chrysanthemum cultivars with resistance to pathogen.
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Background
Chrysanthemum, one of the most commercially import-
ant ornamental crops worldwide, is widely used as cut
flowers, potted plants, and in landscaping. It carries a
long history of cultivation, high ornamental, edible, and
medicinal value [1]. Chrysanthemum is susceptible to
pathogen invasion during cultivation, especially when
grown on a large scale. Alternaria leaf spot is a major
disease of chrysanthemum that readily occurs at high
temperatures and during continuous rainy seasons. Fol-
lowing a symptomless early infection stage, small round
black spots form at the A. alternata invasion site, which
eventually expand into round, round-like, or irregular
spots covered with a dark mildew layer [2]. Currently,
the main method of A. alternata control in chrysanthe-
mum is via fungicide application. However, a prolonged
use of these chemicals can result in pathogen resistance
and environmental pollution. Thus, a better understand-
ing of the defense mechanisms employed by chrysanthe-
mum in response to A. alternata will help design new
and safer control strategies, as well as develop resistant
cultivars. By performing dual RNA-seq analysis on
chrysanthemum and A. alternata simultaneously, we can
understand changes in transcriptional expression related
to chrysanthemum defense against A. alternata. Further-
more, we can determine which A. alternata genes inter-
act with chrysanthemum and analyze the molecular
response of A. alternata-infected plants.
In response to external biotic stress, plants induce a

range of immune responses, including production of
physical barriers (e.g., keratin, wax, lignin, and special
stomatal structures) [3], chemical barriers (e.g., second-
ary metabolites with antibacterial properties) [4], and
molecular responses (e.g., hypersensitive response, pro-
duction of reactive oxygen species, and expression of
pathogen-related genes) [5]. High-throughput sequen-
cing technology, especially RNA-seq, tracks more precise
molecular changes in plants under biotic and abiotic
stress. This method has been widely applied in research
on plant-pathogen interactions in agricultural crops, in-
cluding in apple (Malus × domestica) [6], citrus [7], gape
(Vitis vinifera) [8], pear (Pyrus pyrifolia) [9], soybean
[10], and tomato (Solanum lycopersicum) [11]. Interac-
tions between hosts and A. alternata were also investi-
gated by RNA sequencing [2, 9, 12]. In a recent study, a
model was conducted to elucidate the response of chrys-
anthemum leaves to A. alternata infection at different
stages[2], which laid a foundation for the further re-
search on the interaction between chrysanthemum and
A. alternata. These previous investigations showed a
complex interaction between host and A. alternata.
Above all, ethylene (ET) signal transduction pathway,
calcium signal transduction pathway, and plant-
pathogen interaction pathway all were involved in the

response to A. alternata infection in C. morifolium.
Based on the above studies, we speculate that there is a
complex interaction between chrysanthemum and path-
ogens. However, most studies above were limited to a
unilateral transcription analysis of C. morifolium under
pathogenic stress, but the mutual attack and counterat-
tack response between chrysanthemum and pathogen
are poorly understood. More recently, dual RNA-seq has
become a powerful tool for comprehensively under-
standing host-pathogen interactions in vivo [13], that
can simultaneously capture pathogen-specific transcripts
during the infection process, provide a more complete
view of interactions [14], reveal biosynthetic and meta-
bolic pathways of crosstalk among participants, and spe-
cifically determine the dynamic expression profile of
genes associated with host-pathogen interactions [15].
To date, the mutual in vivo attack and counterattack re-
sponse between chrysanthemum and A. alternata are
poorly understood. The present study aimed to investi-
gate C. morifolium infected with A. alternata using dual
RNA-seq analysis.
RNA-seq libraries were constructed and identified

DEGs were further analyzed. The expression of fungal
genes were also investigated at three infection stages, in
an attempt to discover genes that could potentially
threaten the cultivation of chrysanthemum. Besides,
qRT-PCR assays were carried out to verify the reliability
of the dual RNA-seq data by gene primers listed in
Table S1. Through the study, we hoped to gain insights
into the interaction between C. morifolium and A. alter-
nata, and to investigate the potential pathogenesis of A.
alternata, as well as the defense mechanism of C. mori-
folium, which would benefit in inhibiting fungal patho-
genicity or breed resistant chrysanthemum cultivars.

Results
Statistical analysis of RNA-seq results
A. alternata morphology, symptom changes in inocu-
lated chrysanthemum leaves, and the dual RNA-seq ana-
lysis process are shown in Fig. 1. Three samples sets,
each with three biological replicates, were subjected to
dual RNA-seq at each time point, and 27 cDNA libraries
were generated: CK1h_1, CK1h_2, CK1h_3, CK12h_1,
CK12h_2, CK12h_3, CK24h_1, CK24h_2, CK24h_3,
Aa1h_1, Aa1h_2, Aa1h_3, Aa12h_1, Aa12h_2, Aa12h_3,
Aa24h_1, Aa24h_2, Aa24h_3, In1h_1, In1h_2, In1h_3,
In12h_1, In12h_2, In12h_3, In24h_1, In24h_2, In24h_3
(CK: control treatment, only chrysanthemum leaves; In:
inoculation treatment, contain chrysanthemum leaves
and A. alternata mycelium; Aa: only A. alternata myce-
lium). Table S2 lists the summary statistics of original
reads and filtered clean reads obtained from three repli-
cates at each time point, for mapping to the reference
genome of A. alternata. The average clean reads of the
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inoculated and control samples generated on average
108.93 Mb and 108.64 Mb clean reads, respectively, with
a read ratio ≥ 92.54 %. Moreover, at each time point, in-
oculated and control samples contained an average of
10.89 Gb and 10.86 Gb of clean bases, respectively.
Table S3 shows the summary statistics of original reads
and filtered clean reads of three replicates at each time
point, for chrysanthemum. Inoculated and control sam-
ples of chrysanthemum generated on average 41.20 Mb
and 108.76 Mb clean reads, respectively, all with 100 %
read ratio. Furthermore, at each time point, inoculated
and control samples contained average 4.12 Gb clean
bases and 10.88 Gb clean bases, respectively.
The clustered quality indicators of chrysanthemum are

shown in Table S4. Infected and control chrysanthemum
samples contained an average of 35,843 and 54,560 uni-
genes, respectively. The total length of chrysanthemum
library transcripts was ≥ 14,571,366, the average length
of the library was ≥ 642, and N50, N70, and N90 ≥ 865,
556, 296, respectively. The GC ratio was ≥ 40.45 %. Com-
parison of all unigenes to the seven major functional

databases for annotation, generated the following nu-
merical data: 89,889 (NR: 72.62 %), 55,679 (NT: 44.98 %),
61,156 (SwissProt: 49.41 %), 64,694 (KOG: 52.26 %), 64,
705 (KEGG: 52.27 %), 68,727 (GO: 55.52 %), and 60,671
(Pfam: 49.01 %) (Table S5). The average total mapping
percentage of A. alternata at each time point was higher
than 56.9 %, and the control group was higher than
86.53 % (Table S6). The reads that mapped to A. alter-
nata were also mapped to the chrysanthemum, and the
total mapping rate is lower than 0.20 % (Table S7). Due
to the low mapping rate to chrysanthemum, the reads
mapped to A. alternata were considered unique to A.
alternata.

Identification of DEGs
Comparison of gene expression between the ‘In’ and
‘CK’ sample series detected 27,029 DEGs (21,216 up-
regulated and 5,813 down-regulated) for In1h vs. CK1h,
76,932 DEGs (18,446 up-regulated and 58,486 down-
regulated) for In12h vs. CK12h, and 49,571 DEGs (29,
642 up-regulated and 19,929 down-regulated) for In24h
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Fig. 1 Inoculating, sampling, and dual RNA-seq analysis process. a Morphology of A. alternata, healthy chrysanthemum leaves, and A. alternata-
inoculated chrysanthemum leaves. Image showing leaf spots on the upper side at 1, 12, and 24 HPI. Scale bar = 1 cm; b Flow chart representing
dual RNA-seq analysis of mixed transcriptome obtained from chrysanthemum leaves infected with A. alternata
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vs. CK24h (Fig. 2a). Illustration of these results as a
Venn diagram clearly showed that both unique and
shared DEGs were identified between, and among times
points (Fig. 2c). For example, 18,318, 20,696, and 37,618
shared DEGs were detected in the 1 HPI (hours post in-
oculation) vs. 24 HPI, 1 HPI vs. 12 HPI, and 12 HPI vs.
24 HPI comparisons, respectively, while 15,960 DEGs
were found in the 1 HPI vs. 12 HPI vs. 24 HPI compari-
son (Fig. 2b). These results suggested that, as pathogen
infection progressed, an increasing number of genes be-
came involved in defense responses.
The degree of GO term enrichment was similar for the

three inoculation time points, and DEGs were divided into
54 functional categories according to biological processes
(25), cellular components (16), and molecular functions
(13). The most significantly enriched biological processes
were “regulation of transcription, DNA-templated”,
“carbohydrate metabolic process”, and “translation”; the
most significantly enriched cellular components were
“cytoplasm”, “ribosome”, and “chloroplast”, while “protein
serine/threonine kinase activity”, “nucleic acid binding”,
and “oxidoreductase activity” occupied the important

positions in molecular functions (Fig. 2d). Moreover, a
total of 30 KEGG pathways were significantly enriched at
1, 12, and 24 HPI, each with a varying number of DEGs
(Table S8). Maps with the highest DEG representation
were those for ‘plant-pathogen interactions’ (ko 04626),
followed by those for ‘plant hormone signal transduction’
(ko 04075), ‘MAPK signaling pathway-plant’ (ko 04016),
‘carbon metabolism’ (ko 01200) ‘protein processing in
endoplasmic reticulum’ (ko 04141), and ‘biosynthesis of
amino acids’ (ko01230). The above results indicated that
chrysanthemum infected with A. alternata involved a
series of defense strategies interacting with multiple path-
ways to jointly regulate and respond to pathogenic stress.
These strategies dominated at different infection stages.
Gene expression comparison between the ‘In’ and ‘Aa’

sample series found 4,027 DEGs (2,729 up-regulated and
1,298 down-regulated) for In1h vs. Aa1h, 5364 DEGs
(3697 up-regulated and 1667 down-regulated) for In12h
vs. Aa12h, and 5,541 DEGs (3572 up-regulated and 1969
down-regulated) for In24h vs. Aa24h (Fig. 2a). More-
over, analysis of Venn diagram showed 2,881, 3,066, 4,
176, and 2,584 shared DEGs in the 1 HPI vs. 24 HPI, 1
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HPI vs. 12 HPI, 12 HPI vs. 24 HPI, and 1 HPI vs. 12
HPI vs. 24 HPI comparisons (Fig. 2c).
The degree of GO term enrichment was similar among

the three stages of A. alternata infection, and DEGs
were divided into 38 functional categories, according to
biological processes (16), cellular components (12), and
molecular functions (10). “Metabolic process”, “organic
substance metabolic process”, and “cellular process”
were the most significantly enriched biological processes;
the most significantly enriched cellular components were
detected in “cell”, “cell part”, and “intracellular”; while
“hydrolase activity”, “organic cyclic compound binding”,
and “heterocyclic compound binding” occupied the im-
portant positions in molecular functions (Fig. 2e). More-
over, a total of 20 KEGG pathways were significantly
enriched at the three stages, but with varying numbers
of DEGs (Table S9). Maps with the highest DEGs repre-
sentation were for ‘biosynthesis of antibiotics’ (ko
01130), followed by ‘MAPK signaling pathway-yeast’ (ko
04011), ‘amino sugar and nucleotide sugar metabolism’
(ko 00520), and ‘glycine, serine and threonine metabol-
ism’ (ko 00260). The above results indicated that A.
alternata induced a variety of metabolic activities during
chrysanthemum infection, which generated energy and
toxic metabolites to attack host cells. These metabolic
processes played a key role in the interaction between
chrysanthemum and A. alternata.

DEGs involved in phytohormone signaling
Phytohormones, such as salicylic acid (SA), ET, jasmonic
acid (JA), brassionosteroid (BR), auxin (AUX), and absci-
sic acid (ABA), are widely involved, and play critical
regulatory roles in plant-pathogen interactions [16]. The
related DEGs of several hormone signaling pathways in
infected chrysanthemum leaves were analyzed. Several
DEGs involved in SA biosynthesis and signaling were
differentially expressed, e.g., three DEGs of NPR1 homo-
logues and TGA homologues were down-regulated at 1
HPI but significantly up-regulated at 24 HPI; two DEGs
homologous to PR1 were up-regulated at 1 HPI, and one
of them was up-regulated at 24 HPI. All DEGs homolo-
gous to JAZ were up-regulated during the whole process,
and those MYC2 homologous were significantly up-
regulated at 24 HPI. Several genes known to be ET-
responsive were up-regulated, including EBF1/2 homo-
logues at 24 HPI, EIN3 homologues at 1 HPI and 24
HPI, and ERF1/2 homologues, which exhibited change
by a higher multiple. Most DEGs in AUX signaling, such
as AUX/IAA, SAUR and auxin-responsive GH3 homo-
logues also showed notably up-regulated expression.
Previous studies also shown that BR comprises a unique
class of growth-promoting steroid hormones, known to
be key regulators of plant immunity [17]. DEGs encod-
ing BR signaling cascades included BAK1, BSK, TCH4,

and BZR1/2. Except for DEGs homologous to BZR1/2,
that responded to A. alternata at 1 HPI, but were down-
regulated by a high multiple at 12 HPI; the remaining
DEGs belonging to the BR signaling cascades, expression
level gradually increased at three infection stages. Finally,
DEGs involved in ABA signaling pathway, such as PYR/
PYL, PP2C, and SnRK2 homologues, were all up-
regulated at 24 HPI; ABF homologue was up-regulated
at 1 HPI and 24 HPI, but down-regulated at 12 HPI, like
BZR1/2 homologue. The schematic diagram of the rele-
vant hormone pathways is shown in Fig. 3a.

DEGs involved in plant-fungal interaction
During biotic stress, chrysanthemum DEGs encoding
CDPK (calcium-dependent protein kinase) and Rbohs
(respiratory explosive oxidase homologs) were signifi-
cantly up-regulated, which were involved in hypersensi-
tive reaction (HR) and cell wall reinforcement. DEGs
encoding Pathogenesis-related (PR) proteins, such as
chitinase (PR3), were generally up-regulated, while the
DEGs encoding β-1,3-glucanase (PR2) were specially
down-regulated at 1 HPI, but significantly up-regulated
at 12 HPI, with a high multiple (> 6) notably induced at
24 HPI. In addition, most DEGs encoding potential cyc-
lic nucleotide gated channels (CNGCs) were up-
regulated at 24 HPI, and those encoding CaM/CMLs
showed similar trends. Furthermore, several downstream
defense-related PR genes, such as PR9 (peroxidase),
PR10 (ribonuclease), and PR14 (lipid-transfer protein),
were induced and significantly up-regulated at three
time points (Fig. 3b).

DEGs related to virulence in A. alternata
Alternaria spp. produce a variety of secondary metabo-
lites during the pathogenic process, and more than 70
compounds with significant toxicity had been isolated
[18], with important roles in fungal virulence. Most of
these toxins are versatile compounds of polyketides and
non-ribosomal peptides, which are usually generated by
NRPS and PKS, respectively [19]. We identified three
NRPS and seven PKS homologous genes in A. alternata,
all showing up-regulated expression at three inoculation
stages. NRPS homologue (CC77DRAFT_1065195) pre-
sented a significantly higher multiple (> 6) at 24 HPI
(Fig. 4). A previous study had shown that pksJ and pksH
were correlated with the production of alternariol and
alternariol-9-methyl ether [20]. We also identified the
pksJ homolog (CC77DRAFT_1058721) and pksH homo-
log (CC77DRAFT_976935), both were up-regulated dur-
ing A. alternata infection (Fig. 4). Besides, A. alternata
also expressed some genes involved in detoxification and
stress tolerance. Among them, DEGs encoding catalase
peroxidase (CAT), superoxide dismutase (SOD), and
glutathione S-transferase (GST) were all significantly up-
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regulated, which are essential for pathogens to respond
to host defenses (Fig. 4).
Furthermore, fungal cell wall degrading enzymes

(CAZymes) can promote degradation of the plant cell
wall, penetration into the host tissue, and adhesion layer
formation [21]. CAZymes consist of four functional clas-
ses: glycoside hydrolases (GHs), glycosyl transferases
(GTs), polysaccharide lyases (PLs), and carbohydrate es-
terases (CEs), classified according to their catalytic mod-
ules or functional domains [21]. Expression levels were
also investigated during the interaction between A. alter-
nata and chrysanthemum. There were thirteen DEGs of
GHs, with most of them significantly up-regulated at the
three time points; two DEGs of GTs, one up-regulated

and the other down-regulated. Only one DEG of PLs
was found, and its expression showed an obviously up-
ward trend. Like PLs, only one CE displayed higher ex-
pression (Fig. 4).

Weighted gene co-expression network analysis (WGCNA)
Weighted gene co-expression network analysis (WGCN
A) was carried out to identify genes related to pheno-
types and investigated the co-expression networks to
elucidate the interaction network between C. morifolium
and A. alternata. Ultimately, 17 and 29 gene co-
expression modules were discovered in C. morifolium
and A. alternata, respectively, shown in Fig. 5a and b.
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Genes from the ‘Cm_brown’, ‘Cm_midnightblue’,
‘Cm_salmon’, ‘Cm_greenyellow’, ‘Cm_lightcyan’, ‘Aa_
magenta’, ‘Aa_yellow’, ‘Aa_brown’, ‘Aa_skyblue’ and ‘Aa_
black’ modules were highly correlated with the traits ob-
served at three infection stages (Fig. 5a, b). KEGG anno-
tation analyses were performed to further explore what
pathways the genes from the modules above were in-
volved in. Plant cell walls can act as a natural physical
barrier against pathogens [21]. The cuticle is the first
layer of the cell wall that prevents pathogens from invad-
ing the cells [22], and usually consists of a horny and a
waxy protective film. Its biosynthesis involves several
genes, including wax-ester synthase/diacylglycerol O-
acyltransferase (WSD) [23], and fatty acid omega-
hydroxy dehydrogenase (HTH) [24]. In the ‘Cm_tur-
quoise’ module, WSD and HTH homologues in C. mori-
folium were significantly up-regulated, and several of
these gene homologues (e.g., Unigene36512_All, Uni-
gene36513_All, and CL1059.Contig1_All) displayed an
expression fold-change > 10 (Figure S1). The above ana-
lysis showed that the cuticle played a positive role in the
chrysanthemum defense against A. alternata. As reported,
pectin lyase, pectate lyase, and xylanase can break down
the pectin and xylans present in the plant cell wall. In the
‘Aa_black’ and ‘Aa_green’ modules, lyase homologues
(e.g., CC77DRAFT_1043109, CC77DRAFT_1048882, and
CC77DRAFT_167134) exhibited a high expression level in
A. alternata during infection (Figure S1).

Highly correlated modules and key genes identification
The relationship between module and trait allowed us to
evaluate the correlation coefficient between modules
from C. morifolium and A. alternata. A network of C.
morifolium and A. alternata modules were shown in
Fig. 6a, and highly correlated modules (r ≥ 0.8 and p-
value < 0.05) were linked by a line (Fig. 6a). In the early
infection stage, three C. morifolium gene modules (‘Cm_
brown’, ‘Cm_midnightblue’, and ‘Cm_salmon’) and five
A. alternata modules (‘Aa_magenta’, ‘Aa_yellow’, ‘Aa_
brown’, ‘Aa_darkorange’, and ‘Aa_pink’) were highly cor-
related; in the middle infection stage, one C. morifolium
gene module (‘Cm_greenyellow’) and three A. alternata
modules (‘Aa_royalblue’, ‘Aa_black’, and ‘Aa_green’)
were highly correlated; in the late infection stage, two C.
morifolium gene modules (‘Cm_turquoise’ and ‘Cm_
lightcyan’) and four A. alternata modules (‘Aa_steelblue’,
‘Aa_grey60’, ‘Aa_black’, and ‘Aa_green’) were highly cor-
related (Fig. 6b). Gene significance (value ≥ 0.8) and con-
nectivity (top 20 %) were used together to identify key
genes in each of the modules above (Fig. 6c, d).
Based on gene transcription level, we performed correl-

ation coefficient analyses between genes from highly cor-
related modules in C. morifolium and A. alternata to
identify the interplay genes. From modules that highly
correlated with the late infection stage, several genes were
identified and a network of highly correlated genes (r ≥ 0.8
and p-value < 0.05) were linked by a line, as shown in

a b Module−trait relationships in A. alternata
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Module−trait relationships in C. morifolium
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Fig. 5 WGCNA results revealed modules highly correlated with phenotype traits in C. morifolium (a) and A. alternata (b)
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Fig. 6 Correlation analysis between modules from C. morifolium and A. alternata. a Network of C. morifolium and A. alternata modules. Highly
correlated modules (r≥ 0.8 and p-value < 0.05) are linked by a line; b Network of C. morifolium and A. alternata modules at different stages of
infection; c, d Key gene identification in the highly correlated modules of C. morifolium (c) and A. alternata (d)
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Fig. 7a. Most of these genes were up-regulated with the
spread of A. alternata (Fig. 7b, c, d, e).

Regulatory network of key genes annotated in PPI and
PRG databases
PRGdb (http://prgdb.org) is a bioinformatics platform for
plant resistance gene analysis [25]. PHI-base (www.phi-
base.org) contains molecular and biological information
on genes which had been proven to affect the outcome of
host-pathogen interactions [26]. Key genes from the
highly correlated modules were examined for further

analyses. Seventy-five key genes from A. alternata were
annotated by PHI-base and twelve key genes were anno-
tated by PRGdb. The regulatory network of these eighty-
seven key genes was shown in Fig. 8. Notably, two disease
resistance genes, RGA1-like homologs (CL2806.Contig1_
All and CL2806.Contig4_All), were identified in the late
infection stage. Two transcription factors (CL14283.Con-
tig1_All and Unigene25854_All) were also identified, and
may play important roles in response to A. alternata in-
fection in C. morifolium (Fig. 8). Additionally, ACL2
homolog (CC77DRAFT_784023), ACL1 homolog
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Fig. 7 Gene interplay between C. morifolium and A. alternata at the late infection stage. a Network genes from C. morifolium and A. alternata in
the late infection stage. Highly correlated genes (r ≥ 0.8 and p-value < 0.05) are linked by a line; b-e. Heatmap of highly correlated genes from C.
morifolium and A. alternata at the late infection stage
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Fig. 8 Co-expression networks of key genes from C. morifolium and A. alternata at the three stages of infection
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(CC77DRAFT_986135), and BUF1 homolog
(CC77DRAFT_528893) were identified, which were pre-
dicted to influence the virulence of A. alternata (Fig. 8).

Validation of RNA-seq data by qRT-PCR
To confirm the reliability of the generated dual RNA-seq
data, the expression of 12 DEGs were analyzed using
qRT-PCR assays, of which six were derived from

chrysanthemum, (CL11098.Contig2_All, CL1653.Contig1_
All, CL5572.Contig1_All, Unigene47090_All, CL3907.Con-
tig2_All and CL11265.Contig3_All; Fig. 9a), and six were
from A. alternata (CC77DRAFT_945175, CC77DRAFT_
1044312, CC77DRAFT_1036704, CC77DRAFT_598231,
CC77DRAFT_779096 and CC77DRAFT_950634; Fig. 9b).
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patterns. The correlation coefficients between qRT-
PCR and RNA-seq of the 12 DEGs were all ≥ 0.85.
Minor discrepancies regarding the expression levels
might suggest a difference in sensitivity between the
two methods. These results highlighted the reliability
of the RNA-seq data.

Discussion
Dual RNA-seq of chrysanthemum leaves infected with
A. alternata was performed to detect the occurrence of
any dynamic changes in the plant tissue, which would
provide a broader understanding of the mechanism of
host-pathogen interaction between the two species. This
study compared the gene expression of A. alternata,
chrysanthemum leaves, and chrysanthemum leaves in-
fected with A. alternata at three infection stages, i.e., the
early (no lesion formation), middle (lesion formation),
and late (lesion expansion) infection stage. A total of
153,532 and 14,932 DEGs were identified in chrysanthe-
mum and A. alternata, respectively. The analysis of
these DEGs focused on induced pathways in chrysanthe-
mum or A. alternata during infection.
Many DEGs of chrysanthemum were enriched in the

“Plant-pathogen interaction” pathway. DEGs encoding
CDPK and Rbohs were also identified, that were accom-
panied by ROS accumulation during infection, resulting
in HR and cell wall enhancement. Several enzyme sys-
tems had been reported to characterize oxidative bursts
of HR. For instance, ascorbic acid (ASC) can act in co-
ordination with glutathione (GSH) and other important
enzymatic antioxidants in the AsA-GSH cycle to provide
an appropriate redox environment required to regulate
various defense pathways, such as the expression of
defense genes through activation of the NPR1 regulatory
transcription factor, strengthening of cell walls, and
modulation of defense-hormonal signal networks [27].
Significant up-regulation of DEGs encoding ASC and
GSH were also detected in the generated data (Figure
S2), suggesting that the ASC and GSH systems may be
induced as part of a transduction pathway that triggered
defense responses and sequential cell death. Calmodulin
plays a significant role in sensing and transducing
changes in cellular Ca2+ concentration in response to
several biotic and abiotic stresses [28]. During the inter-
action between C. morifolium and A. alternata, a series
of defensive signals were also activated, including DEGs
encoding CaM/CMLs, which were significantly up-
regulated. In addition, the chitinase can hydrolyze the
chitin component of the pathogen cell wall, and release
elicitors for defense responses [29]. Activities of the two
chitinases in infected chrysanthemum leaves were sig-
nificantly higher than control leaves, highlighting their
importance in defending against A. alternata in C.
morifolium.

Plant hormones play important roles in regulating de-
velopmental processes and signaling networks involved
in the plant’s response to a wide range of biotic and abi-
otic stresses [30]. ET signaling components, such as
EIN2, EIN3, EBF1/2, ERF1/2, are involved in the regula-
tion of cell death and defense responses [31]. JA signal-
ing is systemically activated in response to various biotic
and abiotic stresses, increasing the resistance of host
plants to some pathogens [32]. SA also plays an import-
ant role in resistance and defense induction in response
to pathogen attacks [33]. In this study, more than twenty
DEGs involved in ET, JA, and SA metabolism were sig-
nificantly up-regulated at 24 HPI. Their interplay in-
duced defense responses to A. alternata infection. In the
present study, several DEGs associated with ABA and
BR signaling were up-regulated in the chrysanthemum
response to A. alternata infection, suggesting that BR
and ABA could be participants in this regulatory re-
sponse. The participation and characteristics of DEGs in
complex phytohormone signaling pathways indicate that
these signals were not only simple linear and isolated
cascades, but also cooperated with one another in re-
sponse to A. alternata infection.
Most importantly, chrysanthemum developed a series

of immunity responses when inoculated with A. alter-
nata, during which time the pathogen secreted effectors
to suppress the host plant’s immunity response. Several
A. alternata genes, beneficial to the pathogen’s infection
and colonization were also significantly induced during
infecting chrysanthemum leaves. The tangerine patho-
type of A. alternata produces host-selective ACT-toxin,
the biosynthesis of which is essentially encoded by a
polyketide synthase gene that is also required for patho-
genicity of this fungus [34]. NRPS and cytochrome P450
protein TES1 are required for tentoxin biosynthesis in A.
alternata strain ZJ33 [35], while the PKS gene ACRTS2
is responsible for host-selective ACR-Toxin biosynthesis
in the rough lemon pathotype of A. alternata [36]. In
the present study, DEGs corresponding to NRPS and
PKS homologs were also identified, confirming the im-
portance of this toxin synthesis during A. alternata inva-
sion into chrysanthemum. Several studies had also
demonstrated that effector proteins can affect plant im-
mune mechanisms by regulating plant gene transcription
[37], affecting the secretion of and degrading plant
immune-related proteins [38–41], affecting the connec-
tion of host cell walls and cell membranes [42, 43], and
regulating plant hormone synthesis and related signaling
pathways [44–46]. Extracellular degrading enzymes pro-
duced by plant pathogenic fungi are important types of
fungal effectors [47]. Our research revealed that a series
of degrading enzyme gene homologs were up-regulated,
which may be investigated in the future to elucidate the
pathogenic mechanism of A. alternata.
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To further determine the interaction mechanism be-
tween C. morifolium and A. alternata during the differ-
ent (early, middle, and late) infection stage, WGCNA
and correlation coefficient analysis were carried out. A
series of highly correlated modules between C. morifo-
lium and A. alternata were identified. PRGdb is a bio-
informatics platform for plant resistance gene analysis
[25], and PHI-base contains molecular and biological in-
formation on genes that have been proven to affect the
outcome of pathogen-host interactions [26]. The regula-
tory network of key genes annotated in PRGdb or PHI-
base at three infection stages were visualized using the
Cytoscape software. For example, the regulatory net-
works of two disease resistance genes, RGA1-like homo-
logs, were identified at the late infection stage. The
ACL1, ACL2, and BUF1 homologs were also identified,
which were predicted to influence the virulence of A.
alternata. Transcription factors are important players in
the response to pathogen invasion [48, 49]. The regula-
tory network of two transcription factors (CL14283.Con-
tig1_All and Unigene25854_All) were also identified,
which may play important roles in response to A. alter-
nata infection in C. morifolium. Moreover, using the
correlation coefficient between key genes of C. morifo-
lium and A. alternata, highly correlated genes were
identified, reinforcing our understanding of the interplay
between the two species.
Currently, the interaction mechanism between chrys-

anthemum and A. alternata is not fully understood, and
the function of effector proteins from A. alternata are
unknown too. The discovery of A. alternata toxin syn-
thesis genes and candidate effectors will not only im-
prove our understanding of A. alternata pathogenesis,
but also perhaps more significantly, provide valuable re-
sources for subsequent investigations into plant-
pathogen interactions. The present study has designed a
powerful methodology for mixed transcriptome analysis
of host plant and pathogen, which has established a
foundation for comprehensive research on the pathogen-
esis of chrysanthemum black spot disease.

Conclusions
In the study, A. alternata, chrysanthemum leaves, and
chrysanthemum leaves infected with A. alternata at
three infection stages, i.e., the early (no lesion forma-
tion), middle (lesion formation), and late (lesion expan-
sion) infection stages were sampled for dual RNA-seq. A
total of 153,532 and 14,932 DEGs were identified in
chrysanthemum and A. alternata, respectively. Chrysan-
themum employed multiple pathways to jointly regulate
and respond to pathogenic stress. A. alternata induced a
variety of metabolic activities during infection, that gen-
erated energy and toxic metabolites to attack host cells.
The discovery of A. alternata toxin synthesis genes and

candidate effectors will not only improve our under-
standing of A. alternata pathogenesis, but also perhaps
more significantly, provide valuable resources for subse-
quent investigations into plant-pathogen interactions.
Meanwhile, WGCNA and correlation coefficient analysis
were carried out to identify the regulatory network of
key genes from highly correlated modules at the three
infection stages. Coefficient analyses showed that several
genes were highly correlated between C. morifolium and
A. alternata at the late infection stage, which provide a
broader understanding of the interaction mechanisms
between two species. This work gains insights into the
interaction between C. morifolium and A. alternata and
elucidate the potential pathogenesis of A. alternata, as
well as the defense mechanism of C. morifolium, which
would benefit in inhibiting fungal pathogenicity or breed
resistant chrysanthemum cultivars.

Methods
Plant materials and A. alternata culture
Chrysanthemum cultivar ‘Dayangju’ was obtained from
the Chrysanthemum Germplasm Resource Preserving
Centre of Nanjing Agricultural University, China. Root-
ing seedlings of approximately similar growth were
transplanted into a mixed matrix of 3:1 vermiculite and
perlite without add fertilizer. Growth was under 16 h
photoperiod, day and night temperatures set to 25 ℃

and 22 ℃ respectively, and relative humidity maintained
at 68–75 % [1, 2]. The test strain A. alternata was iso-
lated and identified from typical diseased leaves of
‘Fubaiju’, a cultivar found in the chrysanthemum tea
producing area of Futianhe Town, Macheng City, Hubei
Province, China in 2017. And A. alternata was stored in
15 % v/v glycerol, and held in a freezer at − 80 °C. The
test strain was transferred to plates containing PDA (Po-
tato Dextrose Agar) solid medium on a sterile bench,
and cultured at 25 ℃ before inoculation assays.

A. alternata inoculation and sampling
Inoculation assays were performed as previously de-
scribed [2]. The strain A. alternata was cultured in 200
mL of PDW (Potato Dextrose Water) liquid medium on
a 200 r/min shaker for 24 h. Then, 1 mL homogenous
mycelium suspension was collected (the amount of my-
celium contained in each milliliter of suspension was
constant), used a fine-bristle brush to pick out the myce-
lium to inoculate it on four positions on the leaves (up,
down, left, and right on leaves). Each plant was inocu-
lated with two leaves, and each leaf was inoculated with
four inoculation sites as shown in Fig. 1a. And every in-
oculation site was round, about 1 cm in diameter. The
above procedure can ensure that each site was inocu-
lated with a quantitative amount of mycelium. The treat-
ment and control groups were cultured in an incubator
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maintained at 28 ℃ and 90 % humidity in the dark.
Once the inoculated leaves reached 1, 12, and 24 HPI,
representing the three infection stages, the groups were
sampled simultaneously. Leaf blocks in each sample
were taken from different leaves. Specifically, at each in-
oculation time point, in the inoculated group, a total of
48 small leaf blocks were collected from 6 plants, and 10
small leaf blocks were randomly selected from them
constituted 1 biological replicate. A total of 3 times se-
lections constituted 3 biological replicates. The control
group (without fungus) were similarly sampled in corre-
sponding areas of chrysanthemum leaves. During chrys-
anthemum sampling at the three time points, A.
alternata mycelium was simultaneously sampled on a
clean bench. Samples of inoculated and control chrysan-
themum leaves, as well as A. alternata mycelium were
all collected in three replicates, frozen in liquid nitrogen
and stored at − 80 °C for dual RNA-seq.

RNA extraction, library construction, and sequencing
Total RNA was isolated from each sample using the
RNA-iso Plus reagent (TaKaRa Bio, Tokyo, Japan) fol-
lowing the manufacturer’s protocol. To assess the integ-
rity, the concentration was tested using a Nano Drop
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA), and the quality was tested using the Agilent
2100 Bio analyzer (Agilent Technologies, Santa Clara,
CA, USA) to include RIN value, 28 S/18S ratio, and frag-
ment length distribution. mRNA was enriched using
magnetic beads with Oligo (dT); the RNA was fragmen-
ted, and reverse-transcribed to double-stranded cDNA
using N6 random primers. The synthesized cDNA was
subjected to end-repair followed by 3′ adenylation, and
adaptors were ligated to the ends of these 3′ adenylated
cDNA fragments. The ligation products were purified,
and PCR amplification was performed to enrich the
purified cDNA template, using PCR primers. Lastly, the
amplicons were denatured by heat, and single-stranded
DNA was cyclized using splint oligos and DNA ligase.
The generated libraries were then used for sequencing
on the BGISEQ-500 platform, and the products labelled
as ‘raw reads’ [50]. Twenty-seven sets of original read-
ings were obtained, corresponding to control chrysan-
themum leaf samples (CK1h, CK12h, CK24h; hereafter
named the ‘CK’ sample series), C. morifolium leaves in-
fected with A. alternata (In1h, In12h, In24h; hereafter
named the ‘In’ sample series), A. alternata (Aa1h,
Aa12h, Aa24h; hereafter named the ‘Aa’ sample series),
and with three replicates for per sample.

Raw reads mapping and functional annotation
After sequencing, the raw data of all the samples were
filtered to remove low quality reads, including adaptor
sequences, low quality sequences, and unknown

nucleotides, and obtain clean reads. After filtering, clean
reads were compared to A. alternata genome. After re-
moving the data that is determined to be the A. alter-
nata genome, the remaining data were regarded as the
clean data of chrysanthemum. Read ratio is the percent-
age of clean reads of the total reads used for transcrip-
tome analysis of every species. As the reference genome
of chrysanthemum was unpublished, the remaining data
defaulted to the chrysanthemum part data were used for
the de novo assembly to get the chrysanthemum refer-
ence sequence. Firstly, all generated raw sequencing
reads were filtered using the SOAPnuke software, to re-
move low quality reads, including adaptor sequences,
low quality sequences (where the percentage of low-
quality bases with a value ≤ 10 was more than 20 % in
one read), and unknown nucleotides (where unknown
bases were more than 5 %), and obtain clean reads. Sec-
ondly, clean reads with overlap joints were combined to
form longer fragments, i.e., contigs. Finally, clean reads
were assembled using Trinity (v2.0.6), and transcripts
were clustered using TGICL, to remove redundancy, and
obtain unigenes for functional annotation. In the case of
multiple samples, TGICL was used again to perform
clustering on each sample’s unigenes to remove redun-
dancy and obtain the final unigenes for subsequent ana-
lysis [51]. Clean reads were aligned to a reference gene
sequence using Bowtie2, and the expression level of the
unigene was calculated via the FPKM (fragments per
kilobase of transcript per million fragments mapped)
method [52]. DEGs were defined according to a thresh-
old of Q-values ≤ 0.001 [53] and an absolute log2 ratio
value ≥ 1, among the three biological replicates. Se-
quences were compared with the NR (http://ncbi.nlm.
nih.gov/blast/db), NT (http://ncbi.nlm.nih.gov/blast/db),
Swiss-Prot (www.uniprot.org), Pfam (http://pfam.xfam.
org), KEGG (http://www.genome.jp/kegg), KOG (https://
www.ncbi .nlm.nih .gov/COG/) , and GO (http ://
geneontology.org) databases, in order to identify and an-
notate the generated DEGs [54, 55]. GO categories were
assigned to all genes via a BLASTX hit using the Blas-
t2GO software. KEGG was used to map sequences to
pathways, and the KOBAS [56] software was used to test
the statistical enrichment of DEGs identified in the
KEGG pathways. Functions with a Q-value ≤ 0.05 were
generally considered to be significantly enriched. Tran-
scription factor prediction was determined by using
getorf (http://emboss.sourceforge.net/apps/cvs/emboss/
apps/getorf.html) to find each DEG’s ORF, which was
then aligned to TF domains (from PlntfDB) using
hmmsearch (http://hmmer.org) [57]. As the A. alternata
genome was published, clean reads (obtained as de-
scribed above) were aligned to reference genome se-
quences (https://www.ncbi.nlm.nih.gov/genome/11201
?genome_assembly_id=275364) by hierarchical indexing
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for spliced alignment of transcripts in the HISAT (Hier-
archical Indexing for Spliced Alignment of Transcripts)
application [58]. The reads mapped to A. alternata were
also mapped to chrysanthemum by HISAT software [58]
to measure whether the reads above were unique to A.
alternata. A. alternata DEGs were identified using a
method like that described for chrysanthemum. The
DIAMOND software (https://github.com/bbuchfink/
diamond) was used to annotate the DEG comparison to
the PHI-base, and annotation results were further
screened based on conditions where query coverage ≥
50 % and identity ≥ 40 %, in order to find potentially
pathogenic genes in A. alternata. At the same time, GO
classification and KEGG pathway enrichment were also
performed [59].

Weighted gene co-expression network analysis
Weighted gene co-expression network analysis (WGCN
A) was performed to identify key genes using the
WGCNA R package [60]. The adjacency matrix was
built based on normalized FPKM values, following which
modules containing transcripts with similar expression
patterns were created, and key genes for these modules
were calculated. Gene significance (value > = 0.8) and
connectivity (top 20 %) were used to identify hub genes.
Co-expression networks were visualized using Cytoscape
software [61]. Highly correlated modules and genes were
calculated by correlation coefficient, and defined accord-
ing to a threshold of r ≥ 0.8 and a p-value < 0.05.

qRT-PCR validation and analysis
RNA-seq results were validated by selecting 12 DEGs to
examine the consistency of their expression profiles.
Total RNA (1 mg) was reverse transcribed using the
Prime Script™ RT Master Mix (Perfect Real Time)
(Takara) following the manufacturer’s instructions.
Gene-specific primers for qRT-PCR analysis were de-
signed using the Primer 5.0 software. The chrysanthe-
mum CmEF1α gene was used as a reference, and gene
primers were listed in Table S1. Three biological repli-
cates were performed per sample, and qRT-PCR was
performed as previously described by Li et al. [1]. The
relative expression level of each sample was calculated
using the 2−ΔΔCT method [62].
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