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MHC molecule plays a key role in immunology, and the molecule binding reaction with peptide is an important prerequisite for T
cell immunity induced. MHC II molecules do not have conserved residues, so they appear as open grooves. As a consequence, this
will increase the difficulty in predicting MHC II molecules binding peptides. In this paper, we aim to propose a novel prediction
method for MHC IT molecules binding peptides. First, we calculate sequence similarity and structural similarity between different
MHC II molecules. Then, we reorder pseudosequences according to descending similarity values and use a weight calculation
formula to calculate new pocket profiles. Finally, we use three scoring functions to predict binding cores and evaluate the accuracy
of prediction to judge performance of each scoring function. In the experiment, we set a parameter « in the weight formula. By
changing « value, we can observe different performances of each scoring function. We compare our method with the best function
to some popular prediction methods and ultimately find that our method outperforms them in identifying binding cores of HLA-

DR molecules.

1. Introduction

Histocompatibility refers to the degree of antigenic similarity
between the tissues of different individuals, which determines
the acceptance or rejection of allografts. Transplantation
antigen or histocompatibility antigen is the cause of rejection
of allografts [1,2]. MHC (Major Histocompatibility Complex)
is present on the chromosome encoding a major histocom-
patibility antigen, mutual recognition between control cells,
and the regulation of immune response.

MHC molecule plays a key role in immunology, and
the molecule binding reaction with peptide is an important
prerequisite for T cell immunity induced [2, 3]. By detecting
a wide variety of microbial pathogens, the immune system
protects host against diseases. Because of this, the binding
prediction of MHC molecules with peptides has always been a
hot topic in bioinformatics. Many researches in this field not
only help us to understand the process of immune but also
develop the work of vaccine design assisted by computers.

MHC genes produce two different types of molecules,
which are MHC I molecules and MHC II molecules [1, 2].

MHC I molecules contain two separate polypeptide chains:
the MHC « chain encoded by MHC genes and the MHC
B chain encoded by non-MHC genes [4, 5]. MHC I class
molecules are expressed in almost all eukaryotic cell surfaces,
recognized by CD8+ cells. MHC II class molecules consist
of two non-covalently linked polypeptide chains, namely, «
chain and f chain. MHC II class molecules are expressed
on antigen-presenting cells in general. Foreign MHC II
antigens only capture and present on the surface of antigen-
presenting cells (APC) TH cell [6]. After that, APC secretes
large amounts of cytoplasm, activating cell invasion defensed
behavior. Only the binding of antigen peptides and MHC II
class molecules can activate CD4+ TH cells (helper T cells)
[7]. Then, the activated TH cells would differentiate into
effector cells and activate the immune response.

The structures of MHC I molecules and MHC II
molecules slightly differ in the binding grooves [5]. Close
grooves form on the binding of MHC I molecules and
antigenic peptides. On the other hand, MHC II molecules
do not have conserved residues, so they appear as open
grooves. As a consequence, this will increase the difficulty in
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predicting MHC II molecules binding peptides [7]. In this
paper, we aim to solve more difficult problem of predicting
MHC II binding peptides.

The pioneering and most popular pan-specific approach
for MHC II binding prediction is the TEPITOPE method
[8], and basic idea is the HLA-DR allele having identi-
cal pseudosequence. The same pocket will share the same
quantitative profile. By using multiple instance learning,
the MHCIIMulti method [9] can predict more than 500
HLA-DR molecules. Transforming each DRB allele into a
pseudosequence with 21 amino acids and using the SMM-
align method to identify binding cores, the NetMHCIIpan
method [5] gets an accurate prediction by using an artificial
neural network algorithm [10, 11]. Combining NN-align and
NetMHCpan with NetMHClIpan [9, 12], the MULTIPRED2
method [13-15] can get a perfect prediction for 1077 HLA-I
and HLA-ITI alleles and 26 HLA supertypes.

In this paper, we propose a novel prediction method
for predicting MHC II molecules binding peptides. First,
we calculate sequence similarity and structural similarity
between different MHC molecules [13, 16]. Then, we reorder
pseudosequences according to descending similarity values
and use a weight calculation formula to calculate new pocket
profiles. Finally, we use three scoring functions to predict
binding cores and evaluate the accuracy of prediction to
judge performance of each scoring function [17, 18]. In the
experiments, we set a parameter « in the weight formula.
By changing « value, we can observe different performances
of each of the scoring functions. We compare our method
with the best function to some popular prediction methods
and ultimately find that our method outperforms them in
identifying binding cores of HLA-DR molecule [19]. The
work would suggest a novel computational strategy for special
protein identification instead of traditional machine learning
based methods [20, 21].

2. Materials and Methods

2.1. Data Sets. We find 39 MHC molecules and peptides
binding complexes from Protein Data Bank (http://www.rcsb
.org/pdb/search/), which constitutes the data set used in this
paper. In this data set, lengths are between 11 and 23, and
we can find polypeptide-binding sites, namely, binding cores.
Table 1 lists the details of these 39 MHC molecules and
peptide binding complexes [14, 22, 23].

In Table 1, the first column is PDB ID of 39 complexes
from PDB; the second column is the name of corresponding
alleles from 39 complexes; the third column is the corre-
sponding polypeptide sequences, in which the enlarged nine
positions are the binding cores.

2.2. Methods. There are thousands of allele variants in nature
[2, 4]. It is absolutely impossible to measure the binding
specificity one by one. Motivated by this perspective, we
propose a new computational method to predict the binding
specificity of peptides without any biochemical experiment,
which combines the sequence and structural information of
these known specificity-binding MHC molecules, as showed
in Figure 1. We evaluate the method on all general HLA-DRB
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TABLE I: Details of 39 MHC molecules and peptide binding
complexes.

PDBID  DRBallele Peptide sequence

1AQD DRB1"0101 VGSDWRFLRGYHQYA
1IPYW DRB1"0101 XFVKQNAAALX

IKLG DRB1"0101 GELIGILNAAKVPAD
1IKLU DRB1"0101 GELIGTLNAAKVPAD
2FSE DRB1"0101 AGFKGEQGPKGEPG
1SJH DRB1"0101 PEVIPMFSALSEG

ISJE DRB1"0101 PEVIPMFSALSEGATP
1T5W DRB1"0101 AAYSDQATPLLLSPR
1T5X DRBI*0101 AAYSDQATPLLLSPR
2JAN DRB1"0101 GELIGTLNAAKVPAD
2IAM DRB1"0101 GELIGILNAAKVPAD
2IPK DRB1"0101 XPKWVKQNTLKLAT
IFYT DRB1"0101 PKYVKQNTLKLAT
1R51 DRB1"0101 PKYVKQNTLKLAT
1HXY DRB1%0101 PKYVKQNTLKLAT
1JWM DRB1%0101 PKYVKQNTLKLAT
1JWS DRB1"0101 PKYVKQNTLKLAT
1JWU DRBI*0101 PKYVKQNTLKLAT
1LO5 DRB1"0101 PKYVKQNTLKLAT
2ICW DRB1"0101 PKYVKQNTLKLAT
20JE DRB1"0101 PKYVKQNTLKLAT
2G9H DRB1"0101 PKYVKQNTLKLAT
1A6A DRB1%0301 PVSKMRMATPLLMQA
1J8H DRB170401 PKYVKQNTLKLAT
2SEB DRB1%0401 AYMRADAAAGGA
1BX2 DRB1"1501 ENPVVHFFKNIVTPR
1IYMM DRB1"1501 ENPVVHFFKNIVTPRGGSGGGGG
1FV1 DRB5"0101 NPVVHFFKNIVTPRTPPPSQ
1H15 DRB5"0101 GGVYHFVKKHVHES
1ZGL DRB5"0101 VHFFKNIVTPRTPGG
4E41 DRB1"0101 GELIGILNAAKVPAD
1IDLH DRB1"0101 PKYVKQNTLKLAT
1KGO DRB1"0101 PKYVKQNTLKLAT
3L6F DRB1%0101 APPAYEKLSAEQSPP
3PDO DRB1"0101 KPVSKMRMATPLLMQALPM
3PGD DRBI*0101 KMRMATPLLMQALPM
354S DRB1"0101 PKYVKQNTLKLAT
3S5L DRB1"0101 PKYVKQNTLKLAT
IHQR DRB5"0101 VHFFKNIVTPRTP

data sets, and results indicate that our method is close to
the state-of-the-art technology and our approach can predict
all sequence-known MHC molecules and cost little time,
extending the prediction space compared with other time-
consuming approaches.

2.3. Crucial Pockets relative to Binding Specificities of HLA-DR
Molecules. We mainly use Position Specific Scoring Matrix
(PSSM) [13, 24] in our approach, which is a popular tech-
nology in the problem of MHC binding. Roughly speaking,
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FIGURE I: The architecture of our approach to MHC II and peptide binding problem.

there are nine amino acids in MHC binding cores, and each
position is a specific pocket as showed in Table 2. We use
PSSM to quantify the binding affinity between twenty basic
amino acids with these nine pockets.

There are five anchor sites (1, 4, 6, 7, and 9) at the binding
core for MHC II molecules, which determine the binding
strength of peptides with MHC II molecules. Because site 1
of MHC II is consistent with different MHC II molecules and
peptides, it is important to identify the precise quantification
of its binding core in site 1, yet we use weights of four anchor
sites (4, 6,7, and 9) to define profiles. For other sites, the same
approach, such as TEPITOPE, is to specify their quantitative
profiles.

2.4. Computing Similarity between Different MHC Molecules

2.4.1. Sequence-Based Similarity. Sequence-based similarity
can be calculated by alignment results. Here, pocket
pseudosequences and associated profiles refer to raw pocket
pseudosequences and raw pocket profiles, respectively. These
raw pseudosequences are composed of several amino acids,
whose associated residue indices are shown in Table 3.
Eleven representative HLA-DR alleles are adopted to specify
different profiles for anchor pockets 4, 6, 7, and 9. These
eleven alleles are DRB170101, DRB170301, DRB170401,
DRB1°0402, DRB170404, DRB1*0701, DRB1*0801,
DRB1*1101, DRB1*1302, DRB1%1501, and DRB5*0101.

If two alleles have identical pseudosequences in the same
pocket, they will have identical profiles. For a given pocket,
we collect all the different raw pocket pseudosequences
into one set R*, R* = {r,r,,...,1,}, and |r;| = n, where
i=12,...,mx € {4,6,7,9}, m is the number of unique
pseudosequences, and » is the number of amino acids
contained in a pseudosequence. Meanwhile, we collect all
different raw profiles into one set P*, P* = {p,, pp,-. - P}
and |p;| = 20, wherei = 1,2,...,m. There is a one-to-one
correspondence between p; and r;. We use BLOSUM to
calculate the sequence similarity between different MHC
molecules, defined as BLOSUM = (S, - §;). Then, we can get
encoded pseudosequence, which is a 20n-dimensional real
vector V* = {V,,V,,...,V, }. We use Radial Basis Function
(RBF) to measure the similarity between encoded predicted
pseudosequences V, and a raw encoded pseudosequence:

Kyeq (Vo» Vi) = BLOSUM (V,,V;), V€ V™. o
2.4.2. Structure-Based Similarity. Using MHC II HLA-
peptide complex structure from Protein Data Bank (PDB),
we can get the residues 3D-coordinate of the pocket in
each MHC molecule, h (p,, p,, p,). We define vector H* =
{hy, hy, ..., h,}, where n is the number of amino acids in the
pseudocontained sequence; meanwhile, we collect a set S*,
§* = {H|,H,,...,H,}, m is the number of different pseu-
dosequences, and there is also one-to-one correspondence
between H; and r;.
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TABLE 3: Important positions at the binding core for MHC II
molecules.

Pocket Important positions
Pocket 1 82858689
Pocket 2 7778 8182
Pocket 3 78

Pocket 4 1113262870717478
Pocket 5 111328707174
Pocket 6 111328707174
Pocket 7 11283047 61677071
Pocket 8 60 61

Pocket 9 9303757 60 61

Next, we need to estimate the similarity of three-
dimensional structures between a measured MHC molecule
and five MHC molecules with known pseudosequence PSSM.
Rigid transformation is to compare three-dimensional sub-
structures of two proteins [25, 26].

Intuitively, we fix one of the structures, A, move (transla-
tion and rotation) the other structure, B, and find the best
movement in three-dimensional space, with two atoms to
the nearest structure. We calculate the Euclidean distance
between two structures, defined as RMSD = ICq - C;|. We
can get encoded pseudosequence V* = {V},V,,...,V, } and
calculate the similarity between 3D structures of encoded
predicted pseudosequences V, and a raw encoded pseudose-
quence:

Kspa (Va’ Vt) = RMSD (Va’ ‘/1) ’ Vz cvh (2)
2.4.3. Overall Similarity. After that, we have obtained
sequence similarity and structural similarity. We calculate
final similarity score functions according to the following
three formulas:

>

2 2
K () - \j Ky Ve 1) K (V1)
Kseq (Va’ Vz) + Kspa (Va’ Vz) (3)

K, (Voo Vi) = 5

a

K3 (Va’ Vl) = \/Kseq (Va’ Vl) + Kspa (Va’ Vt)

2.5. Weights Calculation for New Pocket Profiles. We reorder
all pseudosequences according to descending similarity val-
ues and use a weight calculation formula to calculate new
pocket profiles. A new pocket profile is generated as a
weighted average over m raw pocket profiles in P*. Next,
we use the gamma distribution to generate the weights. The
gamma PDF distribution is defined as follows:

11 kw0

g(x;k,9)=0kw >

(4)

where x > 0 and k, & > 0, and yp(k) denotes the gamma
function.
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The weight distribution is generated to discretize the
gamma PDF as follows:

1 1 4 =
G(X =i) = a)mi" e i=1,2,.,m,  (5)
where m is the dimension of the weights and k and 0 are
the shape and scale parameters, respectively. The gamma
distribution generates the weight vector to give a higher
weight for more similarity pseudosequences.
After normalizing, the weight vector is defined as follows:

GX =9

PE=D =S e x =

i=1,2...,m.  (6)

Given a predicted DRB allele g, let K, = (K,;, K5, ...,
K,,.), where K, = K(V,,V,), V; € V¥ and « is a positive
number and enhances the weight vector to protect the out-
standing contribution of most similarity pseudosequences.
Associated raw pocket profiles are P, = {P,,P,, ..., P,,}. Ele-
ments of K, are sorted in descending order, and the reordered
vector of K, is denoted as K, = (K,;,K ,,...,K_,,). The cor-
responding weight vector is denoted as W = (w, w,, . .., w,,).
We denote pocket profiles associated with the reordered
vector K, as PP = {P,,P,,...,P,,}. We define the pocket
profile for allele a as follows:

T’; =w, P, +w,Py + - +w,P,, (7)

where x € {4,6,7,9}.

3. Result

First, we design an experiment to choose appropriate scoring
function to combine sequence similarity and structural simi-
larity. Then, we compare with other state-of-the-art technolo-
gies, which are TEPITOPE, MultiRTA, NetMHClIpan-2.0,
and NetMHClIIpan-1.0. The result indicates that our approach
can obtain better prediction and effectively extend current
prediction methods. Finally, we test on more data sets.

3.1. Evaluation of Different Scoring Functions. Here, we use
30 of 39 MHC molecules and peptide complexes as test
set and get the appropriate scoring functions as showed
above. The value of the parameter « is set to 1, 2, 3, 4, 5,
10, 15, and 20, followed by results shown in Figure 2. We
find that no significant changes can be found by K, (V,, V;);
for K,(V,,V;) and K;(V,,V;), when « = 1 prediction
error number is 10 and 9 and when o« = 3 prediction
errors reduced to 8, we set the value of « to 3. Comparing
these three functions, the least numbers of errors by three
functions are 4, 8, and 8. Details are shown in Tables S,
S2, and S3, in the Supplementary Material available online at
http://dx.doi.org/10.1155/2016/3832176.

3.2. Compared with Conventional Well-Known Methods.
From the above experimental results, K,(V,,V;) obtains the
most accurate prediction, so we will select K, (V,,V;) with
« = 3 as our final approach. We compare our current
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TABLE 5: Other prediction results of nine MHC molecules. This table shows the prediction result of our method on 9 MHC molecules. The
5th column is the result. There is only one error result, which is shown using bold font.

PDB ID Allele Peptide Core Ours

4E41 DRBI170101 GELIGILNAAKVPAD IGILNAAKV IGILNAAKV
1IDLH DRBI1"0101 PKYVKQNTLKLAT YVKQNTLKL YVKQNTLKL
1KGO DRBI170101 PKYVKQNTLKLAT YVKQNTLKL YVKQNTLKL
3L6F DRB1%0101 APPAYEKLSAEQSPP YEKLSAEQS YEKLSAEQS
3PDO DRB1%0101 KPVSKMRMATPLLMQALPM MRMATPLLM KMRMATPLL
3PGD DRB1%0101 KMRMATPLLMQALPM MRMATPLLM MRMATPLLM
3548 DRB1%0101 PKYVKQNTLKLAT YVKQNTLKL YVKQNTLKL
3S5L DRB170101 PKYVKQNTLKLAT YVKQNTLKL YVKQNTLKL
1IHQR DRB5%0101 VHFFKNIVTPRTP FKNIVTPRT FKNIVTPRT
Results 1 error

Predicted results by different score function
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FIGURE 2: Predicted results by different score functions. x-axis
represents different « values, and the y-axis refers to predicted
results of different score functions.

prediction results with conventional well-known methods
TEPITOPE [23], MultiRTA [13], NetMHCIIpan-2.0 [12], and
NetMHClIIpan-1.0 [12], and these results are shown in Table 4.

TEPITOPE is a relatively early method and is one of
the most popular methods for predicting MHC II binding
molecules. The basic idea is that if two HLA-DR alleles
have the same pseudorandom sequence in the same pocket,
they share the same number of profiles. Through multi-
ple instances, MHCIIMulti has predicted over 500 HLA-
DR molecules. NetMHClIIpan firstly converts each of the
DRB alleles into a pseudorandom sequence of 21 amino
acids, then uses the SMM-align method to identify binding
residues in the peptide chain and the core side, and finally
uses artificial neural network to train the model. MultiRTA
makes prediction on HLA-DR and HLA-DP molecules. By
thermodynamic method, it calculates a peptide chain and
all other residues to predict the average binding affinity of
binding strength and the introduction of standardization
constraints to avoid overfitting. MULTIPRED?2 can predict
1077 HLA-I and HLA-II genes and 26 HLA supertypes.
Details are as shown in Figure 3. Our method obtains 4
errors; however, TEPITOPE, MultiRTA, NetMHClIpan-2.0,
and NetMHClIIpan-1.0 get the numbers of errors as 0, 4,

6, and 3, respectively. Because now we only find five MHC
II molecules with three-dimensional structural information,
we use the scoring matrix with only 5 MHC II molecules.
If the three-dimensional structural information of MHC II
molecules can be extended to all of the 11 MHC II molecules,
our predictions will be more accurate. From the current view,
our approach has reached a higher level of prediction.

3.3. Other Prediction Results. When compared with other
methods on the above experiments, we only use 30 of 39
MHC molecules and peptide complexes as test set. In this
section, we test on the remaining nine MHC molecules. In
this experiment, we choose K, (V,,V;) and set the parameter
o = 3. As seen in Table 5, eight of nine predictions are
accurate. Therefore, our approach produces a considerably
great performance.

4. Conclusion

In this paper, we try to solve the problem of predicting MHC
II binding peptides with a novel metric and strategy. Sequence
similarity and structural similarity between different MHC
molecules are calculated to reorder pseudosequences accord-
ing to descending similarity, and then a weight calculation
formula is used to calculate new pocket profiles. Finally, we
use three scoring functions to predict binding cores and
evaluate the accuracy of prediction to judge performance of
each scoring function. In the experiment, we set a parameter
« in the weight formula. By changing & value, we can observe
different performances of each scoring function. Then, we
compare our method with the best function to some popular
prediction methods and ultimately find that our method
outperforms them in identifying binding cores of HLA-DR
molecules.
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