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Abstract

The calcium binding protein ALG-2 is upregulated in several types of cancerous tissues and

cancer cell death may be a consequence of ALG-2 downregulation. Novel research sug-

gests that ALG-2 is involved in membrane repair mechanisms, in line with several published

studies linking ALG-2 to processes of membrane remodeling and transport, which may con-

tribute to the fitness of cells or protect them from damage. To investigate the involvement of

ALG-2 in cell recovery after membrane damage we disrupted the PDCD6 gene encoding

the ALG-2 protein in DT-40 cells and exposed them to electroporation. ALG-2 knock-out

cells were more sensitive to electroporation as compared to wild type cells. This phenotype

could be reversed by reestablishing ALG-2 expression confirming that ALG-2 plays an

important role in cell recovery after plasma membrane damage. We found that overexpres-

sion of wild type ALG-2 but not a mutated form unable to bind Ca2+ partially protected HeLa

cells from digitonin-induced cell death. Further, we were able to inhibit the cell protective

function of ALG-2 after digitonin treatment by adding a peptide with the ALG-2 binding

sequence of ALIX, which has been proposed to serve as the ALG-2 downstream target in a

number of processes including cell membrane repair. Our results suggest that ALG-2 may

serve as a novel therapeutic target in combination with membrane damaging interventions.

Introduction

The EF-hand Ca2+-binding protein ALG-2 has been implicated in a variety of cellular pro-

cesses including apoptosis, proliferation and protein trafficking among others (reviewed in

[1,2]). Originally, ALG-2 was considered a proapoptotic protein based on its discovery as a

mediator of T-cell apoptosis [3]. Further early findings indicated that ALG-2 may play a proa-

poptotic role in ER stress induced cell death of human embryonic kidney cells and mouse

embryonic fibroblasts [4], in programmed cell death of cervical motoneurons in chick

embryos [5] as well as in uveal melanocytes possibly preventing the development of melanoma

[6]. Yet, a mouse ALG-2 knock-out model did not support a role for ALG-2 in apoptosis [7]
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and it is well documented that ALG-2 may play important roles in promoting proliferation as

it was found overexpressed in certain tumors and its downregulation led to inhibition of cell

proliferation and caspase-dependent cell death [8–10].

Whereas no direct mechanistic role for ALG-2 in cancer cell viability has been identified,

recent discoveries have linked ALG-2 to membrane vesicle traffic and cargo packaging via its

interaction with Sec31A [11,12]. A number of other well described ALG-2 targets are physi-

cally and/or functionally associated with the plasma or organelle membranes (reviewed in [2])

indicating a role of ALG-2 in membrane linked processes. ALIX, also called AIP1 was the first

ALG-2 binding protein identified [13,14]. It has been found to be associated with components

of ESCRT important for a plethora of cellular processes associated with membrane remodel-

ing, including endosome formation, fusion of autophagosomes and amphisomes with lyso-

somes as well as retrovirus budding among others (reviewed in [15]).

This study aimed to shed further light on the proposed cell protective function of ALG-2

with regard to its effect on cell viability following membrane damage [16]. We tested whether

ALG-2 expression may be beneficial for recovery of cells after electroporation- and digitonin-

induced plasma membrane damage using a novel ALG-2 knock-out system in a chicken B cell

line and ectopic overexpression of ALG-2 in human cancer cells and whether the function of

ALG-2 in this process is Ca2+-dependent and involves ALIX interaction.

Materials and methods

Reagents

Polyclonal antibodies against ALG-2 were raised in rabbits against full length recombinant

ALG-2 as described in [17]. ERK-1 antibodies were from Santa Cruz (K-23) and horseradish

peroxidase coupled secondary anti-rabbit-antibody from DAKO, Denmark.

The peptides used were >95% pure and either with or without N-terminal TAMRA label.

ALIX peptide: QGPPYPTYPGYPGYCQ, ALIX mutant peptide: QGPAAPTYPGYPGYCQ;

control peptide (unrelated) Syntide 2: PLARTLSVAGLPKK. Mutated residues are shown in red.

The ALIX peptides (wt and mutant, which has been shown not to be able to interact with

ALG-2) [18] as well as the TAMRA labeled ALIX peptides were purchased from Proteogenix

(Schiltigheim, France) and the Syntide 2 peptide was from LKT laboratories Inc. (St. Paul,

MO, USA).

Blasticidin S, puromycin, zeocin, digitonin and trypan blue were purchased from Sigma

and the ECL reagent was purchased from GE Healthcare Amersham.

The EGFP expression plasmids are described in [19] with the exception of the ALG-2 iso-

form producing a protein that lacks Gly121/Phe122, EGFP-ALG-2ΔGF [20] which was generated

by conventional PCR based mutagenesis.

Cell culturing

Chicken B cell line DT-40 cells (kind gift from Prof. T. Kurosaki, Osaka) were routinely cul-

tured in RPMI 1640 medium supplemented with 10% fetal bovine serum, 1% chicken serum, 2

mM L-glutamine and penicillin/streptomycin, at 40˚C in humidified 5% CO2 atmosphere.

HeLa cells, purchased from ATCC, were grown in DMEM medium with 10% fetal bovine

serum, 2 mM L-glutamine, penicillin/streptomycin, at 37˚C in humidified 5% CO2 atmosphere.

Generation of ALG-2 deficient DT-40 cells

A λFIXII chicken spleen genomic library (Stratagene) kindly provided by Prof. T. Kurosaki

(Osaka University) was screened with a cDNA probe of chicken PDCD6. A clone containing 5
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out of 6 exons (exons 2–6) of the PDCD6 gene was selected for further generation of the target-

ing vector. A 5’ flanking region of 0.9 kb, containing intron 1 sequences and a 3’ flanking

region of 2.5 kb downstream of exon 4 were subcloned into pBluescript II SK (-). The bsr,

puro and zeo drug resistance cassettes were inserted in the above vector resulting in the con-

structs pAlg2-Bsr, pAlg2-Puro and pAlg2-Zeo. Upon integration of any of these constructs

into the chicken genome exons 2, 3 and 4 of the PDCD6 gene (encoding amino acid residues

21–109 of chicken ALG-2) were deleted by homologous recombination. The PDCD6 gene dis-

ruption was done sequentially by first transfecting parental DT-40 cells with 10 μg of the line-

arized pAlg2-Bsr by electroporation (550V, 25μF). Drug resistant clones were selected in the

presence of 50 μg/ml blasticidin S HCl. The clones were analyzed by Southern blotting. A

PDCD6-/+/+ clone was further transfected with the pAlg2-Puro construct. PDCD6-/-/+ clones

were selected with 0.5μg/ml puromycin in the presence of blasticidin. Finally, the cells were

transfected with the pAlg2-Zeo construct and selection was done with 1 mg/ml zeocin in the

presence of blasticidin and puromycin.

Southern blotting

Genomic DNA was purified from drug resistant clones using standard techniques. 10μg DNA

were digested with Nco1 and run on a 1% TAE agarose gel, blotted onto a nylon membrane

and probed with a 32P-labeled 0.9 kb PCR-generated PDCD6 genomic probe containing intron

1 with no sequence homologies to other chicken genomic DNA.

Ectopic expression of ALG-2 in the ALG-2 knock-out cells

The PDCD6 cDNA encoding chicken ALG-2 was cloned into the Kpn1-Xba1 sites of the

expression vector pcDNA3 containing the neo gene allowing for selection of geneticin resistant

clones. DNA was linearized with Nru1 and used for transfection of the ALG-2 knock-out DT-

40 cell line 17-2-11 by electroporation (124 V and 750 μF giving a field strength of 0.3 kV/cm).

Transient transfection of HeLa cells

One day before the experiments, HeLa cells were transfected with the following constructs:

EGFP (control), EGFP-ALG-2, EGFP-ALG-2ΔGF, EGFP-ALG-2EF-1,-3) in 96 well plates, 15.000

cells/well, using polyethylenimine (PEI, linear, MW 25.000) as a DNA carrier for transfection

as described in [21,22]. The PEI/DNA ratio was 15:1.

Induction of plasma membrane damage

Electroporation was used to induce a mechanical membrane damage in DT-40 cells [22]. Cells

were grown to a density of 0.8-1x106/ml, collected by centrifugation and washed in HBSS.

2x106 cells resuspended in 100 μl HBSS were electroporated in a 0.1 cm cuvette with a pulse of

124V or 200V at 100 μF. The cells were immediately transferred to a 6-well plate containing

pre-heated growth medium and propagated until further analysis. Control samples were han-

dled identically without undergoing electroporation.

Digitonin was used to induce plasma membrane damage of HeLa cells as earlier described

by Jimenez [23]. The cells were washed with PBS and 20 μl of full growth medium containing

50 μM digitonin was added per well of a 96 well plate in the presence or absence of 10 μM of

ALG-2-binding peptide or control peptide. The cells were incubated at room temperature for

3 minutes. After removing digitonin, cells were washed with 100 μl of fresh medium per well

and returned into a CO2 incubator until further analysis.

Recovery after cell membrane damage
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HeLa cell viability measurements

To examine HeLa cell viability after plasma membrane damage by digitonin the number of

EGFP expressing HeLa cells were recorded using an OPERA high content screening confocal

microscope (Perkin Elmer) with a 20x NA 1.0 water immersion objective at different time

points pre- and post digitonin treatment. EGFP fluorescence was excited at 488 nm and emis-

sion light was passed through a 565sp dichroic filter, followed by a 540/75 filter and captured

using camera 1. TAMRA fluorescence was recorded using 568 nm excitation and emission was

collected using a 600/40 filter, in camera 2. Images of ten regions of interest were collected per

well. The number of fluorescent cells in each picture was counted manually and the cell viabil-

ity was calculated as the ratio of fluorescent cells post-treatment by the number of fluorescent

cells pre-treatment.

Viability assessment using manual cell counting

Trypan Blue Solution was added to a DT-40 cell suspension at 0.2% (v/v) and cells were

counted using a Bürker-Türk hemocytometer. Blue cells were considered dead and unstained

cells–alive.

Western blotting

Preparation of cell lysates and Western blotting were performed as described in [8,20]. After

staining with anti-ALG-2 antibody, the membranes were stripped in a buffer containing 37.5

mM Tris-HCl, pH 6.8, 2% SDS and 1% beta-mercaptoethanol under rotation for 30 min at 55
oC. The stripped membranes were re-probed with anti-ERK-1 antibody as a loading control.

Statistical analysis

Statistical treatment of the data was performed using the GraphPad Prism 6.0 software.

Results

ALG-2 knock-out in DT-40 cells and ectopic ALG-2 expression

To investigate ALG-2 functions including its role in supporting maintenance of the plasma

membrane integrity following damage the PDCD6 gene was disrupted in DT-40 cells. The DT-

40 B cell line was chosen for the complete genetic disruption of the PDCD6 gene as these cells

have a high homologous recombination rate making this approach feasible (reviewed in [22]).

The PDCD6 gene is localized on chromosome 2 which is present in three copies in DT-40

cells [24]. We chose to eliminate exons 2, 3 and 4 of the PDCD6 gene based on the fact that

these exons encode the functional Ca2+ binding EF-hands 1 and 3. Three different drug resis-

tance gene expression cassettes (blasticidin S, puromycin and zeocin) were used to replace

sequences of PDCD6 by homologous recombination (Fig 1A). The proper integration of these

constructs was assessed by Southern blotting of DNA from the clones after digestion with NcoI

followed by hybridization with a 0.9kb probe corresponding to the 5’ flanking region. Three

clones having all three ALG-2 alleles disrupted were identified (Fig 1B). These clones did not

express any detectable ALG-2 protein as shown by Western blot analysis (Fig 1C).

Depletion of ALG-2 causes decreased viability following electroporation

The selected ALG-2 knock-out (KO) cells were viable and their survival rate did not differ

from wild type (wt) cells indicating that ALG-2 is not essential for DT-40 cell survival under

normal growth conditions. Based on the proposed function of ALG-2 as a cell viability
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supporting protein as well as on the report on the involvement of ALG-2 in membrane repair

after laser induced membrane damage [16] we thus investigated whether there would be a dif-

ference in cell viability between ALG-2 KO and wt cells when the cells experience a physical

plasma membrane damage. To do this we used electroporation, an established method to

induce plasma membrane lesions [25] yet not applied previously to investigate the role of

ALG-2 in recovery after membrane damage. DT-40 cells were electroporated and cell viability

was used as a marker for the cells capacity to recover after membrane damage (Fig 2). Mea-

surement of cell viability 24 hours after electroporation in four independent experiments

Fig 1. PDCD6 gene knock-out in DT-40 cells and ectopic ALG-2 expression. A. Top: Strategy of PDCD6 gene knock-out. The genomic organization of the chicken

PDCD6 gene; Nco1 restriction digestion of genomic DNA was used for Southern blot analysis, the sites within the PDCD6 gene are indicated; the probe used for

hybridization is shown as a red box; the size of the Nco1 digested DNA fragment to which it hybridizes in the wt cells is indicated above the gene structure. Bottom: the

genomic situation after homologous recombination and the length of the expected Nco1 fragments. The open arrows indicate the drug resistance genes and their

transcriptional orientation. B. Southern blot of genomic DNA from all the cell lines used and generated during PDCD6 gene disruption hybridized with a chicken

PDCD6 cDNA probe. C. Western blot of protein extracts from the same cell lines as in B using a specific ALG-2 antibody and ERK-1 as a loading control.

https://doi.org/10.1371/journal.pone.0204520.g001
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revealed that wt cells recovered significantly more effectively from electroporation than ALG-2

KO 17-2-11cells with an average wt cell viability of 26.4% versus 10.5% in KO cells. To analyze

whether the phenotype detected in KO cells could be reversed we reestablished ALG-2 expres-

sion in the ALG-2 17-2-11 KO cell line by stably transfecting cells with a chicken ALG-2

expressing plasmid. The clone H10 with expression level in the range of DT-40 wt cells was

selected for further analysis. The H10 cells were nearly as viable as the wt cells with an average

viability of 25.5% 24 hours after electroporation indicating that reintroducing ALG-2 expres-

sion in the ALG-2 KO cell line 17-2-11 reversed the observed phenotype.

Fig 2. ALG-2 knock-out leads to reduced cell viability after electroporation induced membrane damage. A.

Western blot analysis of cell extracts from DT-40 wt, an ALG-2 KO cell line 17-2-11, and two 17-2-11 clones, H8 and

H10 transfected with an ALG-2 expressing vector. ERK-1 was used as a loading control. Numbers below represent the

relative ALG-2 signal intensities normalized to the ERK1 signals. Quantification was performed using ImageJ software.

B. DT-40 wt cells, an ALG-2 KO cell line 17-2-11 and a rescue clone H10 were exposed to electroporation in order to

investigate the involvement of ALG-2 in cell survival after mechanical membrane damage. Manual cell counting was

performed 24 hours post electroporation. Individual data from four independent experiments are shown. Means +/-

SEM are indicated. The p-values (unpaired t-test) are indicated.

https://doi.org/10.1371/journal.pone.0204520.g002
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Overexpression of ALG-2 increases the survival rate after digitonin

-induced cell membrane damage

To further investigate the influence of ALG-2 on cell survival after plasma membrane damage

of an adherent mammalian cell line of human origin, we treated HeLa cells transfected with

ALG-2 expression constructs with digitonin and followed cell survival up to three hours after

treatment (Fig 3). Overexpression of ALG-2 markedly increased cell viability after digitonin

treatment compared to the EGFP control (~30% increase after 1 hour and 40% after 3 hours)

whereas ectopic expression of the ALG-2 isoform lacking amino acids Gly121 and Phe122 and

which is not able to bind ALIX [20], showed no effect. Interestingly, ALG-2 incapable of Ca2+

binding due to point mutations within EF-hand 1 and EF-hand 3, decreased cell viability com-

pared to the EGFP control (~25% decrease after 1 hour and 27% after 3 hours). These findings

indicate that ALG-2 may protect cells from death caused by plasma membrane damage and

that the ALG-2 protective function is dependent on the propensity of ALG-2 to bind Ca2+.

Ectopically expressed ALG-2, which is not able to bind Ca2+, may act as a dominant negative

mutant by heterodimerizing with endogenous ALG-2 in our experiment.

ALIX peptides interfere with cell recovery after membrane damage

To investigate whether it is possible to suppress the protective activity of ALG-2 by blocking its

interaction with ALIX, proposed to play a role in membrane repair [16], we treated HeLa cells

transfected with EGFP or EGFP-ALG-2 with digitonin in the presence of a 10 μM synthetic

Fig 3. ALG-2 overexpression leads to increased cell viability after digitonin treatment. HeLa cells were transfected

with four different constructs: EGFP (control), EGFP-ALG-2 (wt ALG-2), EGFP- ALG-2ΔGF (ALG-2 short isoform

missing Gly121 and Phe122), EGFP-ALG-2EF-1, -3 (ALG-2 protein with mutated high affinity Ca2+-binding sites).

50 μM digitonin was used to induce membrane damage. Cell viability was assessed by imaging and quantifying EGFP

expressing cells one hour (blue symbols) and three hours (red symbols) post-treatment. Data were normalized to the

EGFP transfected control set as 100%. Individual data from three independent experiments are shown. Means +/- SEM

are indicated. The p-values (unpaired t-test) are indicated.

https://doi.org/10.1371/journal.pone.0204520.g003
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peptide containing the ALG-2 binding sequence of ALIX, a mutated form not able to bind

ALG-2 [18] and an unrelated peptide. The ALIX peptide significantly enhanced membrane

damage-induced cell death as measured 1 hour after digitonin treatment of EGFP expressing

cells (from ~60% to 37% viability), whereas the corresponding ALIX sequence mutated in two

positions known to be crucial for ALG-2 binding did not affect cell viability (Fig 4A). This

points to the importance of the ALIX-type binding site of ALG-2 [26] in the here described

function of ALG-2, possibly involving the ESCRT protein complex as proposed by Scheffer

et al. for laser induced membrane damage [16]. In contrast, cells transfected with EGFP-ALG-

Fig 4. A peptide with the ALG-2 binding sequence of ALIX impairs the ALG-2 pro-survival function. A. HeLa cells expressing EGFP or EGFP-ALG-2

were treated with 50 μM digitonin in the presence of 10 μM ALIX peptide with ALG-2 binding sequence, ALIX mutant peptide incapable of ALG-2

binding, unrelated peptide or vehicle, as indicated. Cell viability was assessed by quantifying EGFP expressing cells (blue symbols) or cells expressing

EGFP-ALG-2 (red symbols) one hour post-treatment. Individual data from at least three independent experiments are shown. Means +/- SEM are

indicated. Statistical analysis was performed using unpaired t-test with Welch’s correction. B. Cellular uptake of TMRA-labeled ALIX peptides (top panels:
wt ALG-2 binding ALIX peptide, bottom panels: mutated version incapable of ALG-2 binding) with the corresponding brightfield images in the absence

(left panel) or the presence (right panel) of digitonin.

https://doi.org/10.1371/journal.pone.0204520.g004
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2 were affected by the ALG-2 binding peptide to a lesser degree pointing to the possibility that

overexpression of ALG-2 may lead to sequestering of the peptide and counteract its inhibitory

function. These data further indicate that ALG-2 plays a cell protective role following plasma

membrane damage.

To test whether the synthetic peptides were internalized after digitonin treatment fluores-

cently labeled ALIX peptides (wt and mutated versions) were monitored by microscopy. Treat-

ment of cells with digitonin led to intracellular presence of the labeled peptides whereas the

peptides were not able to enter non-treated cells (Fig 4B).

Discussion and conclusions

Here, we present data providing evidence for the function of ALG-2 in cell survival after cell

membrane damage induced by electroporation and digitonin treatment based on the following

main findings: (1) an engineered chicken B cell line lacking the PDCD6 gene showed higher

sensitivity to membrane damage by electroporation compared to the wild type cells and this

phenotype could be reversed by reestablishing ALG-2 expression; (2) overexpression of ALG-2

in human cancer cells led to increased recovery after membrane damage caused by digitonin

treatment.

Our results are in line with findings indicating that, despite ALG-2 discovery as a proapoto-

tic protein and data supporting this view (29–35), it may play important roles in cell survival

mechanisms. In support of a cell viability maintaining function of ALG-2 a number of studies

showed overexpression of ALG-2 in certain tumors and a cell protective function of ALG-2

[17] [8]. In a study of over 7000 tumor samples of various origin we found a significant upre-

gulation of ALG-2 in mesenchymal tumors and downregulation of ALG-2 by siRNA in HeLa

cells led to loss of cell viability [8], cell cycle arrest in the G2 phase and increased amount of

early apoptotic and dead cells [10]. Sun et al. [27] showed that ALG-2 is highly expressed in

patients with metastatic ovarian cancer and its expression level was shown to be positively cor-

related with disease progression suggesting that ALG-2 could be an independent predictor of

progression free survival in this group of patients. In addition, Ariel et al. [28] identified ALG-

2 as a biomarker candidate for invasion and progression of pulmonary adenocarcinoma as

high ALG-2 expression correlated with poor survival prognosis. Recent work by Qin and col-

laborators [9] demonstrated that expression of ALG-2 is upregulated in breast cancer tissues

and its expression is correlated with clinicopathological characteristics indicative of tumor

malignancy. In addition, they showed that ALG-2 is positively involved in breast cancer

growth and metastasis in mice and promotes cell proliferation, survival and motility in vitro.

Their work indicates that upregulated ALG-2 may function by interfering with microtubule

dynamics leading to chromosomal missegregation.

ALG-2 is an adaptor protein with the propensity to interact with a number of different tar-

gets and by this exerting an effect on important physiological processes including ER to Golgi

vesicle transport and endosomal trafficking (reviewed in [1,2]). ALG-2 has been shown to

interact with a variety of targets in different ways based on distinct binding pockets in ALG-2

recognizing different target sequences [29]. In mammalian cells, ALG-2 is present in two splice

forms and occurs as dimers. The more abundant form contains two extra residues G121, F122

and has a different spectrum of interaction partners [20,26]. Interestingly, only this isoform is

able to interact with ALIX. In addition, it is known that ALG-2 can form homo and heterodi-

mers, which consist of the two splice forms [20]. It can be predicted that the functional out-

come of the action of ALG-2 will depend on the composition of these dimers in the cell.

Henzel [30] found that the homodimers of the long and the short isoform and the heterodi-

mers displayed different dissociation constants which were also dependent on target
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interaction pointing to a further level of complexity. Interestingly, we found that when we

overexpressed the short splice form the cell viability after digitonin-induced membrane dam-

age was not affected (Fig 3) indicating that only the long splice form supports cell survival in

our experiment. Further, ALG-2 forms dimers in the absence of Ca2+ with peflin, another

penta EF hand protein, which may regulate the abundance of freely available ALG-2 in the cell

[31] and /or cooperate with ALG-2 in controlling protein modification as shown for the ubi-

quitinylation of Sec31 by CUL3KLHL12 [12].

Even though we could show that ALG-2 interaction with the ALG-2 binding peptide of

ALIX interferes with its pro-survival function it could well be that other ALG-2 targets known

to play a role in membrane dynamics are important for cell recovery after plasma membrane

damage. Examples are proteins associated with the ER and lysosome membranes, which both

may be in indirect or direct contact with the plasma membrane under certain circumstances.

One example is Sec31A, an ALG-2 binding partner, which is part of the COPII vesicle coat

transporting cargos from the ER. ALG-2 has been shown to be functionally involved in regu-

lating early events in ER to Golgi transport such as COPII budding and ERGIC formation

[11,12,32]. In addition, ALG-2 directly binds to the lysosomal Ca2+ channel mucolipin-1

(MCOLN1, TRPML1) in a Ca2+ dependent way. Mutation of the ALG-2 binding sites in

mucollipin-1 leads to a reduction of the propensity of MCOLN1 to participate in endosome

membrane fusion indicating a regulatory role of ALG-2 in this process [33]. Furthermore, Li

et al [34] showed that ALG-2 is the Ca2+ sensor for the MCOLN1 dependent centropetal

movement of lysosomes as ALG-2 knock-out by CRISPR blocked the retrograde movement of

lysosomes after treatment with the MCOLN1 activator ML-SA1.

Our data show that the effect of ALG-2 on the cell viability after membrane damage is Ca2+

dependent as a mutated version of this protein lacking the ability to bind Ca2+ did not support

cell survival. In contrast, the mutant protein increased cell death indicating that it may form

dimers with the endogenous ALG-2 suppressing the pro-survival function of the latter. In con-

clusion, our results support the hypothesis that ALG-2 is a prosurvival factor and plays an

important role in cell recovery after membrane damage. However, our study does not provide

evidence that the observed Ca2+ dependent activity of ALG-2 in cell recovery after membrane

damage is the consequence of its involvement in the ESCRT mediated membrane shedding

after damage (3). ALG-2 is known to have multiple targets playing a role in cellular processes

not directly linked to membrane repair including e.g. regulation of Ca2+ signal transduction,

protein trafficking, cytoskeletal organization and lysosomal functions, which all may support

cell viability (reviewed in 4,5). In addition, it could be speculated that ALG-2 supports mecha-

nisms to improve Ca2+ sequestering after the massive influx of this ion during membrane

damage. These functions of ALG-2 may by themselves or in concert with others as well explain

our observations.

Improving the efficiency of cell recovery after membrane damage by upregulating ALG-2

could provide a selective advantage for migrating cancer cells as they are continuously under

mechanical stress. This has recently been shown to be the case for S100A11, another Ca2+

binding protein proposed to be involved in plasma membrane repair [35]. Further studies are

needed to understand at the molecular level how ALG-2 is supporting cell recovery after mem-

brane damage.
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