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Abstract
The Central Plains Urban Agglomeration (CPUA) is the largest region in central China and suffers from serious air pollution. 
To reveal the spatiotemporal variations and the sources of fine particulate matter (PM2.5, with an aerodynamic diameter of 
smaller than 2.5 μm) concentrations of CPUA, multiple and transdisciplinary methods were used to analyse the collected 
millions of PM2.5 concentration data. The results showed that during 2017 ~ 2020, the yearly mean concentrations of PM2.5 
for CPUA were 68.3, 61.5, 58.7, and 51.5 μg/m3, respectively. The empirical orthogonal function (EOF) analysis suggested 
that high PM2.5 pollution mainly occurred in winter (100.8 μg/m3, 4-year average). The diurnal change in PM2.5 concentra-
tions varied slightly over the season. The centroid of the PM2.5 concentration moved towards the west over time. The spatial 
autocorrelation analysis indicated that PM2.5 concentrations exhibited a positive spatial autocorrelation in CPUA. The most 
polluted cities distributed in the northern CPUA (Handan was the centre) formed a high-high agglomeration, and the cities 
located in the southern CPUA (Xinyang was the centre) formed a low-low agglomeration. The backward trajectory model 
and potential source contribution function were employed to discuss the regional transportation of PM2.5. The results dem-
onstrated that internal-region and cross-regional transport of anthropogenic emissions were all important to PM2.5 pollution 
of CPUA. Our study suggests that joint efforts across cities and regions are necessary.
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Introduction

Over the past decades, China has witnessed rapid economic 
development, industrial expansion, and urbanization, which 
have led to serious air pollution (Huang et al. 2014). Regional 

air pollution caused by fine particulate matter (PM2.5, with 
an aerodynamic diameter smaller than 2.5 μm) occurs fre-
quently in several key regions of China, e.g. Beijing-Tianjin-
Hebei (BTH) (Gao et al. 2018; Ding et al. 2019), Yangtze 
River Delta (YRD) (Ming et al. 2017), Sichuan Basin (Tian 
et al. 2019), and Fenwei Plain (Zhai et al. 2019; Cao and Cui, 
2021). A high level of PM2.5 damages human health, impacts 
regional climate changes, and affects agricultural ecosystems 
(Feng et al. 2018; Cohen et al. 2017; Zhou et al. 2018). Fre-
quent haze and increasing PM2.5 concentrations have affected 
sustainable socioeconomic development, which draws pub-
lic anxiety and extensive concerns. To address this difficult 
problem, many studies have been conducted by scientists to 
understand the levels, distribution, and sources of regional 
pollution (Liang et al. 2019; Ye et al. 2018). In response to 
extremely severe and persistent haze pollution, many govern-
ment-backed measures have been taken to reduce haze events 
and improve air quality.

Recently, extensive studies have mostly focused on metrop-
olises and regions in northern China, such as Beijing, Tianjin, 
Shijiazhuang, and BTH, to clarify the spatial and temporal 
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distribution of PM2.5 (Xu et al., Xu and Zhang, 2020; Yan 
et al. 2018). Thus, only a few studies have focused on the 
Central Plains Urban Agglomeration (CPUA) region, which is 
an important growth pole of China’s economy and is burdened 
by serious air pollution problems (Fu et al. 2020). As the larg-
est urban agglomeration in Central China, CPUA includes 30 
prefecture-level cities, namely all 18 cities in Henan Prov-
ince, Changzhi, Jincheng, and Yuncheng in Shanxi Prov-
ince; Liaocheng and Heze in Shandong Province; Huaibei, 
Bengbu, Suzhou, Fuyang, and Bozhou in Anhui Province; 
and Xingtai and Handan in Hebei Province (Liu et al. 2019; 
Fu et al. 2020). According to previous studies, Zhengzhou 
(the capital city of Henan Province), Jiaozuo, Pingdingshan, 
Xinxiang, and Anyang in Henan Province were all heavily 
polluted by PM2.5, especially in autumn and winter (Feng 
et al. 2018; Jiang et al. 2018; Liu et al. 2021; Wang et al. 
2021; Su et al. 2021). Xingtai and Handan in Hebei Province 
are two typical industrial cities with massive anthropogenic 
emissions and high PM2.5 concentrations (Yang et al. 2018; 
Liu et al. 2020). Yuncheng in Shanxi Province is an intensive 
energy-consuming city and frequently experiences haze. Fu 
et al. (2020) reported that in CPUA, the health effect damage 
of PM2.5 pollution was 11.1 million, and the health effect eco-
nomic loss was 94.5 billion RMB in 2017. However, studies 
on the spatiotemporal variations in PM2.5 from the perspec-
tive of CPUA are rare. Since 2013, the Chinese government 
has made a firm decision to reduce the PM2.5 concentration 
and taken some measures to address air pollution (Chen et al. 
2019; Jiang et al. 2020). Under such circumstances, the PM2.5 
concentration in CPUA has varied in recent years. Therefore, 
it is urgent to conduct relevant research to understand the 
PM2.5 characteristics and sources in CPUA.

The present study aims to investigate the spatial and 
temporal variations and the potential geographical source 
of PM2.5 in CPUA. Multiple transdisciplinary methods, 
including classical statistics, geographical analysis, spatial 
statistics, and potential source analysis, are employed in 
this study. Specifically, we (1) systematically demonstrate 
annual, seasonal, monthly, and diurnal variations in PM2.5, 
(2) reveal the spatial distribution and variation, and (3) iden-
tify the potential geographical source regions and regional 
transport of PM2.5.

Materials and methods

Study area and data sources

The CPUA (31.4° N ~ 37.8° N, 110.2° E ~ 118.2° E) is 
located in central and eastern China (Fig. 1a), including 30 
cities (Fig. 1c). It covers 287,000 km2 with a population 
of more than 160 million. CPUA is seriously constrained 
by resources and population agglomeration caused by its 

rapid urbanization that continues to pressure the ecological 
environment in this area and causes high aerosol loading 
(Shen et al. 2019).

A total of approximately 4.3 million data points were col-
lected from January 1, 2017, to December 31, 2020. The 
pandemic of coronavirus disease 2019 (COVID-19) resulted 
in a stringent lockdown in China to reduce the infection rate. 
The distinct decrease in anthropogenic source emissions 
led to an improvement of air quality in CPUA. The data 
include the hourly monitoring values of PM2.5 from the 29 
aforementioned cities. Due to the absence of the national 
ambient monitoring station in JYU, the PM2.5 concentrations 
in JYU were represented by the average PM2.5 concentra-
tions from its surrounding cities (JCH, JZU, LYA, SMX, 
and YCH). All the data were collected from the Data Centre 
of the PRC Ministry of Ecology and Environment (http://​
datac​enter.​mep.​gov.​cn) and the National Urban Air Quality 
Real-Time Publishing Platform, China Environmental Moni-
toring Station (http://​106.​37.​208.​233:​20035/). At national 
ambient monitoring stations, the mass concentration of 
PM2.5 is measured by using the beta absorption method and 
micro oscillating balance method. Daily, monthly, seasonal 
(spring: March to May, summer: June to August, autumn: 
September to November, winter: January, February, and 
December), and annual mean PM2.5 concentrations for the 
cities and urban agglomerations were obtained according to 
the arithmetic mean method.

Spatiotemporal variation analysis methods

Empirical orthogonal function analysis

The empirical orthogonal function (EOF), which is a form 
of principal component analysis, can be used to decompose 
space–time data into a set of orthogonal standing signals 
(Xu et al. 2019). EOF detects both the spatial and temporal 
patterns of variability and measures the contribution of each 
pattern. A matrix Xmn (m represents the number of sites, n 
represents sampling time) can be decomposed into the sum 
of the product of the orthogonal space matrix V and the 
orthogonal time matrix T by EOF:

where the superscript T represents the transpose of the 
matrix, Λ is a diagonal matrix composed of the eigenvalues 
of the matrix, and V is a matrix composed of the matrix 
eigenvectors.

Thus, the time coefficient can be defined as:

(1)Xmn = VT =

⎛
⎜⎜⎝

v11 ⋯ v1n
⋮ ⋱ ⋮

vm1 ⋯ vmn

⎞
⎟⎟⎠

⎛
⎜⎜⎝

t11 ⋯ t1n
⋮ ⋱ ⋮

tm1 ⋯ tmn

⎞⎟⎟⎠

(2)XXT = VTTTVT = VΛVT
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In this research, we use the EOF analysis method to 
decompose the monthly PM2.5 concentrations of the 
CPUA.

(3)T = VTX
Calculation of centroid migration

The centroid migration of PM2.5 concentration in a region, 
namely the arithmetic mean position of all the points, can 
reflect the development characteristics on a spatiotemporal 

Fig. 1   a Location of the Central Plains Urban Agglomeration 
(CPUA) in China, b The mean aerosol optical depth (AOD) in China 
during 2017. The AOD values were retrieved from the MYD04_L2_
C6 product. c Cities of CPUA (AYA: Anyang, BBU: Bengbu, BZH: 
Bozhou, CZH: Changzhi, FYA: Fuyang, HBE: Huaibei, HBI: Hebi, 
HDA: Handan, HZE: Heze, JCH: Jincheng, JYU: Jiyuan, JZU: Jiao-

zuo, KFE: Kaifeng, LCH: Liaocheng, LHE: Luohe, LYA: Luoy-
ang, NYA: Nanyang, PDS: Pingdingshan, PYA: Puyang, SMX: 
Sanmenxia, SQI: Shangqiu, SZH: Suzhou, XCH: Xuchang, XTA: 
Xingtai, XXI: Xinxiang, XYA: Xinyang, YCH: Yuncheng, ZKO: 
Zhoukou, ZMD: Zhumadian, ZZH: Zhengzhou)
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scale, which can help policy-makers better understand highly 
polluted areas (Jiang et al. 2020; Su et al. 2020). The PM2.5 
pollution centroid of the CPUA is expressed as follows:

where X and Y denote the longitude and latitude coordinates 
of the centroid for the observed PM2.5, respectively. Xi and 
Yi are the longitude and latitude of the centroid of city i, 
respectively. Pi represents the mass concentration of PM2.5 
in city i, and n is the city number of the CPUA, i.e. 30.

Global and local spatial autocorrelation analysis

The spatial distribution of PM2.5 involves complex spatiotem-
poral and geospatial processes. Previous studies indicated 
that PM2.5 pollution displays some spatial autocorrelation in 
geographical space (Cheng et al. 2017; Shen et al. 2019; Liu 
et al. 2017; Ye et al. 2018). In this study, the global Moran’s I 
was employed to discuss the degree of global autocorrelation 
of PM2.5 in the CPUA, and the local Moran’s I was used to 
determine the local spatial autocorrelation and agglomeration 
patterns. The global Moran’s I is expressed as:

where n represents the number of cities; xi, xj is the observed 
PM2.5 of spatial location i, j; x = 1

n

∑n

i=1
xi ; and S denotes 

the standard deviation of the samples. In the calculation, the 
Rook contiguity matrix was used to determine the spatial 
weight between cities Wij.

The Z value was used to test the significance of spatial 
autocorrelation and is calculated as follows:

where E(I) and VAR(I) are the expected value and variance 
of Moran’s I, respectively.

The scope of IGlobal is [-1, 1], and the higher the abso-
lute value is, the stronger the spatial agglomeration. A 
positive (negative) value of IGlobal suggests a positive (nega-
tive) correlation, while an IGlobal of 0 indicates no spatial 
autocorrelation.

The local Moran’s I can reveal the features of an urban 
spatial agglomeration within a region and is calculated as:

where xi, xj, S2, x , Wij are the same as above. Based on the cal-
culated ILocal, the spatial association modes can be classified 

(4)X =

∑n

i=1
XiPi∑n

i=1
Pi

Y =

∑n

i=1
YiPi∑n

i=1
Pi

(5)IGlobal =

∑n

i=1

∑n

j≠i
Wij

�
xi − x

��
xj − x

�

S2
∑n

i=1

∑n

j≠i
Wij

(6)Z =
I − E(I)√
VAR(I)

(7)ILocal =
xi − x

S2

∑n

j=1,j≠i
Wij

(
xj − x

)

into four types (Su et al. 2020): high-high clustering type 
(hereinafter HH), low-low clustering type (LL), low–high 
clustering type (LH), and high-low clustering type (HL). In 
this study, the HH (LL) type suggests that cities with high 
(low) PM2.5 concentrations are surrounded by others with 
high (low) PM2.5 concentrations. The LH (HL) type suggests 
that cities with low (high) PM2.5 concentrations are sur-
rounded by others with high (low) PM2.5 concentrations. ILocal 
that fails the significance test is classified as not significant.

Kernel density estimation

Kernel density estimation was employed to determine the 
PM2.5 density function. Kernel density estimator is defined as:

where n denotes the number of samples, h is the bandwidth, 
and K is the kernel weighting function. As in previous stud-
ies (Jiang et al. 2020), the Epanechnikov kernel and Silver-
man’s bandwidth were used in the present study.

Pollution transport analysis

Backward trajectory

Backward trajectory analysis can be used to identify the 
potential transport pathways of air masses (Liu et al. 2021). 
Using the Hybrid Single Particle Lagrangian Integrated 
Trajectory (HYSPLIT) model (Stein et al. 2015), 72-h back 
trajectories starting at an arrival level of 100 m from the 
different cities were calculated in autumn and winter of 
2017 ~ 2020. The backward trajectory model was run every 
hour of the day. About 17,000 trajectories were obtained. 
FNL global analysis data were obtained from the National 
Centre for Environmental Prediction’s Global Data Assimi-
lation System (GDAS) wind field reanalysis (http://​www.​
arl.​noaa.​gov/) to drive the HYSPLIT model. Then, the back-
ward trajectories having similar geographic origins and his-
tories were classified by k-means clustering (Stunder, 1996).

Potential sources analysis

The potential source contribution function (PSCF) is a con-
ditional probability describing trajectories with pollutant 
concentrations larger than a given threshold passing through 
the receptor site (Liu et al. 2019). PSCF is defined as:

(8)f (x) =
1

nh

n∑
i=1

K
(xi − x

h

)

(9)PSCFij =
mij

nij
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where nij denotes the total number of trajectory end-
points falling in the ijth cell, and mij is the number of tra-
jector endpoints with pollutant concentrations higher than 
the threshold criterion in the same cell. The uncertainty of 
PSCF increases when nij is too small. Therefore, a weight-
ing function Wij is multiplied into the PSCF value to reduce 
the uncertainty (Zhang et al. 2017; Liu et al. 2019). Wij is 
described as follows:

where nave denotes the average number of endpoints in each 
grid cell. In this study, the trajectories associated with hourly 
PM2.5 concentrations were used for PSCF analysis, with the 
threshold criterion being set at 75 μg/m3.

Spatiotemporal variations of PM2.5 pollution

Temporal variations of PM2.5 pollution

Annual variation

Overall, the PM2.5 concentrations of CPUA decreased gradu-
ally. From 2017 to 2020, the yearly mean concentrations of 

(10)Wij =

⎧
⎪⎨⎪⎩

1.00, 3nave < nij
0.70, 1.5nave < nij ≤ 3nave
0.40, nave < nij ≤ 1.5nave

0.17, nij ≤ nave

PM2.5 were 68.3, 61.5, 58.7, and 51.5 μg/m3. The annual 
PM2.5 concentration was reduced by 24.7% in the 4 years. 
This suggests that drastic measures aimed at improving air 
quality in CPUA, e.g. pollution emissions reduction, coal 
combustion control, and clean energy use, worked well. 
Notably, the reductions in anthropogenic emissions due 
to stringent quarantine and lockdown measures during the 
COVID-19 pandemic in 2020 could dramatically improve the 
air quality in CPUA. Du et al. (2021) revealed that PM2.5 in 
Zhengzhou decreased by 19% in response to the COVID-19 

Fig. 2   Kernel density estimates of annual mean PM2.5 concentrations 
from 2017 to 2020

Fig. 3   Seasonal average values 
of PM2.5 concentrations from 
2017 to 2020
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lockdown. However, it still significantly exceeds the China 
National Ambient Air Quality Standards II (CAAQS grade 
I; 35 μg/m3). The estimated kernel density of annual mean 
PM2.5 concentrations is displayed in Fig. 2. From 2017 to 
2020, the peak kernel density curves steepened and gradu-
ally moved to the left, demonstrating that concentrations of 
PM2.5 decreased in most cities of the CPUA. Obviously, the 
area covered by density curves decreased with time at PM2.5 
concentrations ranging from 60 to 80 μg/m3, which indicated 
that city reduction with high PM2.5 concentrations benefitted 
PM2.5 pollution alleviation in CPUA.

Seasonal variation

The seasonal means of PM2.5 concentrations from 2017 to 
2020 are shown in Fig. 3. PM2.5 mass concentrations exhib-
ited seasonal variation, with the highest concentration in 
winter (100.8 μg/m3, 4-year average), followed by autumn 
(54.4 μg/m3) and spring (51.4 μg/m3), and the lowest in 

summer (33.5 μg/m3). This variation is similar to other cit-
ies in North China (Shen et al. 2020). In winter, less pre-
cipitation leads to weakened wet scavenging. Meanwhile, 
weak winds and shallow planetary boundary layer heights 
cause a stable atmospheric structure, which is adverse to 
the dilution and diffusion of pollution (Wang et al. 2019; 
Fan et al. 2021). In addition, most of the cities in the CPUA 
need coal burning for heating in winter, emitting massive 
air anthropogenic pollutants (Wang et al. 2007). Under the 
coupling effect of the factors mentioned above, the CPUA 
suffers from serious PM2.5 pollution in winter. The high-
est decrements in PM2.5 concentration appeared in sum-
mer, with a reduction of 36%, from 43.1 μg/m3 in 2017 to 
27.5 μg/m3 in 2020. In contrast, the PM2.5 concentration 
decreased by 18.4%, from 110.1 μg/m3 in 2017 to 89.8 μg/
m3 in 2020 in winter. In the winter of 2019, the PM2.5 con-
centration even increased. This indicates that PM2.5 reduc-
tion measures taken in winter need to be more intensive 
than those in other seasons.

Fig. 4   Monthly average values of PM2.5 concentrations from 2017 to 2020

1512 Air Quality, Atmosphere & Health (2022) 15:1507–1521
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Fig. 5   Time coefficients of the 
monthly average PM2.5 concen-
trations from 2017 to 2020

Fig. 6   Diurnal average values of 
PM2.5 concentrations from 2017 
to 2020

1513Air Quality, Atmosphere & Health (2022) 15:1507–1521
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Monthly variation

The monthly variations in PM2.5 concentrations in 
the CPUA from 2017 to 2020 are illustrated in Fig. 4. 
According to the daily PM2.5 concentrations, the clas-
sification categories were designated as follows: excel-
lent (PM2.5 ≤ 35  μg/m3), fine (35 < PM2.5 ≤ 75  μg/
m3), slight pollution (75 < PM2.5 ≤ 115  μg/m3), mod-
erate pollution (115 < PM2.5 ≤ 150  μg/m3), heavy pol-
lution (150 < PM2.5 ≤ 250  μg/m3), and severe pollu-
tion (PM2.5 > 250  μg/m3). The monthly average PM2.5 

concentrations exhibited a U-shaped trend, with the high-
est value in January (119.8 μg/m3) and the lowest value in 
August (30.7 μg/m3). In June, July, August, and Septem-
ber, the daily PM2.5 concentrations were all under 75 μg/
m3. In January, February, November, and December, the 
frequencies of days with heavy pollution were 29.8%, 
12.4%, 3.3%, and 9.3%, respectively.

The EOF method was employed to decompose the 
monthly mean PM2.5 concentrations of the cities in the 
CPUA. The first EOF model accounted for 92.1% of the 
total variance, which suggested that the decomposition of 

Fig. 7   Spatial distributions of 
yearly average values of PM2.5 
concentrations from 2017 to 
2020
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PM2.5 was successful. In this study, we paid more atten-
tion to time coefficients decomposed by EOF, which can 
reflect the variation trend of monthly PM2.5 concentra-
tions in CPUA. The decomposed time coefficients were 
standardized to have zero mean and unit variance (Jiang 
et al. 2020). As shown in Fig. 5, the time coefficients in the 
4 years all displayed a U-shaped curve, which is similar 
to the variation trend of PM2.5 mass concentrations. In 
winter, most of the time coefficients are out of the scope 
of [-1, 1], indicating extreme events, namely high PM2.5 
pollution. In February, there were obviously fewer extreme 
events in 2020 than in other years, which could be due to 
the lockdown for dealing with the outbreak of coronavirus 
disease 2019 (COVID-19) (Silver et al. 2020; Kwak et al. 
2021).

Diurnal variation

As displayed in Fig. 6, the diurnal variations in PM2.5 in 
the four seasons had low concentrations during the daytime 
and high concentrations during the nighttime, which was 
related to the diurnal changes in the boundary layer (Liu 
et al. 2021). The PM2.5 concentration had a peak at 9:00 
in spring, 8:00 in summer, 10:00 in autumn, and 11:00 in 
winter, corresponding to anthropogenic emissions in rush 
hours (Wang et al. 2016). From 00:00 to 6:00, the PM2.5 
concentration decreased slowly in winter but increased in 
other seasons. PM2.5 exhibited the lowest concentrations at 

16:00 ~ 17:00, which could be related to the highest plan-
etary boundary layer height (PBLH) occurring at this time.

Spatial distributions of PM2.5 pollution

Spatial Variation of PM2.5

Figure 7 displays the distribution of PM2.5 in CPUA. It was 
clear that the spatial distribution of PM2.5 was heterogeneous. 
In 2017, the annual mean PM2.5 concentrations of Handan, 
Anyang, Xingtai, and Jiaozuo exceeded 75 μg/m3. These 
highly polluted cities are all characterized by industry. In 
addition, Luoyang, Suzhou, Liaocheng, Yuncheng, Zheng-
zhou, Heze, and Puyang also have higher PM2.5 concentra-
tions. PM2.5 concentrations presented a gradual decline over 
time, presenting a convergence trend. From 2017 to 2020, 
cities with PM2.5 concentrations above 60 μg/m3 accounted 
for 89.7%, 62.1%, 44.8%, and 34.5% of all cities in the CPUA, 
respectively. The three cities with the highest reduction in 
PM2.5 concentration were Suzhou (37.2%), Xingtai (34.2%), 
and Handan (33.6%) from 2017 to 2020. In 2020, cities in the 
southeastern CPUA, e.g. Xinyang, had low PM2.5 concentra-
tion levels.

Centroid migration route

The centroids of the annual mean PM2.5 concentration 
from 2017 to 2020 were located at the borders between 

Fig. 8   Centroid migration route 
of PM2.5 from 2017 to 2020
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western Kaifeng and eastern Zhengzhou (Fig. S1). The 
PM2.5 pollution centroids were also located in the south-
eastern CPUA geographical centroid, with a distance of 
approximately 10 km. The centroid of PM2.5 concentration 
exhibited a trend of moving towards the west from 2017 
to 2019 (Fig. 8), which indicates that the west CPUA had 
more serious PM2.5 pollution. The PM2.5 pollution cen-
troids in 2018 ~ 2020 were all in southern 2017, which 
may be related to the sharp reduction in PM2.5 in Xingtai 
and Handan.

Spatial autocorrelation of PM2.5 concentrations

To further discuss the spatial characteristics of PM2.5 
spatial correlation, the global Moran’s I was calculated. 
Moran’s I statistics from 2017 to 2020 are 0.34, 0.20, 
0.28, and 0.26, respectively, passing the significance test, 
which indicates that PM2.5 concentrations have a positive 
spatial autocorrelation in CPUA. This suggests that PM2.5 
in a city can be affected by its neighbouring cities. Previ-
ous studies also indicate that regional transport of PM2.5 
plays an important role in regional haze episodes (Hu et al. 
2021; Wang et al. 2014). Hence, regional joint cooperation 

Fig. 9   Spatial agglomeration 
of PM2.5 concentrations in the 
Central Plains Urban Agglom-
eration from 2017 to 2020
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across cities is necessary to improve air quality. In general, 
the global Moran’s I decreased over time, which indicated 
the weakening spatial autocorrelation of PM2.5. In sum-
mer, the global Moran’s I of PM2.5 concentrations was 
higher than that in other seasons (Fig. S2). We deduced 
that in summer, intensive atmospheric activity is condu-
cive to the diffusion and mixing of anthropogenic pollut-
ants, which leads to a relatively homogeneous distribu-
tion of PM2.5 concentrations. In winter, the lowest global 
Moran’s I suggested that PM2.5 heterogeneity increased, 
which was related to the stable atmosphere and local emis-
sion sources. As shown in Fig. S3, the global Moran’s 
I increased gradually during 02:00 ~ 9:00 and increased 
sharply during 9:00 ~ 13:00 due to the enhanced solar radi-
ation. Then, the global Moran’s I decreased continuously, 
implying that the interplay of PM2.5 pollution between cit-
ies in the CPUA decreased.

Local spatial autocorrelation analysis was employed to 
identify the distribution and agglomeration patterns of PM2.5 
pollution in each city of the CPUA. As displayed in Fig. 9, 
the agglomeration patterns displayed varying but similar 
spatial distributions over time. Overall, the most polluted 
cities were distributed in northern CPUA, which are all 
industrial cities with intensive anthropogenic emissions, 
forming PM2.5 pollution clusters. Cities with good air qual-
ity were located in the southern CPUA, which has abundant 
precipitation and small anthropogenic emissions, forming a 
low-low (LL) agglomeration type of PM2.5 concentration. 
The area with high-high (HH) agglomeration of PM2.5 pol-
lution tended to migrate southward. In 4 years, Handan and 
Xinyang were the high-high (HH) and low-low (LL) PM2.5 
concentration centres, respectively. In summer, the propor-
tion of LL and HH clusters among CPUA was the largest in 
the four seasons (Fig. S4). In winter, this proportion was the 
smallest, which indicated a decreasing spatial autocorrela-
tion among CPUA.

Regional transportation of PM2.5

Backward trajectory analysis

To investigate the PM2.5 transportation of CPUA, three typi-
cal cities, namely Xingtai (the most PM2.5 polluted city), 
Zhengzhou (the capital of Henan province and the largest 
city in CPUA), and Xinyang (the lowest PM2.5 polluted 
city), were selected to calculate the backward trajectories in 
autumn and winter for each year. As displayed in Fig. 10a, 
all trajectories of Xingtai were classified into four catego-
ries, C1 (28.3%), C2 (30.3%), C3 (24.4%), and C4 (17.1%), 
corresponding to PM2.5 concentrations of 110.5, 107.8, 79.7, 
and 81.6 μg/m3, respectively. C1 started in Inner Mongolia 

and passed through northern Shanxi Province. C2, a short-
distance transport, crossed northwestern Shandong Prov-
ince and southern Hebei Province. This suggested that the 
northern CPUA could be influenced by PM2.5 transmission 
from northwestern Shandong, southern Hebei, and northern 
Shanxi provinces. The trajectories of Zhengzhou were also 

Fig. 10   Back trajectory clusters and the mean mass concentration of 
PM2.5 under the corresponding cluster in a Xingtai, b Zhengzhou, 
and c Xinyang
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classified into four categories (Fig. 10b), among which C2 
(26.9%), C3 (23.4%), and C4 (14.2%) came from northwest-
ern Zhengzhou, and C1 (35.5%) originated from northeast-
ern Zhengzhou. C2, passing through southwestern Shanxi 
and northwestern Henan provinces, was the most polluted, 
with a PM2.5 concentration of 115.6 μg/m3. The PM2.5 con-
centrations corresponding to C1, C3, and C4 were 88.0, 
78.6, and 52.7 μg/m3, respectively; the PM2.5 concentrations 
of the four trajectory clusters for Xinyang were lower than 
those of Xingtai and Zhengzhou (Fig. 10c). C3 (32.9%), the 
most polluted cluster with a PM2.5 concentration of 78.3 μg/
m3, started in southern Henan Province and moved a short 
distance before arriving at Xinyang. C2 (31.0%) was the sec-
ond PM2.5 pollution (76.8 μg/m3), crossing northern Anhui 
Province. This indicated that Xinyang could be influenced by 

southern Henan and northern Anhui provinces. In three typi-
cal cities of the CPUA (Xingtai, Zhengzhou, and Xinyang), 
all short-distance trajectories correspond to high PM2.5 con-
centrations, which suggested that internal transport played a 
key role in PM2.5 pollution over the CPUA. Meanwhile, the 
PM2.5 transport crossing region was important as well. Air 
masses starting from the northwest and having long-distance 
movement all corresponded to low PM2.5 concentrations.

Potential sources

The PSCF model was used to identify the potential 
source areas for PM2.5 (> 75 μg/m3) in Xingtai, Zheng-
zhou, and Xinyang. The study domain in the three cities 
was 85 ~ 120° E, 26 ~ 52° N, with a spatial resolution of 

Fig. 11   Results of PSCF analysis for PM2.5 concentration above 75 μg/m3 in a Xingtai, b Zhengzhou, and c Xinyang
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0.2° × 0.2°. As shown in Fig. 11a, cells with high WPSCF 
values were mainly located in Lvliang, Changzhi, south-
eastern Shandong Province, and northern Anhui Province, 
which suggested that those regions were strong potential 
source areas influencing the PM2.5 concentration of Xing-
tai. For Zhengzhou (Fig. 11b), the strong potential source 
areas mainly included southeastern Henan Province, 
northern Anhui Province, and northeastern Hubei Prov-
ince. In Xinyang (Fig. 11c), there were fewer grids with 
WPSCF values above 0.5 than in the other two cities due 
to the good air quality in Xinyang. The grids of WPSCF 
greater than 0.4 were mainly located at Changzhi, Anyang, 
Xinxiang, and Linyi. In summary, potential source analy-
sis for three cities all indicated that PM2.5 transmission in 
CPUA and cross-boundaries was important, emphasizing 
the necessity of joint efforts among cities and regions.

Conclusions

In this study, multiple transdisciplinary methods, including 
geographical analysis, spatial statistics, and potential source 
analysis, were employed to investigate the spatial and tempo-
ral variations and the potential geographical source of PM2.5 
in the CPUA. During 2017 ~ 2020, the annual mean con-
centrations of PM2.5 were 68.3, 61.5, 58.7, and 51.5 μg/m3, 
respectively. The kernel density estimation results suggested 
that city reduction with high PM2.5 concentrations benefitted 
PM2.5 pollution alleviation in the CPUA. PM2.5 exhibited 
the highest concentration in winter (100.8 μg/m3, 4-year 
average) and the lowest concentration in summer (33.5 μg/
m3). From 2017 to 2020, the PM2.5 concentration decreased 
36% in summer and 18.4% in winter. PM2.5 concentrations 
showed a U-shaped trend with month, with the highest value 
appearing in January (119.8 μg/m3) and the lowest in August 
(30.7 μg/m3). The time series of PM2.5 concentrations were 
decomposed by EOF, and the results indicated that high 
PM2.5 pollution mainly occurred in winter. Small different 
diurnal variations in PM2.5 were observed over the season 
due to anthropogenic emissions and PBLH variation. The 
spatial distribution of PM2.5 in CPUA was heterogeneous. 
The centroid of PM2.5 concentration was located in western 
Kaifeng and moved towards the west over time. The spatial 
autocorrelation analysis revealed that PM2.5 concentrations 
exhibited a positive spatial autocorrelation in CPUA. The 
spatial autocorrelation was the strongest in summer and the 
lowest in winter. In the diurnal variation, the global Moran’s 
I increased during 02:00 ~ 13:00 and then increased. The 
most polluted cities were distributed in the northern CPUA, 
forming a high-high agglomeration, and the cities located in 
the southern CPUA formed a low-low agglomeration. Han-
dan and Xinyang were the centres of high-high and low-low 
agglomeration, respectively. The HYSPLIT model and PCSF 

were used to discuss the regional transportation of PM2.5 
in the CPUA. The results suggested that internal transport 
played a key role in PM2.5 pollution over the CPUA and that 
the PM2.5 cross-boundary of the CPUA was also important. 
Our findings suggest that drastic measures, including pollu-
tion emissions reduction, coal combustion control, and vehi-
cle restriction, are necessarily taken in winter. Joint efforts 
across cities and regions are needed to further improve the 
air quality of CPUA.
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