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Abstract
Macrophages play a major role in the pathogenesis of atherosclerosis. Many studies have shone light on the different
phenotypes and functions that macrophages can acquire upon exposure to local cues. The microenvironment of the
atherosclerotic plaque contains a plethora of macrophage-controlling factors, such as cytokines, oxidised low-
density lipoproteins and cell debris. Previous research has determined macrophage function within the plaque mainly
by using immunohistochemistry and bulk analysis. The recent development and rapid progress of single-cell technol-
ogies, such as cytometry by time of flight and single-cell RNA sequencing, now enable comprehensive mapping of the
wide range of cell types and their phenotypes present in atherosclerotic plaques. In this review we discuss recent
advances applying these technologies in defining macrophage subsets residing in the atherosclerotic arterial wall
of mice and men. Resulting from these studies, we describe three main macrophage subsets: resident-like, pro-
inflammatory and anti-inflammatory foamy TREM2hi macrophages, which are found in both mouse and human ath-
erosclerotic plaques. Furthermore, we discuss macrophage subset-specific markers and functions. More insights into
the characteristics and phenotype of immune cells within the atherosclerotic plaque may guide future clinical
approaches to treat disease.
© 2020 The Authors. The Journal of Pathology published by JohnWiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Atherosclerosis is a lipid-driven inflammatory disease
characterised by plaque formation in the large arteries.
These fatty plaques contain lipid-laden macrophages
that accumulate because of the recruitment of circulating
monocytes and local differentiation and proliferation of
macrophages [1–4]. Atherosclerosis is initiated by endo-
thelial damage induced by classical risk factors such as
high cholesterol, high blood pressure, obesity, diabetes,
smoking and low shear stress [5–9], leading to local sub-
endothelial accumulation of low-density lipoproteins
(LDL), which are prone to oxidative modifications. Such
modified lipoprotein particles trigger inflammatory
responses inducing monocyte attraction. These mono-
cytes subsequently differentiate into macrophages that
scavenge oxidised LDL and eventually become foam
cells. In atherogenesis, macrophages secrete numerous
pro- but also anti-inflammatory mediators, pro-
thrombotic tissue factor and enzymes such as matrix-

degrading proteases, all of which influence plaque
growth, cellular composition and stability. Although
early lesions are dominated by plaque foam cells, plaque
foam cell content decreases with atherosclerosis pro-
gression towards more advanced and fibrotic lesions or
by induction of regression, such as mediated by choles-
terol lowering [10–12]. Excessive LDL uptake induces
macrophage apoptosis [13] and these apoptotic cells
can be sensed by other macrophages via ‘find-me’ and
‘eat-me’ signals and are cleared through a process called
efferocytosis [14]. When plaques become more
advanced, the number of apoptotic cells increases and
macrophage efferocytosis becomes limited, causing sec-
ondary necrosis, leading to the formation of a necrotic
core [15,16]. Because of their complex and broad range
of functions, macrophages are central in the formation,
maintenance and rupture, and therefore clinical compli-
cations, of the atherosclerotic plaque.
Around the year 2000, the macrophage phenotype

range was initially divided into two extremes of the
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activation spectrum, namely pro-inflammatory M1 mac-
rophages and anti-inflammatory M2 macrophages
[17–19]. However, it has now become established by
numerous more recent studies that the macrophage phe-
notype spectrum is much broader, containing a contin-
uum of phenotypes induced by local tissue cues
[20–22]. The atherosclerotic microenvironment is
diverse and drives a range of macrophage phenotypes.
Histological studies previously showed the presence of
M1 and M2 macrophage subsets and their spatial locali-
sation in atherosclerotic lesions [23–26]. Stöger et al
[23] described that M1macrophages are the predominant
population in rupture-prone shoulder regions of the pla-
que. The plaque adventitia enclosed a pronounced M2
macrophage phenotype, whereas no significant differ-
ences in macrophage populations were seen in the fibrous
cap. These studies highlighted the critical importance of
macrophage polarisation regarding atherogenesis.
The discovery and rapid progress of single-cell RNA

sequencing (scRNAseq) and tools exploiting large com-
binations of protein labelling of cells, such as cytometry
by time of flight (CyTOF), have now enabled more
detailed transcriptional and high-dimensional protein
analysis of the cell types present in atherosclerotic pla-
ques. Specific subsets of cells can now be distinguished
based on overlapping or differing transcriptomes or pro-
tein marker sets. Using these tools, it has become possi-
ble to discriminate tissue macrophage subsets and
characterise their functions. In recent years, scRNAseq
and CyTOF were applied to mouse and human athero-
sclerosis, which has given novel insights regarding
immune cell function and the composition of atheroscle-
rotic plaques [27–33]. In this review we will discuss
recent progress investigating macrophage subsets by
applying novel technologies in atherosclerotic disease
in mice and men.

Mouse atherosclerotic macrophages

Several studies have now investigated macrophages in
murine atherosclerosis by either CyTOF or scRNAseq
approaches (see supplementary material, Table S1)
[27–32,34]. These investigated Ldlr−/− or apolipopro-
tein E (Apoe)−/− mouse models, either on chow or on a
Western (high-fat) diet to accelerate atherogenesis. Most
of the studies showed that macrophages are the most
dominant immune cell type within the atherosclerotic
plaque [28,30,35]. The total macrophage population
proportion was further increased in mice with advanced
atherosclerosis [28]. Generally speaking, three main
subtypes of macrophage could be identified, involving
resident-like macrophages, pro-inflammatory macro-
phages and foamy TREM2hi macrophages (Figure 1).
Future additional differentiation of macrophage subsets
can probably be made based on technical and numerical
advances. However, currently available data suggest that
plaque macrophages can be subdivided into at least three
main macrophage populations. Several studies identified

more than three populations These are probably further
subdivisions of the three main clusters. We will discuss
these three macrophage subsets in mouse and human
atherosclerosis below.

Atherosclerotic resident-like macrophages

Concerning their origin, macrophages found in tissues
can be divided into two groups: infiltrating monocyte-
derived macrophages and embryonically derived
tissue-resident macrophages [36–38]. Whereas tissue-
resident macrophages reside in a specific tissue and
are mainly seeded during embryonic development,
infiltrating monocyte-derived macrophages often accu-
mulate in response to local inflammatory cues in the tis-
sue [39,40]. Most of the tissues harbour resident
macrophages. For example, Kupffer cells are tissue-
resident macrophages of the liver and microglia are
the tissue-resident macrophages of the brain. Tissue-
resident macrophages not only have a role in tissue
homeostasis but also form the first line of defence when
a pathogen invades the tissue.

Ensan et al [41] identified mouse resident arterial
macrophages that arose embryonically from C-X3-C
motif chemokine receptor 1 (Cx3cr1)+ precursors. These
resident arterial macrophages specifically expressed
lymphatic vessel endothelial hyaluronan receptor
1 (Lyve1). Winkels et al [27] confirmed the expression
of Cx3cr1 and Lyve by resident-like macrophages in
healthy Apoe−/− mice. Depletion of LYVE1+ macro-
phages in Lyvewt/creCsf1rflox/flox mice resulted in
increased arterial stiffness and collagen deposition, sug-
gesting a key role in these processes [42]. Kim et al [29]
identified three macrophage subsets expressing Lyve1 in
atherosclerotic plaques of Ldlr−/− mice using scRNA-
seq. The macrophage subset expressing the highest
Lyve1 levels of all aortic CD45+ cells also expressed
increased levels of mRNA for anti-inflammatory
markers such as mannose receptor Mrc1 (also known
as Cd206), transcription factor Mafb [43] and other
genes mainly linked to the endocytosis pathway.
Cochain et al [28] also identified a cluster of resident-
like macrophages in atherosclerotic plaques expressing
Lyve1 and other markers for resident-like macrophages,
such as factor XIIIa (F13a1) and growth arrest-specific
6 (Gas6) [44]. The resident-like macrophages were pre-
sent in both healthy and atherosclerotic aortas [27,28].
However, the resident-like macrophage subset of
healthy aortas expressed higher levels of Lyve1, whereas
the resident-like macrophages of the atherosclerotic aor-
tas expressed higher levels of C-C motif chemokine
receptor 2 (Ccr2), which is truly a marker for recruited
macrophages. This suggests that atherosclerotic aortas
contain resident macrophages originating from an
embryonic pool, which upon atherosclerosis develop-
ment are replaced by or accompanied by recruited
monocyte-derived macrophages that adopt a resident-
like macrophage phenotype. Resident-like macrophages
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in lesions further express folate receptor β (Folr2), car-
bonyl reductase 2 (Cbr2), platelet factor 4 (Pf4), seleno-
protein P (Sepp1) and (as in Kim et al [29]) Cd206.
Folr2, Cbr2, Sepp1 and Cd206 are all associated with
M2-like phenotype [24], thus suggesting anti-
inflammatory characteristics of resident-like macro-
phages in atherosclerosis. Folr2 expression was
increased in atherosclerotic plaques compared with nor-
mal artery walls [45]. PF4 has previously been described
as a platelet-specific molecule. However, more recent
data also show PF4 expression in macrophages
[46,47]. Macrophage PF4 (also known as CXCL4) was
found to be positively correlated with clinical parameters
such as lesion grade and the presence of symptomatic
atherosclerotic disease in human carotid atherosclerotic
plaques [46]. Pathway analysis revealed that resident-
like plaque macrophages are involved in the receptor-
mediated endocytosis [28], which is in line with the
endocytosis pathway identified by Kim et al [29]. Like-
wise, Lin et al [31] identified a Cx3cr1+ resident-like
macrophage subset enriched for Mrc1, Gas6, F13a1,
Sepp1, Cbr2, Pf4, Lyve1 and Folr2. There was no differ-
ence in the population proportion of resident-like macro-
phages between progressive and regressive plaques.

Cochain et al [28] also identified a resident-like mac-
rophage subset expressing Lyve1, Ccl9, F13a1, Folr2

and Sepp1 in atherosclerotic Apoe−/− mice. Cole et al
[30] found a resident-like macrophage population
expressing CD206 and CD169 in atherosclerotic
Apoe−/− mice using CyTOF. This supports the notion
that different atherosclerotic models contain resident-
like macrophages. CD169 encodes the lectin-like adhe-
sion molecule SIGLEC-1 that is expressed by certain
resident-like macrophage subpopulations [48–50] and
it can interact with scavenger receptor SR-BI to mediate
the uptake of oxidised LDL [51].
Furthermore, at least four studies described that

resident-like macrophages can proliferate by showing
either protein expression of proliferation marker Ki-67
or enrichment for cell cycle genes [29,31,39,52]. This
confirms a previous study showing that the lesional
microenvironment orchestrates macrophage prolifera-
tion in atherosclerosis [53].
McArdle et al [34] recently used atherosclerotic

Apoe−/−Cx3cr1GFPCD11cYFP mice in which four mac-
rophage subsets were identifiable by GFP, YFP, a
double-positive and a double-negative signal. Bulk
RNAseq data of these four flow-sorted macrophage sub-
sets were compared with representative genes of each
macrophage subset found by Cochain et al [28], Kim
et al [29] and Lin et al [31] and revealed that three main
macrophage populations: resident-like, inflammatory

Figure 1. Characteristics of mouse macrophages residing in the atherosclerotic aorta. Three macrophage populations (pro-inflammatory,
anti-inflammatory foamy TREM2hi and resident-like), with each expressing specific markers and performing unique functions, reside in the ath-
erosclerotic plaque of Ldlr−/− and Apoe−/− mice, whereas only resident-like macrophages are found in the healthy aorta. Local., localisation.
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and TREM2hi macrophages were overlapping with one
of the subsets of the study of McArdle et al [34]. How-
ever, the fourth population (double-negative) of McAr-
dle et al [34] did not overlap with a macrophage subset
from the other studies. These resident-like macrophages
again showed enrichment for Sepp1, Txnip and Pf4 and
live-cell microscopy showed that these cells migrate less
compared with other macrophage subsets and their
shape resembles that of dendritic cells.
Immunostaining studies further showed that resident-

like macrophages are predominantly present in the
adventitia, both in the healthy blood vessel [41] and in
the atherosclerotic aorta, where their number is increased
compared with healthy settings [52].
In summary, various single-cell studies identified

resident-like macrophages within the adventitia of the
healthy and atherosclerotic aorta of Ldlr−/− and Apoe−/−

mice. Different studies reported that resident-like macro-
phages proliferate, play a role in endocytosis and are
enriched for genes such as Lyve1, Cx3cr1, Folr2,
Cd206, F13a1, Cbr2, Sepp1 and Pf4 expression, which
resembles an M2-like phenotype.

Atherosclerotic inflammatory macrophages

In atherosclerosis, the increased number of circulating
monocytes infiltrate the arterial wall using different
chemokine–chemokine receptor dyads, followed by sup-
port of the endothelial adhesion molecules [54–56]. In
the intima, infiltrated monocytes can differentiate into
macrophages. Inflammatory macrophages upon activa-
tion will express surface markers, including major histo-
compatibility complex class II, Fc receptor CD64 and
costimulatory molecules CD80 and CD86, and will
release IL-6, TNF and IL-23, and express nitric oxide
synthase 2. Inflammatory macrophages are essential for
the phagocytosis and intra- and extracellular killing of
bacterial, fungal and viral infections [57–59]. However,
chronic macrophage activation will lead to tissue injury,
matrix degradation and impaired wound healing.
Different single-cell studies have described the pres-

ence and phenotype of inflammatory macrophages in
the atherosclerotic aorta [27–29,31,34]. Cochain et al
[28] showed that these inflammatory macrophages are
enriched for numerous classical pro-inflammatory tran-
scripts such as Cxcl2, Ccl3, Ccl4, Il1α, Il1β, Tlr2, Tnf,
nucleotide-binding oligomerisation domain, leucine-
rich repeat and pyrin domain containing 3 (Nlrp3) and
specific transcription factors such as CCAAT
enhancer-binding protein beta (Cebpb) [60] and early
growth response 1 (Egr1) [61]. Il1α, Il1β, and Nlrp3
are important in regulating atherosclerosis progression
[62–64]. As a result of macrophage activation, negative
feedback mechanisms are activated that partially com-
pensate for the pro-inflammatory and pro-atherogenic
effect and stimulate cell survival [65]. Cochain et al
[28] found enrichment of negative feedback NF-κB
inhibitors (Nfkbia, Nfkbid and Nfkbiz), nuclear receptor

subfamily 4 group A member 1 (Nr4a1), immediate
early response 3 (Ier3) and the mRNA-binding protein
Zpf36.Nr4a1 and Zpf36 have both been shown to inhibit
the inflammatory macrophage phenotype in atheroscle-
rosis [66,67]. The inflammatory response was the most
significantly enriched pathway among the inflammatory
macrophages. Lin et al [31] showed that inflammatory
plaque macrophages were enriched for the expression
of different chemokines (Ccl2-5, Cxcl1, Cxcl2, Cxcl10),
Nlrp3, Tnf and type I interferons signalling genes such as
Ifitm3, Irf7, Isg15 and Mnda. Importantly, it has been
shown that type I interferons are generally pro-
atherogenic [68,69]. The relative frequency of the
inflammatory macrophage subset increased with a
Western-type diet compared with chow feeding, con-
firming the positive association with plaque progression.

Kim et al [29] investigated the association of macro-
phage foam cell phenotype with their inflammatory
characteristics and showed that inflammatory plaque
macrophages are particularly non-foamy. Many inflam-
matory transcripts, including Il1β, Nlrp3, Nfkbia, Tlr2
and Tnf, were upregulated in these non-foamy inflamma-
tory macrophages. Inflammatory pathways (TLR and
TNF signalling, cytokine–chemokine interaction and
NF-κB signalling pathways) were confirmed to be dom-
inant in non-foamy inflammatory macrophage function
in plaques.

McArdle et al [34] also found that inflammatory pla-
que macrophages were enriched for the expression of
Nlrp3, Tnf and Ccl3. Intravital imaging identified that
inflammatory macrophages have elongations, are
dendritic-shaped and migrated significantly more com-
pared with resident-like macrophages.

Different single-cell studies have described that
inflammatory macrophages are only present in the ath-
erosclerotic aorta [27,28] where they represent the larg-
est (about half) macrophage subset [28,29]. This was
confirmed in both atherosclerotic Ldlr−/− and Apoe−/−

mice. Stöger et al [23] observed in human patient mate-
rial that inflammatory macrophages were the predomi-
nant population of the plaque shoulder regions, which
is comparable with the finding of Kim et al [29], who
found that inflammatory macrophages reside in the
intima, which includes the plaque shoulder regions.

Overall, inflammatory macrophages form the major
macrophage population within the intima of the plaque,
are mainly non-foamy cells that are exclusively present
in the atherosclerotic aorta and accordingly can be con-
sidered the main drivers of lesional inflammation. These
inflammatory macrophages typically express inflamma-
tory pathways and markers, including Tnf, Nlrp3, Il1β,
Egr1, Zpf36, Ier3, Cepbp, Cxcl2 and Ccl2-5, and are
therefore associated with an M1-like phenotype.

Atherosclerotic TREM2hi macrophages

TREM2 is a myeloid-specific transmembrane glycopro-
tein that can interact with APOE, APOJ, anionic ligands,
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glycerophospholipids and sphingomyelins [70–75]. Fur-
thermore, TREM2 is expressed on anti-inflammatory
macrophages and has been shown to limit macrophage
activation [76]. Macrophage TREM2 protects against
infections, adipocyte hypertrophy, systemic hypercho-
lesterolemia, body fat accumulation and glucose intoler-
ance in mice [77,78] and has been shown to negatively
correlate with human plaque stability [79].

Cochain et al [28] detected TREM2hi macrophages
exclusively in the plaque and not in the healthy aorta.
TREM2hi macrophages expressed increased levels of
Trem2, Cd9, secreted phosphoprotein 1 (Spp1), hydro-
gen voltage-gated channel 1 (Hvcn1) and several cathep-
sins (Ctsb, Ctsd and Ctsz). Cathepsins are lysosomal
proteolytic enzymes of macrophages that promote ath-
erosclerotic inflammation and plaque vulnerability
[80–82]. For example, cathepsin Z stimulates the pro-
duction of pro-inflammatory cytokines and cathepsin D
controls multiple aspects of apoptosis and modifies
LDL to promote LDL engulfment by macrophages and
subsequent foam cell formation. Cathepsin B has been
shown to mediate the degradation of the extracellular
matrix. Pathway analysis of lesional TREM2hi macro-
phages showed enrichment in lipid metabolism, regula-
tion of cholesterol efflux, oxidative stress and
catabolism, suggesting a link with intracellular lipid
accumulation and foam cell formation.

TREM2hi macrophages were present in mice with
both early and advanced atherosclerotic lesions and
found in both Ldlr−/− and Apoe−/− atherosclerotic mice
[28]. Moreover, TREM2hi macrophages were detected
during both the progression and the regression of athero-
sclerosis [31]. Lin et al [31] showed that TREM2hi mac-
rophages were enriched for the expression of Trem2,
Cd9, Ctsb, galectin-3 (Lgals3), Spp1 and aldolase
(Aldoa), of which CD9 expression was confirmed by
flow cytometry. Tetraspanin CD9 is an exosome and
anti-inflammatory marker of monocytes and macro-
phages and is associated with CD36 expression, which
triggers foam cell formation in response to oxidised
LDL exposure [83,84]. Kim et al [29] showed that
TREM2hi macrophages are indeed lipid-laden foam cells
with increased expression of Trem2, Lgals3, ATP bind-
ing cassette subfamily G member 1 (Abcg1), Abca1,
Ctsb, Fabp4, Mertk and Cd36. Galectin-3 expression
drives the differentiation of monocytes to macrophages
and has been associated with alternative macrophage
activation and plaque progression [85–87]. Fabp4 has
been previously described as a transcriptional marker
of foamy macrophages in atherosclerotic Apoe−/− mice
[29]. Pathways analysis by Kim et al [29] showed
enrichment of oxidative phosphorylation, lysosome,
cholesterol metabolism and peroxisome proliferator-
activated receptors signalling pathways in these foamy
TREM2hi macrophages, again confirming the associa-
tion of the foamy phenotype with metabolic pathways.
Gene expression of foamymacrophages was also associ-
ated with plaque-resolving parameters such as efferocy-
tosis and tissue repair compared with that of non-foamy
inflammatory macrophages.

McArdle et al [34] showed that TREM2hi macrophages
were also enriched for Cd9, Trem2, Ctsd and Spp1. Live-
cell imaging identified TREM2hi macrophages to exist in
a more rounded shape and to migrate significantly more
compared with the resident-like macrophages.
Cochain et al [28] detected TREM2hi macrophages

exclusively in the plaque and not in the healthy aorta.
Foamy macrophages predominantly reside in the intima
where they have taken up atherogenic lipoproteins and
subsequently form a lipid-rich core that can progress to
become a necrotic core [1].
In summary, TREM2hi macrophages are foamy lipid-

laden macrophages accumulating in the plaque intima
and its necrotic core and not in the healthy aorta. Path-
way enrichment analysis confirmed the role of TREM2hi

macrophages in cholesterol metabolism and oxidative
phosphorylation, which was already suggested by the
foamy feature of the TREM2hi macrophages. Trem2,
Cd9, Spp1, Lgals3 and Ctsb are markers of TREM2hi

macrophages, as found by different studies. TREM2hi

macrophages seem to have an M2-like phenotype.

Smooth muscle cell transdifferentiation

Several studies have described that smooth muscle cells
(SMCs) can also become foam cells after lipid loading
[88–91]. Upon foam cell formation, SMCs express lower
levels of typical SMC markers (α-SM actin and α-tropo-
myosin) and increased levels of macrophage markers
such as CD68, galectin 3 and the macrophage foam cell
marker ABCA1 [89]. It has been described that these
transdifferentiated foam cells may make up a major com-
ponent of advanced plaques. Co-staining with CD68 and
α-SM actin of human coronary artery sections suggested
that 40% of CD68+ cells originated from SMCs in
advanced human coronary atherosclerosis [90]. Also,
Kim et al [29] reported that a foam cell subset expressed
SMC markers (α-SM actin and SM22α) and showed the
absence of CD45 in murine atherosclerosis. However,
Wirka et al [32] analysed the single-cell transcriptional
profile of SMC-specific lineage-tracedmouse plaque cells
together with scRNAseq data of human atherosclerotic
plaques, which raised the suggestion that both mouse
and human SMCs transdifferentiate into fibroblast-like
cells and do not acquire macrophage characteristics [31].
They confirmed this suggestion using multiple protein-
based assays. Although experimental data clearly showed
SMC conversion into cells with macrophage characteris-
tics, the actual contribution of transdifferentiation from
SMCs to macrophages (or potentially vice versa) to the
human atherosclerotic process and subsequent clinical
complications still need to be substantiated.

Human atherosclerotic plaque macrophage subsets

Recently, the first publications applying single-cell tech-
nologies on human atherosclerotic plaques were released
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[27,32,33]. Although Wirka et al [32] described one
macrophage subset in atherosclerotic coronary arteries,
Fernandez et al [33] and Winkels et al [27] identified
more macrophage subpopulations residing in carotid
artery plaques. Using CyTOF, Winkels et al [27]
detected two potential macrophage subsets, a
CD11b+HLA-DRmed and a CD11b+CD36+ population.
Fernandez et al [33] found CD206hiCD163hi and
CD206loCD163lo macrophages using mass cytometry.
The CD206hiCD163hi macrophage subset may be simi-
lar to the phenotype of the resident-like macrophage sub-
set described in murine atherosclerosis based on CD206
expression and the fact that haemoglobin–haptoglobin
complex scavenger receptor CD163 and CD206 are not
found to be expressed by foam cells [23,92]. Single-cell
transcriptional analysis of plaque macrophages by Fer-
nandez et al [33] further revealed the presence of pro-
inflammatory and foamy anti-inflammatory macrophage
subpopulations. The pro-inflammatory macrophages in
human plaques expressed increased levels of activation
markers such as HLA-DRA, CD74, CYBA, LYZ2,
AIF1, TLR4 agonist S100A8/A9, MALAT1, JUNB
and NFKBIA. The foamy anti-inflammatory macro-
phage subset was enriched for the expression of
LGALS3 and foam cell-related transcripts such as
APOC1, APOE, CTSB, FABP5 [93] and perilipin
2 (PLIN2). PLIN2 expression is induced upon lipid
uptake in macrophages and foam cells [94,95].
Moreover, Plin2-deficiency protects Apoe−/− mice from
atherosclerosis. The phenotype of the foamy anti-
inflammatory macrophage subset may be comparable
with the TREM2hi macrophages found in mouse athero-
sclerotic plaques. Furthermore, Kim et al [29] showed
that human foamy macrophages were more anti-
inflammatory compared with non-foamy macrophages
in human atherosclerotic plaques, as foamy macro-
phages expressed significantly less Il1b. Studies focus-
ing on other diseases, such as multiple sclerosis and
obesity, also provide supporting evidence regarding the
translation of the mouse to human foamy macrophage
subset phenotype. TREM2 is highly expressed on
myelin-laden foamy macrophages in actively demyelin-
ating multiple sclerosis lesions [96]. Moreover, foam
cells in multiple sclerosis lesions have a more anti-
inflammatory phenotype [97]. CD9hi adipose tissue
macrophages of obese patients had higher intracellular
lipid content compared with CD9lo adipose tissue
macrophages [98]. Jaitin et al [77] identified a lipid-
associated macrophage subset with an enriched tran-
scriptional signature of Trem2, Lipa, Lpl, Ctsb, Ctsl,
Fabp4, Fabp5, Lgals1, Lgals3, Cd9 andCd36 in the adi-
pose tissue of obese mice, which could be confirmed in
humans. Moreover, protein expression of CD9 was also
confirmed in these cells.
Thus, it seems that the murine and human plaques

both enclose pro-inflammatory macrophages, foamy
anti-inflammatory macrophages and resident-like mac-
rophages. However, future studies are required to draw
a more powerful and complete picture of the mouse-to-
human translation. Such studies should involve direct

computational comparisons of the single-cell macro-
phage transcriptomes between mice and men.

Limitations of single-cell studies

The high technical noise and variability of scRNAseq data
are known issues that are larger comparedwith bulk RNA-
seq [99,100]. A major fraction of the transcripts is not
detected in all cells, resulting in false-negative read counts,
also referred to as dropouts. To improve sequencing depth,
previous studies sorted the cells of interest using fluores-
cence-activated cell sorting (FACS) before scRNAseq
library preparation [29,34]. For generating unbiased and
reproducible scRNAseq results, dropouts and low-quality
cells should be identified and excluded during quality con-
trol. Variability among different cells can be reduced by
using either unique molecular identifiers or RNA spike-
ins, which can be used to normalise the scRNAseq
data [101–103]. Numerous methods are available that
identify dropout events and impute these missing values,
resulting in more accurate scRNAseq analysis
[104–108]. The imputation of missing values is based on
either gene expression of similar cells or gene-to-gene rela-
tionships. Tools that were originally designed for bulk
RNAseq data may not be suitable for scRNAseq data.
New tools have been developed to improve normalisation
[109–111], subpopulation identification and comparison,
including cross-species comparisons [112], differential
expression analysis [113] and batch effect correction
[114,115]. To handle the high dimensional scRNAseq
data, dimensionality reduction and feature selection
approaches have been created, such as t-distributed sto-
chastic neighbour embedding [116], uniform manifold
approximation and projection [117], and scvis [118]. Most
of the scRNAseq studies to date sequenced only the 30
transcriptome, although there are also techniques available
that capture either the 50 or full-length transcriptome and
enable the detection of RNA splicing, RNA editing vari-
ants, long non-coding RNA and circular RNA [119,120].

Previous work has shown that macrophages are more
susceptible than other cell types to becoming damaged
during the enzymatic andmechanical dissociation proce-
dures required for scRNAseq, often resulting in an
under-representation of macrophages [121]. Moreover,
different digestion protocols may favour different cell
subsets to survive, resulting in over-representation of
certain populations. To overcome this problem, CIBER-
SORT has been developed, which estimates the abun-
dance of cell populations based on gene expression
data from bulk RNAseq [122]. Alternatively, techniques
without tissue dissociation, such as spatial transcrip-
tomics, which visualises and determines the transcrip-
tome of tissue sections [123], and the combination of
laser capture microscopy and Smart-seq2 may be an out-
come in the confirmation of the current findings [124].

In summary, the application of numerous wet-
laboratory protocols andmany different algorithmsmakes
it currently challenging to directly compare different
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studies with each other. This may also explain differences
in identified macrophage subsets in atherosclerosis.
Cochain et al [28] showed that a higher resolution analy-
sis may result in an increased number of macrophage sub-
sets by extracting and re-analysing the single-cell
transcriptional data from the macrophage clusters. Fortu-
nately, the previous limitations of scRNAseq, such as
batch effects, are minimised by the rapid development
of new bioinformatics software.

Future perspectives

Here we have discussed three main macrophage popula-
tions that have been identified within atherosclerotic pla-
ques. A better understanding of the cell phenotype and
function of these populations and their association with
disease, clinical features of patients and future events
may aid in steering future approaches to limit atheroscle-
rosis complications. Current mouse data may support
such progress. For instance, Kim et al [29] showed that
foam cell activity correlates with cell profiles of resolu-
tion and plaque regression, whereas inflammatory mac-
rophage activity associates with factors involved in
atherosclerosis progression. Linking current mouse
studies with upcoming and available human data will
be essential for extrapolating model observations to clin-
ical settings. Moreover, expanding datasets in future
studies on human atherosclerosis should involve associ-
ation with clinical data including plaque features
(e.g. cellular content, necrotic core, collagen deposition)
to better associate specific transcriptomes to clinically
relevant parameters. We suggest that ongoing research
should further characterise these macrophage subsets.
For instance, future CyTOF experiments applying series
of macrophage markers described in this review may
confirm and further detail the existence of macrophage
populations in atherosclerosis of mice and men. In addi-
tion, subpopulation-specific markers can also be applied
to isolate these populations by flow-sorting and subse-
quent detailed characterisation of cellular phenotypes.
Furthermore, single-cell assay for transposase-accessi-
ble chromatin sequencing (ATAC-seq) and single-cell
chromatin immunoprecipitation (ChIP-seq) studies
may be used to characterise the epigenomic landscape
of macrophage subsets to further unravel their regulatory
pathways, such as the epigenetic processes and tran-
scription factors that control them.

Based on these studies, detailed identification of cell
populations that are detrimental in disease may be defined,
as well as pathways, cytokines or other local inflammatory
cues that promote them. Alternatively, reparative pathways
dampening plaqueworseningmay also be identified. These
insights will define new therapeutic interventions to control
relevant macrophage populations in atherosclerotic dis-
ease. To limit off-target effects of potential therapeutics
aimed at suchmacrophage populations, cell-specific target-
ing may be required. Nanomedicine has been applied as
therapeutic agents that accurately target macrophages

[125]. High-density lipoproteins are natural nanoparticles
with an affinity for atherosclerotic plaque macrophages
[126] that can be applied for the treatment of atherosclero-
sis [127,128], for example by loading with relevant drugs
to re-educate lesional macrophages, as has been applied
in the cancer field [129,130].
In conclusion, the development of single-cell technol-

ogies, such as scRNAseq and CyTOF, has made it possi-
ble to characterise macrophage and other immune cell
subsets in the atherosclerotic plaque in great detail and
to compare atherosclerotic settings with those in the
healthy aorta. So far, three key macrophage populations
(resident-like, pro-inflammatory and anti-inflammatory
foamy TREM2hi) have been described that exist in the
atherosclerotic plaque. Future studies should particularly
focus on the translation of mouse atherosclerotic
immune cell populations to human pathophysiology
and linkage to human disease.
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