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Abstract

Differences in regional protein expression within the human retina may explain molecular

predisposition of specific regions to ophthalmic diseases like age-related macular degenera-

tion, cystoid macular edema, retinitis pigmentosa, and diabetic retinopathy. To quantify pro-

tein levels in the human retina and identify patterns of differentially-expressed proteins, we

collected foveomacular, juxta-macular, and peripheral retina punch biopsies from healthy

donor eyes and analyzed protein content by liquid chromatography-tandem mass spectrom-

etry (LC-MS/MS). Protein expression was analyzed with 1-way ANOVA, gene ontology,

pathway representation, and network analysis. We identified a mean of 1,974 proteins in the

foveomacular retina, 1,999 in the juxta-macular retina, and 1,779 in the peripheral retina.

Six hundred ninety-seven differentially-expressed proteins included those unique to and

abundant in each anatomic region. Proteins with higher expression in each region include:

heat-shock protein 90-alpha (HSP90AA1), and pyruvate kinase (PKM) in the foveomacular

retina; vimentin (VIM) and fructose-bisphosphate aldolase C (ALDOC); and guanine nucleo-

tide-binding protein subunit beta-1 (GNB1) and guanine nucleotide-binding protein subunit

alpha-1 (GNAT1) in the peripheral retina. Pathway analysis identified downstream media-

tors of the integrin signaling pathway to be highly represented in the foveomacular region

(P = 6.48 e–06). Metabolic pathways were differentially expressed among all retinal regions.

Gene ontology analysis showed that proteins related to antioxidant activity were higher in

the juxta-macular and the peripheral retina, but present in lower amounts in the foveomacu-

lar retina. Our proteomic analysis suggests that certain retinal regions are susceptible to dif-

ferent forms of metabolic and oxidative stress. The findings give mechanistic insight into
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retina function, reveal important molecular processes, and prioritize new pathways for thera-

peutic targeting.

Introduction

The human retina can be divided into three regions: fovea, macula, and periphery (Fig 1A).

They are unique in functionality and susceptibility to diseases such as age-related macular

degeneration (AMD), retinitis pigmentosa (RP), proliferative diabetic retinopathy (PDR), and

cystoid macular edema (CME). To develop targeted therapies, it is important to understand

the molecular basis of their pathophysiology.

Together, regional diseases are responsible for a significant proportion of blindness world-

wide. AMD is the leading cause of irreversible central vision loss in elderly patients within the

western hemisphere. As the name suggests, the macula is preferentially affected while the

periphery remains functional well into advanced disease. RP is the most common form of

inherited retinal degeneration and can manifest throughout the lifetime of a patient.[1] Typi-

cally, it initiates within the periphery, and the macula and fovea are affected only later. PDR is

the advanced stage of diabetic retinopathy, the most common cause of overall vision loss

worldwide.[2] It is characterized by profound retinal microvascular disruption and ischemia,

leading to uncontrolled neovascularization that can progress to vitreous hemorrhage, retinal

detachments, and glaucoma. Finally, CME is a foveal finding that manifests in response to

insult from AMD, PDR, RP, and uveitis, thus it is a common finding among numerous dis-

eases.[3]

Oxidative stress is a well-established component of the diseases mentioned above. Elevated

levels of reactive oxygen species (ROS) can cause damage to DNA, proteins, and lipids, leading

to apoptosis and genetic dysregulation.[4] The retina is the most metabolically-active tissue in

the body, making it particularly susceptible to oxidative stress.[5] As one ages, the inherent cel-

lular defenses against ROS decline. While this phenomenon occurs throughout the retina,

many diseases preferentially manifest in specific regions. What factors predispose these retinal

areas to be susceptible to AMD, PDR, RP, and CME?

Proteomic analysis may provide an answer. Studies have shown that protein expression cor-

relates better with disease progression and severity than gene expression.[6–9] Previous gene-

transcriptome analyses have been conducted in human retina[10]; however, retinal proteome

patterns may be decoupled from gene expression in normal eyes and in disease states. Thus,

focusing on gene expression alone may miss key factors.

By uncovering molecular pathways that are regionally distributed, a proteomics-based

approach may reveal mechanisms behind regional susceptibilities to oxidative stress. Previous

analyses of the RPE-choroid complex and vitreous have provided insight into their molecular

composition,[4, 5, 11] however, anatomic regions of the retina were not differentiated.[12] We

have developed a reliable and reproducible dissection protocol that makes use of readily-avail-

able punch biopsy tools.[13] Our focus on analyzing the proteomic profile of different retinal

regions provides further insight into their molecular uniqueness and to understanding the

pathophysiology of numerous regional retinal diseases.
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Methods

Study approval

The study was approved by the University of Iowa’s Institutional Review Board. Human donor

tissue was obtained from the Iowa Lions Eye Bank, Iowa City, IA. Full written consent for

research was obtained from the donors or the donor’s next of kin in all cases, and all experi-

ments were performed in accordance with the Declaration of Helsinki.

Human retina sample collection

Human donor tissue was obtained from the Iowa Lions Eye Bank within 4 hours following

death. Three eyes were used in this study. They were obtained from an 84-year-old male, an

83-year-old female, and a 71-year-old female. None of the eyes showed signs of retinal disease.

Eyes were flowered into four quadrants as previously described. Using a 4-mm biopsy punch,

the foveomacular region and peripheral retina were collected and separated from the underly-

ing RPE-choroid. Using an 8-mm biopsy punch, the juxta-macular retina was collected cir-

cumferentially around the foveomacular punch and separated from the RPE-choroid.

Dissected tissues were flash frozen in liquid nitrogen and stored at -80˚C until further

processing.

Protein extraction and digestion

The received tissue samples (100 μg of total protein per sample) were diluted in 2% SDS, 100

mM Tris-HCl, pH 7.6, 100 mM DTT to approximately 0.5 mL volume and heated at 95 C for

10 min. Each sample was then briefly vortexed and sonicated for 10 s using a probe-tip sonica-

tor (Omni International). The samples were then returned to incubate at 95 C for an additional

Fig 1. Global analysis of retinal regions. (A) Punch biopsy dissection of human retinal regions for proteomic analysis: foveomacular (FM),

juxta-macular (JM), and peripheral retina (P). (B) Proteins were identified using LC-MS/MS with spectral counts of� 2 were used for

further bioinformatics analysis. Venn diagram shows that 1354 proteins are shared among all three regions.

https://doi.org/10.1371/journal.pone.0193250.g001
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10 min. Samples were then transferred to a 30 k Amicon MWCO device (Millipore) and cen-

trifuged at 16.1 k RCF for 30 min. Then 400 μL of 8 M urea, 100 mM Tris-HCl, pH 7.6 was

added to each device and centrifuged as before and the filtrate discarded. This step was

repeated. Then 400 μL of 8M urea, 100 mM Tris-HCl, pH 7.6, 15 mM iodoacetamide was

added to each device and incubated in the dark for 30 min. The samples were then centrifuged

as before and the filtrate discarded. Then 400 μL of 8 M urea, 100 mM Tris-HCl, pH 7.6 was

added to each device and centrifuged as before and the filtrate discarded. This step was

repeated. Then 400 μL of 2 M urea, 100 mM Tris-HCl, pH 7.6 was added to each device along

with 2.5 μg trypsin (1:40 enzyme-to-substrate ratio). The devices incubated overnight on a

heat block at 37 C. The devices were then centrifuged and the filtrate collected. Then 400 μL

0.5 M NaCl was added to each device and centrifuged as before. The filtrate was added to the

previously collected filtrate.

Peptide desalting and fractionation

Digested peptides were desalted using C18 stop-and-go extraction (STAGE) tips. Briefly, for

each sample a C18 STAGE tip was activated with methanol, then conditioned with 75% aceto-

nitrile, 0.5% acetic acid followed by 0.5% acetic acid. Samples were loaded onto the tips and

desalted with 0.5% acetic acid. Peptides were eluted with 75% acetonitrile, 0.5% acetic acid and

lyophilized in a SpeedVac (Thermo Savant) to dryness, approximately 2 h. Peptides were frac-

tionated using SAX STAGE tips. Briefly, for each sample a SAX STAGE tip was activated with

methanol, then conditioned with Britton-Robinson buffer (BRB), pH 3.0 followed by BRB, pH

11.5. Peptides were loaded onto the tips and the flow-through collected followed by and five

additional fractions by subsequent application of BRB at pH 8.0, 6.0, 5.0, 4.0 and 3.0. Each frac-

tion was desalted using a C18 STAGE tip and lyophilzed as described above.

Liquid chromatography-tandem mass spectrometry

Each SAX fraction was analyzed by LC-MS/MS. LC was performed on an Agilent 1100 Nano-

flow system. Mobile phase A was 94.5% MilliQ water, 5% acetonitrile, 0.5% acetic acid. Mobile

phase B was 80% acetonitrile, 19.5% MilliQ water, 0.5% acetic acid. The 150 min LC gradient

ran from 5% A to 35% B over 105 min, with the remaining time used for sample loading and

column regeneration. Samples were loaded to a 2 cm x 100 um I.D. trap column positioned on

an actuated valve (Rheodyne). The column was 13 cm x 100 μm I.D. fused silica with a pulled

tip emitter. Both trap and analytical columns were packed with 3.5 um C18 (Zorbax SB, Agi-

lent). The LC was interfaced to a dual pressure linear ion trap mass spectrometer (LTQ Velos,

Thermo Fisher) via nano- electrospray ionization. An electrospray voltage of 1.5 kV was

applied to a pre-column tee. The mass spectrometer was programmed to acquire, by data-

dependent acquisition, tandem mass spectra from the top 15 ions in the full scan from 400–

1400 m/z. Dynamic exclusion was set to 30 s.

Data processing and library searching

Mass spectrometer .RAW data files were converted to .MGF format and then to .CMN format

using msconvert and common. Detailed search parameters are printed in the output data files.

Peak list data were searched using three algorithms: NCBI’s OMSSA[14] and The GPM’s X!

Tandem,[15] and X!Hunter.[16] The Ensembl human protein sequence library (version 37,

reviewed) was used in a target-decoy format. For X!Hunter the latest library build available

from TheGPM.org at the time of searching was used. CMN files were searched using X!Tan-

dem using both the native and k-score scoring algorithms. MGF files were searched using

OMSSA with precursor mass tolerance settings of +/- 20 ppm, product ions mass tolerance
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PLOS ONE | https://doi.org/10.1371/journal.pone.0193250 February 21, 2018 4 / 20

https://doi.org/10.1371/journal.pone.0193250


of +/- 1.5 Da, and fragment settings of +/- 0.5 Da [17]. XML output files were parsed using

MassSieve (NIH). A minimum peptide length of 6 amino acids was used for protein matches.

Proteins were required to have 2 or more unique peptides with E-value scores of 0.01 or less.

Relative quantitation was performed by spectral counting. Data were normalized based on

total spectral counts (hits) per sample. Proteins with a probability of less than 63% were

excluded, giving a 5% false discovery rate at the protein level. The mass spectrometry proteo-

mics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner

repository with the dataset identifier PXD008462 [18–20] so that other researchers may ana-

lyze the data with their desired statistical criteria and cutoffs. A full list of identified proteins,

their corresponding peptides, and spectral counts is outlined in the online supplement

(S1 Table).

Statistical and bioinformatic analysis

Results were also saved in Excel as .txt format and were uploaded into the Partek Genomics

Suite 6.5 software package. The data was normalized to log base 2, and compared using 1-way

ANOVA analysis. Comparative analysis was repeated with foveomacular region, macula, and

peripheral retina tissues. All proteins with non-significant (p>0.05) changes were eliminated

from the table. The significant values were mapped using the ‘cluster based on significant

genes’ visualization function with the standardization option chosen. Proteins with that were

consistently identified among all three eyes in each region (and spectral count > 2) were used

for further analysis. PANTHER Classification System[21] was utilized to determine the most

significant cellular pathways affected by the proteins present in the different retinal regions.

Gene ontology analysis also was performed in PANTHER. Pie charts were created for the visu-

alization of GO distributions within the list of proteins under the Batch ID search menu. Pie

charts were created for each GO term category including biological process, molecular func-

tion, and cellular component. Protein networks and interactomes were constructed using

STRING[22] and visualized in Cytoscape as previously described.[11, 13, 23]

Analysis of retinal transcriptome data

Serial read archive files of GSE40524[24] were downloaded, converted into FASTQ using SRA

toolkit. FASTQ formatted raw reads were aligned using the usegalaxy web platform and

TopHat.[25–27] The aligned bam files were further processed according the previously estab-

lished workflow for Cufflinks and associated suite with bias corrections.[27] All sample assem-

blies were merged via Cuffmerge. Expression data is reported in fragments per kilobase of

exon per million fragments mapped (FPKM).

Results

Mass spectrometry overview

Foveomacular, juxta-macular, and peripheral retina samples underwent trypsinization and

multidimensional liquid chromatography before analysis by tandem mass spectrometry. In the

periphery, we identified 1,779 ±51 individual proteins (134,889 ±89 spectra with 7,458 ±192

unique peptides). In the juxta-macular retina, we identified 1,999 ±46 individual proteins

(135,183 ±148 spectra with 8,745 ±732 unique peptides), and in the foveomacular retina, we

identified 1,974 ±92 individual proteins (135,233 ±76 spectra with 9,083 ±312 unique peptides;

S1 Table). The mean total spectra for the 3 samples showed excellent correlation with an SD of

0.08% of mean total. This indicated the protein load for each sample was consistent. The most

abundant proteins identified were alpha-enolase (ENO1), gamma-enolase (ENO2), 11 chains
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of tubulin (TUBA and TUBB), pyruvate kinase (PKM1 and 2), creatine kinase b-type, vimen-

tin, glyceraldehyde-3-phosphate dehydrogenase, histone H2B type 1-D, and histone cluster

(H2BG). The most abundant proteins were similar among all three regions. Of these, 66%

were confirmed to be present in a previously-published human retina transcriptome dataset

(GSE40524; S2 Table).[24]

Each retinal region has different physical properties and functions that suggest that they

may contain distinct proteins. To identify those unique to each region, we performed a com-

parative analysis (Fig 1B). There were 63 ±31 unique proteins in the foveomacular retina,

43 ±7 in the peripheral retina, and 128 ±63 in the juxta-macular retina. We next curated this

list to determine which proteins were consistently present in all three eyes. Of those detected

in the foveomacular retina, only one was found to be consistent in all three samples: nuclear

coactivator receptor 5 (NCOA5). Similarly, only one was found to be consistent in all three

peripheral retina samples: ankyrin repeat domain-containing protein 24 (ANKRD24). Finally,

of those detected in the juxta-macular retina, 12 were found to be consistent in all three sam-

ples: growth hormone inducible transmembrane protein (GHITM), CCR4-NOT transcription

complex subunit 1 (CNOT1), membrane protein palmitoylated 6 (MPP6), kelch repeat and

BTB (POZ) domain containing 10 (KBTBD10), methylmalonyl CoA mutase (MUT), F-

box protein 7 (FBXO7), propionyl CoA carboxylase (PCCA), O-linked N-acetylglucoamine

transferase (OGT), FK506 binding protein 8 (FKBP8), atlastin GTPase 1 (ATL1), cytochrome

P450 2A13 (CPA2D), and signal recognition particle 72kDa (SRP72). A total of 1,354 proteins

were expressed in all three regions.

Regional protein expression

Protein spectral counts were analyzed with 1-way ANOVA and hierarchical clustering (Fig 2;

p<0.05). A total of 697 proteins were differentially-expressed among the 3 retinal regions.

There were 484 proteins highly expressed in the foveomacular region and 213 proteins

expressed in the periphery. There was a blend of protein expression observed in the juxta-mac-

ular retina (Fig 2). This expression overlap is likely due to the size of punch biopsies. We per-

formed further comparative analysis of these differentially-expressed proteins to identify

differences among regions: There were 406 proteins elevated in the foveomacular retina (S3

Table), 314 in the juxta-macular retina (S4 Table), and 188 in the periphery (S5 Table). We

next performed 2–way comparisons between each retinal region to determine additional dif-

ferences (S1, S2 and S3 Figs). Next, we compared the identified proteins in each region to

those identified in our previously-published proteomics dataset of the human RPE-choroid

[13]. On average, there was 39.8% overlap in protein expression between the retina and RPE-

choroid at each anatomic region (S4 Fig). Interestingly, there were fewer unique proteins in

the retina compared to the RPE-choroid (11.7% vs. 48.5% average, respectively).

Gene ontology analysis

To obtain a global view of the three distinct retina regions, a gene ontology analysis was per-

formed. When comparing the three total protein profiles, the gene ontology summaries were

similar. The highest represented categories were cellular process, binding, catalytic activity,

and intracellular regions (S5 Fig). After identification of differentially expressed proteins

within the regions (Fig 2), differences in gene ontology (GO) categorization emerged. The

foveomacular retina had more proteins in the structural molecule activity category than the

other two regions. The juxta-macular and peripheral retina had proteins with antioxidant

activity, whereas the foveomacular retina did not. The foveomacular region was the only

region with proteins in the extracellular matrix category. In the biological process category,
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Fig 2. Hierarchical clustering of differentially-expressed proteins in retinal regions. Protein spectral counts were

analyzed with 1-way ANOVA and hierarchical heatmap clustering. Results are represented as a heatmap and display

protein expression levels on a logarithmic scale. Orange indicates high expression while dark green/black indicates low

or no expression. A total of 697 proteins were differentially-expressed among the three groups (p< 0.05). Of these

proteins, 484 were highly-expressed in the foveomacular retina. A total of 213 proteins were significantly elevated in

the periphery. There was a blend of protein expression in the juxta-macular retina.

https://doi.org/10.1371/journal.pone.0193250.g002
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only the foveomacular region showed reproduction category proteins. In the cellular compo-

nent category, every tissue had similar representation, except there was more macromolecular

complex category proteins in the foveomacular region (Fig 3A). Together, this indicated that

each retinal region expresses distinct functional categories of proteins.

Fig 3. Gene ontology distributions of retina regions highlight tissue differences. (A) Differentially-expressed proteins from

the foveomacular, juxta-macular, and peripheral retina. Gene ontology analysis categorized each protein group by biological

process, molecular function, and cellular compartment. (B) Top pathways represented in the three retina regions. Pathways

are ranked by their log (p-value), obtained from the right-tailed Fisher Exact Test.

https://doi.org/10.1371/journal.pone.0193250.g003
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Molecular pathways

Molecular pathway analysis identifies groups of functionally-linked proteins. Analyzing all

regions together, the top pathways were cytoskeletal regulation by Rho GTPase, Huntington

and Parkinson disease (known synaptic signaling pathways), and rod outer segment (OS)

phototransduction S6 Fig).[28, 29] Next, from the list of differentially-expressed proteins (Fig

2), highly represented pathways were determined. The top foveomacular pathways included

cytoskeletal regulation by Rho GTPase, Huntington disease, and integrin signaling (S6 Fig; S6

Table). The most represented juxta-macular pathways were Huntington disease, cytoskeletal

regulation by Rho GTPase, Parkinson disease, and heterotrimeric G-protein signaling path-

way-rod OS phototransduction (S6 Fig; S7 Table). The peripheral pathways were cytoskeletal

regulation, Huntington disease, Parkinson disease and apoptosis signaling (S6 and S8 Tables).

Notably, VEGF signaling mediators were present in the juxta-macular and peripheral retina,

but absent in the foveomacular region (Fig 3B).

Proteomic analysis highlights regional expression of retinal degeneration

biomarkers

Proteins associated with inherited retinal degenerations were detected in our dataset (Table 1).

The proteins with the greatest peripheral retina expression were S-arrestin (SAG), guanine

nucleotide-binding protein subunit alpha-1 (GNAT1), retinaldehyde-binding protein 1

(RLBP1), and cyclic nucleotide gated channel beta 1 (CNGB1). Mutations in the SAG gene are

known to cause Oguchi disease (OMIM: 258100), a rare autosomal recessive form of congeni-

tal stationary night blindness, while GNAT1 mutations cause autosomal dominant congenital

stationary night blindness (OMIM: 139330).[30] RLBP1 and CNGB1 gene mutations cause

autosomal recessive retinitis pigmentosa (arRP).[31, 32] Patients affected by arRP first lose

peripheral vision followed by central vision with progression.[33] We detected higher levels of

phosphodiesterase 6C (PDE6C) and retinoschisin 1 (RS1) in the foveomacular retina com-

pared to the juxta-macular and peripheral retina (Table 1). Mutations in the PDE6C gene

cause recessive cone dystrophy (OMIM: 613093), which is characterized by early-onset

decreases in visual acuity, impaired color vision, central vision loss, and photophobia.[34]

Mutations in the RS1 gene cause retinoschisis (OMIM: 300839).[35] Levels of rhodopsin

Table 1. Differentially-expressed proteins related to retinal diseases. Our proteomics dataset was interrogated for the presence of retinal disease biomarkers. Spectral

count levels are organized by retinal region.

Protein Associated Diseases Protein Level (Average Spectra

Count ± SD)

Foveomacular Juxta-

macular

Peripheral

SAG Recessive Oguchi disease; recessive retinitis pigmentosa 418 ± 9 537 ± 25 672 ± 98

RLBP1 Recessive retinitis pigmentosa; recessive Bothnia dystrophy; recessive retinitis punctata albescens; recessive

Newfoundland rod-cone dystrophy

329 ± 39 393 ± 6 469 ± 62

GNAT1 Dominant congenital stationary night blindness, Nougaret type; recessive congenital stationary night blindness 290 ± 41 447 ± 36 494 ± 59

RHO Dominant retinitis pigmentosa; dominant congenital stationary night blindness; recessive retinitis pigmentosa 236 ± 43 363 ± 51 358 ± 41

PDE6C Recessive cone dystrophy, early onset; recessive complete and incomplete achromatopsia 14 ± 7 8 ± 5 1 ± 2

CNGB1 Recessive retinitis pigmentosa 18 ± 5 38 ± 3 44 ± 6

BSG Impaired retinal function in a mouse model 93 ± 9 87 ± 7 74 ± 6

RGR Recessive retinitis pigmentosa; dominant choroidal sclerosis; protein 7 ± 5 8 ± 2 3 ± 5

RS1 Retinoschisis 55 ± 10 45 ± 14 35 ± 3

VWF Age-related macular degeneration 6 ± 2 5 ± 1 0 ± 0

https://doi.org/10.1371/journal.pone.0193250.t001
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(RHO) and retinal G-protein coupled receptor (RGR) were highest in the juxta-macular retina

(Table 1). RHO and RGR mutations both cause autosomal dominant and autosomal recessive

RP, respectively (OMIM: 180380 and 600342, respectively).[36, 37]

Cell adhesion protein distributions highlight regional homeostasis of

vascular permeability

Cell-adhesion molecules are involved in endothelial cell integrity and vascular homeostasis,

particularly at the blood-retina barrier.[38] Endothelial cells are anchored to the basement

membrane, which is composed of proteins such as laminin, heparin sulfate proteoglycan

(HSPG), and type IV collagen.[39] Disruption of endothelial cell integrity is related to numer-

ous pathological processes, including CME. We interrogated our dataset for proteins and path-

ways involved in cell-cell and cell-extracellular matrix adhesions. Interestingly, the integrin

signaling pathway was highly-represented in the foveomacular retina, but lower in the juxta-

macular retina and peripheral retina (P = 6.48 e-06; Fig 3B). These proteins were downstream

effectors of integrin activation including actin (ACTA, ACTB, ACTG, ACTS, and ACTBL),

ADP-ribosylation factor (ARF1 and ARF6), laminin (LAMB2 and LAMC1), and type IV colla-

gen (CO4A1). In addition to mediating cell-ECM adhesions, integrin signaling can activate

numerous pathways involved in cell growth, division, differentiation, and apoptosis. Notably,

laminin levels (particularly LAMB1) were highest in the foveomacular and juxta-macular ret-

ina compared to the periphery (P = 0.0483). Laminins are one of the major components of the

endothelial basement membrane and help to regulate vascular permeability.[40] Thus, their

high levels in the juxta-macular and foveomacular retina may indicate a role in CME develop-

ment. Additionally, we detected von willebrand factor (VWF) levels in the juxta-macular and

foveomacular retina, but not in the periphery (Table 1). Elevated VWF levels are a marker of

endothelial injury and are associated with AMD.[41]

Energy metabolism varies throughout the retina

Metabolic dysregulation drives the pathogenesis of DR. Hyperglycemia in diabetes stimulates

the production of mitochondrial ROS, which decrease GAPDH activity and lower NADPH

levels in the retina.[4] This activates pathways that lead to endothelial cell damage, causing

microvascular complications characteristic of DR. We interrogated our dataset for metabolic

pathways: anandamine degradation was highly represented in the foveomacular region

(P = 6.64 e–03); the pentose phosphate pathway was highly represented in the juxta-macular

retina (P = 3.74 e–02); glycolysis (P = 8.09 e–03) and fructose galactose metabolism (P = 3.01

e–03) were highly represented in the periphery (S7 Fig). These results were consistent with the

ALDOA network being the largest unique subnetwork in the peripheral retina (S7 Fig), sug-

gesting that the foveomacular and juxta-macular regions favor anabolic pathways while the

peripheral retina favors anaerobic metabolism.

Antioxidant protein distributions highlight foveomacular susceptibility to

oxidative stress

Oxidative stress causes rod and cone dysfunction in diseases like PDR, CME, AMD, and RP.

[4] Antioxidant proteins were among the most highly-represented proteins in our dataset. Sev-

eral were found in the retina, yet our gene ontology analysis indicated that the foveomacular

region had lower levels of antioxidant proteins compared to the juxta-macular and peripheral

retina (Fig 3). This was further suggested by the finding that the foveomacular retina contained

fewer ‘oxidoreductases’ (S8 Fig). The juxta-macular and peripheral retina had higher levels of
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several antioxidant proteins compared to the foveomacular retina: superoxide dismutase

(SOD1), cytochrome oxidase (COX2, COX5A, and CXB1), peroxiredoxin (PRDX1 and

PRDX4), Flavin reductase (BLVRB), and aflatoxin B1 aldehyde reductase member 2 (ARK72;

S8 Fig). AMD pathogenesis is highly dependent on oxidative stress, and SOD1 deficiency has

been shown to cause dry AMD in a mouse model.[42] Notably, our previous proteomic analy-

sis of human RPE tissue identified high levels of SOD1 as well as elevated glutathione peroxi-

dase (GPX1 and GPX4), PRDX1, PRDX2, PRDX3, and vitronectin (VTN) in the foveomacular

retina of the RPE compared to other regions.[13] This difference in the levels of these proteins

between the retina and RPE-choroid complex at the foveomacular region may be explained by

differences in the molecular function of these tissues. Since the retina and RPE-choroid are

comprised of different cell types, it is possible that they have developed unique antioxidant

defense systems. Cultured RPE cells have been shown to be tolerate exposure to various oxi-

dants (e.g. H2O2 and paraquat) and increased light exposure. It is possible that the antioxidant

defense systems of the RPE may aid in protecting the retina from the constant barrage of reac-

tive oxygen species, which may be more concentrated at the fovea [43]. Cones are under a con-

siderable amount of oxidative stress and become vulnerable when rods (>90% of population)

die.[44] Previous studies have shown cone death during RP begins after most rods have died.

[13] This, along with the current findings, suggests that the foveomacular retina is more sus-

ceptible to oxidative stress than the juxta-macular and peripheral retina and may be dependent

on the antioxidant activity of rods and the RPE.[44] Details of the identified metabolic and

antioxidant proteins are highlighted in Fig 4. A protein interaction network was created (S9

Fig).

Discussion

The human retina is composed of distinct regions that are each susceptible to diseases such as

AMD, PDR, RP, and CME (S6 Fig). Proteomic analysis using mass spectrometry is an unbi-

ased method for analyzing global and regional protein expression. Our data demonstrates sig-

nificant molecular differences between retinal regions that may provide insight into the

underlying mechanisms for various diseases. The identified differences in regional protein

expression between the retina and RPE-choroid is not surprising as they carry out distinct

physiological roles (S4 Fig) [13]. We anticipate that further comparison between these proteo-

mic profiles may elucidate new differences between the molecular functions and pathological

susceptibilities of these two tissues.

Our study confirmed the unique molecular functions of various retinal regions. For exam-

ple, the rod OS phototransduction pathway was highly-represented in the juxta-macular and

peripheral retina and had lower representation in the foveomacular region (Fig 3B). We identi-

fied elevated levels of cone opsins (e.g green-cone opsin; S3 Table) in the fovea compared to

the juxta-macular and peripheral retina. These findings gave us confidence in our approach.

Further interrogation of our pathway analysis also provided insight into regional disease pro-

cesses. We identified high levels of downstream integrin signaling mediators in the foveoma-

cular region. Integrin signaling mediates adhesion to extracellular matrices (ECM) like

vitreous. The high-representation of integrin signaling in the foveomacular region may explain

its susceptibility to pathologies like vitreomacular traction.[45] The VEGF signaling pathway

was also highly-represented in the juxta-macular and peripheral retina, but absent in the

foveomacular retina.

The variation of metabolic proteins found within different regions of the retina confirms

that each has unique metabolic requirements and functions. Photoreceptors are metabolically

robust and require high levels of glucose and oxygen. The high rate of aerobic ATP synthesis
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Fig 4. Differential expression of metabolic and antioxidant stress proteins highlights drug repositioning opportunities for retinal

disease. Pathway diagram of metabolic and antioxidant proteins with high representation in the human retina. Each pie chart represents the

relative protein representation in the foveomacular (orange), juxta-macular (blue), and peripheral retina (purple). Proteins are organized by

their molecular pathway and respective metabolites. Compounds and mimetic drugs targeting these specific proteins and metabolites

(light blue) are listed in the metabolic map (red). HK2 indicates hexokinase-2; ALDOA, aldolase A; ALDOC, aldolase C; PGAM1,

phosphoglycerate mutase 1; PGAM4, phosphoglycerate mutase 4; LDHB, lactate dehydrogenase B; LDHC, lactate dehydrogenase C;

LDHAL6H, lactate dehydrogenase A-like 6H; PKM, pyruvate kinase; PDHE1, pyruvate dehydrogenase E1 component subunit alpha;
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produces a significant amount of ROS which can be harmful to the retina.[44] Our analysis

showed that the pentose phosphate pathway was highly represented in the juxta-macular ret-

ina, suggesting this region favors anabolic metabolism and may be the major source of

NADPH (S5 Fig). The large representation of glycolytic pathways and enzymes in the periph-

ery suggest that it favors anaerobic metabolism.

Antioxidant proteins were among the most highly-represented. Previous studies have

shown that oxidative stress causes photoreceptor dysfunction.[4] We identified antioxidant

proteins that were elevated in both the healthy juxta-macular and peripheral retina such as

PRDX1, PRDX4, SOD1, and COX5A (S6 Fig). In diabetes, hyperglycemia stimulates the pro-

duction of mitochondrial ROS, leading to oxidative stress. This causes a decrease in glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH) activity, which lowers NADPH levels. Since

antioxidant proteins require NADPH (produced by the pentose phosphate pathway) to

remove ROS from the retina, hyperglycemia-induced depletion of NADPH leads to chronic

oxidative damage.[4, 44] Elevated ROS can also activate inflammatory pathways that cause

endothelial cell death and breakdown of the blood-retinal barrier, a potential mechanism for

CME.[4] Oxidative stress is also implicated in AMD. The aging retina experiences concurrent

increase in ROS levels and decrease in antioxidant capacity, leading to photoreceptor damage

and RPE degeneration.[46] Similarly, cellular NAD+ levels decrease with age, leaving neurons

vulnerable to oxidative damage. Vitamin B3 levels have been shown to be beneficial in replen-

ishing NAD+ levels and preventing glaucoma.[47, 48]

Given the differential expression of metabolic and antioxidant proteins in various retinal

regions, we considered drugs and mimetic compounds that could preferentially target these

pathways (Fig 4; S9 Fig). Such an approach is beneficial in treating or preventing retinal dis-

eases that result from chronic oxidative stress and metabolic dysregulation. For example, the

foveomacular region contains the lowest amounts of SOD1 compared to the juxta-macular

and peripheral retina, making it highly susceptible to oxidative damage in diseases like DR and

RP. M40403, a manganese superoxide dismutase mimetic compound, was effective in prevent-

ing oxidative damage in mice following total body irradiation[49] and improved endoneurial

blood flow in a diabetic mouse model.[50] Similarly, glutathione peroxidase (GPX3) levels

were lowest in the foveomacular region (Fig 4; S8 Fig). Ebselen, a seleno-organic compound

and glutathione peroxidase mimetic, reduced ischemic damage in astrocytes.[51] Further-

more, epipolythiodioxopiperazine (ETP) metabolites (e.g. GT, chetomim, and chaetocin)

recovered peroxiredoxin (PRDX) activity and reduce oxidative damage and vascular injury.

[52] Finally, increased catalase activity can reduce oxidative stress in retinal cells of diabetic

mice.[53] Several catalase mimetics (e.g. EUK-8 and EUK-134) were neuroprotective in several

animal models of neurodegenerative disease.[54, 55] These drugs may be repurposed for reti-

nopathies where oxidative stress causes damage to retinal glia and vasculature.[56]

Our current study has several limitations. We analyzed retina proteomes from immediate

postmortem eyes of elderly patients. Advanced age likely influenced the protein content.[57]

Collecting young post-mortem retinas is often not approved by institutional review boards.

Thus, our results may not extend to younger patients. Future proteomic studies of samples

TALDO1, transaldolase; GPX3, glutathione peroxidase 3; CAT, catalase; SOD1, superoxide dismutase 1; PRDX1, peroxiredoxin 1; PRDX4,

peroxiredoxin 4; PRDX6, peroxiredoxin 6; CS, citrate synthase; ACO2, aconitate hydratase 2; CYTC, cytochrome c; NDUFS8, NADH

dehydrogenase [ubiquinone] iron-sulfur protein 8; NDUFB7, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7; NDUFV2,

NADH dehydrogenase [ubiquinone] flavoprotein 2; NDUFA7, NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7;

MT-ND5, NADH-ubiquinone oxidoreductase chain 5; COX5A, cytochrome c oxidase subunit 5A; COX5B, cytochrome c oxidase subunit

5B; COX4I1, cytochrome c oxidase subunit 4 isoform 1; COX6B1, cytochrome c oxidase subunit 6B1; MT-CO2, cytochrome c oxidase

subunit 2; UQCRC1, Cytochrome b-c1 complex subunit 1.

https://doi.org/10.1371/journal.pone.0193250.g004
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from younger, non-diseased retinas may further elucidate the age-related changes in the retinal

proteome. Furthermore, considerable overlap in retinal protein expression between foveoma-

cular and juxta-macular retina as well as between juxta-macular and peripheral retina (Fig 2)

were likely due to the size of punch biopsies.[13] The 4-mm foveal punch dissection also con-

tained the parafovea and perifovea (which overlap substantially with the macula). Similarly,

the 8-mm macula punch biopsy also contained portions of the near-peripheral retina outside

the anatomic macula.[13] Nevertheless, our analysis could identify distinct and differentially-

expressed protein pathways among these regions.

Conclusions

Proteomic analysis is a powerful tool for studying retinal molecular functions. Unlike gene

expression, proteomic analysis can identify dynamic changes in regional protein expression

in both healthy and diseased tissue.[6–8] Our dataset points to differential expression of anti-

oxidant and metabolic proteins in the three retinal regions, a finding that has implications for

diseases that manifest in unique patterns or localize to specific regions, suggesting that prophy-

lactic targeting of ROS and metabolic reprogramming is essential to treat a variety of retinal

diseases. Further interrogation of our dataset should generate additional hypotheses for future

validation studies and provide an exciting opportunity to treat the most devastating blinding

diseases.
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