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The activating immune receptor natural killer group member D (NKG2D) and its cognate
ligands represent a fundamental surveillance system of cellular distress, damage or
transformation. Signaling through the NKG2D receptor-ligand axis is critical for early
detection of viral infection or oncogenic transformation and the presence of functional
NKG2D ligands (NKG2D-L) is associated with tumor rejection and viral clearance. Many
viruses and tumors have developed mechanisms to evade NKG2D recognition via
transcriptional, post-transcriptional or post-translational interference with NKG2D-L,
supporting the concept that circumventing immune evasion of the NKG2D receptor-
ligand axis may be an attractive therapeutic avenue for antiviral therapy or cancer
immunotherapy. To date, the complexity of the NKG2D receptor-ligand axis and the
lack of specificity of current NKG2D-targeting therapies has not allowed for the precise
manipulation required to optimally harness NKG2D-mediated immunity. However, with
the discovery of clustered regularly interspaced short palindromic repeats (CRISPRs) and
CRISPR-associated (Cas) proteins, novel opportunities have arisen in the realm of locus-
specific gene editing and regulation. Here, we give a brief overview of the NKG2D
receptor-ligand axis in humans and discuss the levels at which NKG2D-L are regulated
and dysregulated during viral infection and oncogenesis. Moreover, we explore the
potential for CRISPR-based technologies to provide novel therapeutic avenues to
improve and maximize NKG2D-mediated immunity.
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INTRODUCTION

Interactions between hosts and pathogens are constantly
evolving, and in this ongoing arms race each side aims to
outsmart the other. Host and pathogen genetics form a key part
of this competitive evolutionary relationship, with variation in
their respective genomes having a considerable impact on host-
pathogen dynamics. Many pathogens, such as viruses, generate
this variation in the form of mutations as a by-product of their
rapid, error-prone replication. Some of these mutations may
confer a selective advantage to the pathogen, and via the
process of natural selection are retained within the variant
“pool”, termed quasispecies (1). Interestingly, this process of
pathogen evolution bears an uncanny resemblance to what is
seen during oncogenesis. During oncogenic transformation,
genomic instability gives rise to tumor variants, which undergo
a selective process to similarly maintain “fitter” variants within
the tumor quasispecies (2). In both the tumor and pathogen
contexts, host immune pressure constitutes a major selective force
of pathogen/tumor evolution. In humans, the immune response
relies on the strategic orchestration of innate and adaptive
immunity, which comprises a variety of cell types and soluble
molecules. This is regulated by the interaction of multiple
receptors and ligands expressed at the cell membrane or
released as soluble proteins. As such, pressure exerted via
receptor-ligand mediated immune responses inadvertently
selects for viral or oncogenic mutations that dysregulate
receptor/ligand expression (3–5). Consequently, in order to
compete against pathogen diversification and oncogenic
transformation in this way, humans have over the course of
this perennial host-pathogen battle developed in their arsenal a
high level of polymorphism at loci encoding receptors/ligands
responsible for immune recognition (6–8). One such receptor-
ligand axis is the type II lectin-like transmembrane natural killer
group 2 member D (NKG2D) receptor and its cognate ligands
(NKG2D-L). Herein, we briefly overview the NKG2D receptor-
ligand axis in humans, explore the levels at which NKG2D-L
regulation/dysregulation occurs, and discuss how clustered
regularly interspaced short palindromic repeats (CRISPR)-based
technologies are poised to harness NKG2D-mediated immunity
in the analogous contexts of oncogenic transformation and
viral infection.
THE NKG2D RECEPTOR-LIGAND
AXIS PLAYS AN IMPORTANT ROLE
IN IMMUNE RECOGNITION

The NKG2D Receptor
NKG2D is the most versatile and widely distributed activating/
co-stimulatory natural killer (NK)-related receptor. First
identified in human NK cells in 1991 (9), NKG2D has since
been discovered on numerous cell subsets including, activated
(ab and gd) T cells, natural killer T (NKT) cells, and mucosal-
associated invariant T (MAIT) cells (10–13). Increasingly,
NKG2D expression is also being identified on tissue-resident
Frontiers in Immunology | www.frontiersin.org 2
innate lymphoid cells (ILC), such as certain ILC1 (14, 15), ILC2
(16) and ILC3 (17) subsets. In humans, NKG2D is encoded by
the KLRK1 gene and is located within the NK gene complex
(NKC) on chromosome 12p. Moreover, NKG2D is highly
conserved across multiple vertebrate species (18, 19). To date,
two major human haplotype alleles of NKG2D have been
identified, termed LNK1 (low activity) and HNK1 (high
activity) alleles (20, 21), with surface expression of NKG2D
lower in carriers of the low activity LNK1/LNK1 genotype (20,
22). When expressed at the cell surface, the 42 kDa homodimeric
NKG2D receptor combines with the DNAX-activating protein
10 (DAP10) homodimer and following its engagement with
cognate ligands initiates a cytotoxic cellular response and/or
the secretion of pro-inflammatory cytokines (Figure 1A)
(23–25).

NKG2D is also capable of facilitating the function of other
activating receptors, depending on the inflammatory milieu and/
or expressing cell type. For example, in activated NK cells primed
by pro-inflammatory cytokines (e.g. interleukin (IL)-2 and
IL-15), NKG2D provides direct stimulatory signals (26–29),
whereas in resting NK cells, it synergizes as a co-activator with
other receptors, such as NKp46 and 2B4 (30, 31). In ab T cells,
NKG2D typically provides a co-stimulatory signal, acting to
promote T cell receptor (TCR)-dependent cytotoxicity,
production of pro-inflammatory cytokines and memory
differentiation (32–37). Interestingly, prolonged exposure to
IL-15 has been shown to increase expression of NKG2D in
CD8+ T cell subsets, potentiating TCR-independent activation
(38, 39). Similarly in gd T cells, NKG2D can function as a co-
stimulatory molecule (40), but may also directly trigger
cytotoxicity in a TCR-independent fashion (41). Alternatively,
some gd T cells have been shown to bypass the NKG2D receptor
and recognize NKG2D-L, such as ULBP4 or MICA/B, directly
via their TCR, implying a TCR agonistic role (42–44). In innate-
like T cells, such as invariant NKT cells, NKG2D is restricted to
the CD4- subsets, and functions to mediate direct lysis of target
cells and co-stimulatory activation (12). Whereas, in MAIT cells,
NKG2D is more prominent on CD8+ subsets, and functions as a
co-stimulatory molecule (45) or, if in the presence of IL-15,
exerts NKG2D-dependent innate-like cytotoxicity (13, 46).
Lastly, in ILC subsets, early studies highlight that expression of
NKG2D may aid in the production of pro- or anti-inflammatory
mediators depending on the surrounding microenvironment
(15, 16). However, further investigation is required to
completely elucidate the impact of NKG2D-mediated signaling
on ILC function. Altogether, although NKG2D expression,
regulation and function differ across the above cell types, it
undoubtedly plays a central regulatory role in the immune
response and is vital for immunological surveillance against
tumorigenic transformation and viral infection.

The NKG2D Cognate Ligands
Ligands for NKG2D comprise several families of major
histocompatibility complex (MHC) class I-related molecules. In
humans, these include the MHC class I polypeptide-related
sequence A (MICA) and B (MICB), and the human
cytomegalovirus (HCMV) glycoprotein UL16-binding protein
August 2021 | Volume 12 | Article 712722
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(ULBP) family (ULBP1-ULBP6) (Figure 1B) (47–50). NKG2D-L
are, for the most part, not constitutively expressed, but instead are
selectively induced upon cellular stress, damage or transformation,
as is caused by events such as viral infection or oncogenesis (32, 51).
Moreover, as reviewed by Lanier (52), essentially all cell types are
capable of expressing one or more types of NKG2D-L if given the
Frontiers in Immunology | www.frontiersin.org 3
appropriate stimulus. For example, Fujita and colleagues (53)
identified two distinct ligand expression profiles in non-neoplastic
epithelial tissues: ULBP5-ULBP3-MICA/B and ULBP2/6-ULBP1-
ULBP4. Moreover, in cells undergoing tumorigenic transformation,
high heterogeneity in NKG2D-L expression has been reported.
Notably, expression of two or more NKG2D-Ls (often MICA and
A

C

B

FIGURE 1 | Structure of the human NKG2D receptor and cognate ligands. (A) The natural killer group 2 member D (NKG2D) receptor consists of a disulphide-
linked homodimer that associates with the DNAX-activating protein 10 (DAP10) disulphide-linked homodimer for cellular signaling. DAP10 harbors a Tyr-X-X-Met
(YxxM) motif, which binds the p85 subunit of phosphatidylinositol-3 kinase following phosphorylation. (B) NKG2D ligands encompass the MHC class-I polypeptide-
related sequence A (MICA), MICB and six UL16-binding proteins (ULBP1-6). MICA/B (also termed PERB11.1/11.2) share similar structural and functional properties,
with both containing three extracellular domains (a1, a2 and a3) and a transmembrane domain for binding to the cell surface. In comparison with full-length MICA
alleles, MICA*008 differs by encoding a truncated protein due to a nucleotide insertion in the transmembrane domain and is known to acquire a
glycolsylphosphatidylinositol (GPI) lipid anchor for cell surface expression. ULBP1-6 (also termed RAET1I/H/N/E/G/L) lack the a3 extracellular domain and are either
bound to the cell surface by a GPI-anchor (ULBP1-3, 6) or transmembrane domain (ULBP4, 5). (C) Various functional MICA, ULBP4 and ULBP5 splice variants have
been identified. MICA-A, -B1, -B2, -C and –D are known isoforms lacking the extracellular a3 domain and the a2 domain in the majority of isoforms (A, B1, C and
D). Moreover, MICA-A and MICA-C both lack a transmembrane and cytoplasmic domain, which impairs their expression at the cell surface. RAET1E1/ULBP4-I,
RAET1E2/ULBP4-II and RAET1E3/ULBP4-III are membrane-spanning splice variants with an extended a1 domain, reduced a1 domain and reduced a2 domain,
respectively. RAET1G2/ULBP5-II and RAET1G3/ULBP5-III are truncated soluble splice variants resulting from two alternative premature stop codons before the
transmembrane domain. The surface-expressed splice variants have been shown to bind NKG2D to a similar degree as compared to their wildtype isoforms, except
for MICA-B2 and -D that bind NKG2D with a significantly weaker affinity.
August 2021 | Volume 12 | Article 712722
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MICB) is more common in solid tumors, compared to
hematological tumors (shown to predominantly express MICB)
(54). Furthermore, co-expression of multiple allelic forms of the
same ligand has also previously been identified at the surface of cells
undergoing stress, which is strongly suggestive of functional
redundancy in these molecules. It is also worth noting that
NKG2D-L differ in their affinity (KD) and avidity for NKG2D,
such that ULBP1 (the only ULBP member tested to date) has the
highest affinity (1.1 mM), followed by MICA (0.9-1 mM) and MICB
(800 nM) (55–59). Therefore, it is speculated that NKG2D may
transduce different signals or activate separate downstream
pathways based on which ligand or allelic variant is bound (60),
which supports the various functions of NKG2D discussed prior.

Surprisingly, the role of NKG2D-L extends beyond providing
a signal for cellular stress. In cells of the myeloid lineage, these
ligands can mediate lymphocyte activation leading to
cytotoxicity, cytokine production and proliferation. For
instance, expression of MICA/B on dendritic cell-derived
exosomes plays an important role in promoting NK cell
differentiation and proliferation (61). Furthermore, ULBP2/3
expression levels are increased during CD34+ hematopoietic
progenitor commitment to the granulomonocyte lineage,
suggesting that NKG2D-L play a role in promoting myeloid
differentiation (62). Alternatively, NKG2D-L expression on
myeloid cells can lead to lymphocyte inactivation and
maintenance of immune homeostasis. For example, persistent
expression of membrane bound ULBP1 and MICB on myeloid
cells induces NKG2D internalization and desensitization of NK
cells (63). Moreover, overexpression of MICA on activated CD8+

T cells makes them susceptible to NK cell lysis, indicating that
NKG2D-L may participate in immune homeostasis during
ongoing immune responses (64). During infection with
Mycobacterium tuberculosis, heightened ULBP1 expression on
expanded T regulatory cells (Tregs) facilitates NK cell-mediated
killing of these cells, thereby enhancing the overall immune
response (65). Ultimately, NKG2D-L expression is associated
with both cytotoxic and regulatory processes, as is reflected by
the diverse roles played by these molecules in host immunity.
REDUNDANCY AND OVERLAPPING
FUNCTIONS OF NKG2D-L ENSURE
NKG2D ACTIVATION

MICA and MICB
The MICA and MICB genes were originally described as stress-
induced MHC class I polypeptide-related sequences and are
located in the MHC region on the short arm of chromosome 6
(47, 66). These genes are highly polymorphic (67), with, to date,
over 100 described alleles (allelefrequencies.net). The MIC alleles
have variations that are, to a certain extent, concentrated in the
extracellular domains as well as truncated forms due to coding
frame-shifts (e.g.MICA 5.1). Specific alleles have been associated
with disease outcomes (68–70), influence the amount of soluble
protein and impact binding affinity to its cognate receptor,
Frontiers in Immunology | www.frontiersin.org 4
NKG2D (71). Moreover, numerous MICA splice variants have
been documented thus far (Figure 1C), with the majority
binding NKG2D similarly as their wildtype counterparts,
highlighting that lack of a domain (e.g. a3 domain) does not
necessarily reduce binding affinity (60). Interestingly, there is a
naturally occurring MICA-MICB null combination (deletion of
MICA and premature stop codon for MICB) that exists on the
HLA-B48 haplotype found in East Asian and South American
populations (72–74). Furthermore, the MICA-MICB genes are
merged in chimpanzees resulting in a hybrid form (75), while
they are absent in mice (76). The presence of the null haplotype
without obvious phenotypic consequences suggests redundancy
in the NKG2D receptor-ligand axis but its overall importance is
highlighted by the overlapping mechanisms exhibited by cancers
and viruses to evade it (77).

ULBP1-ULBP6
Although the ULBPs are distantly related to MICA/B in
sequence, they differ in their location, mapping instead to the
opposite (long) arm of chromosome 6 (78, 79). Emerging data
suggests that the extensive diversity seen in the ULBP family may
be due to the functional or locational specialties of each ligand, as
is evidenced with ULBP4 and its predominant expression in skin
(80–82). Splice variants exist (ULBP4 (83), and ULBP5 (83, 84);
Figure 1C) providing significant within locus diversity.
Furthermore, as reviewed by Carapito & Bahram (19), clear
differences in allele frequencies between geographically distinct
populations exist for the ULBP family, which suggest that
polymorphisms in ULBP may be a consequence of divergent
selective pressures. Moreover, the possession of a large ULBP
family in humans and other species is thought to provide a
selective host advantage in the evasion of viruses and tumors.
However, overall, the ULBP family appears to be less
polymorphic than the MIC genes, albeit studies of ULBP gene
polymorphisms and haplotypes remain limited (50, 85–88).
VIRUSES AND TUMORS EMPLOY
CONVERGENT MECHANISMS OF
NKG2D-L DYSREGULATION

The appropriate regulation of NKG2D-L is integral to the
effective detection and elimination of virally infected or
neoplastically-transformed cells. Many reviews to date have
discussed the various levels of regulation involved in the
control of NKG2D-L expression. For a comprehensive
overview of these mechanisms in health and disease, we refer
to previously published reviews (59, 89). In this section, however,
we focus on convergent regulatory mechanisms exploited by
both tumors and viruses to evade NKG2D-mediated immunity.

NKG2D-L expression is regulated at the level of transcription,
post-transcription and post-translation through numerous
pathways and molecules intrinsically linked to cellular stress
(Table 1). As such, it is unsurprising that both viruses and
tumors harbor various mechanisms that work in combination to
August 2021 | Volume 12 | Article 712722
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TABLE 1 | Established pathways/molecules involved in the regulation of human NKG2D ligand expression and their targetability to date using CRISPR-based genome
and epigenome editing.

Level of
regulation

Pathway/Molecule Ligand
modulation

Manipulation of pathway/molecule achieved via CRISPR
genome/epigenome editing

Reference

Transcription Heat shock (e.g. HSF1) ↑ MICA/B No (42, 90,
91)↑ ULBP1/2

DNA damage (e.g. ATM/ATR) ↑ MICA/B No (92–95)
↑ ULBP1/2/3

Oxidative stress (e.g. ROS) ↑ MICA/B No (96–101)
↑ ULBP1/2/3/4

p53 ↑ ULBP1/2 Yes. (92, 95)
Achieved: Correction of mutated p53.

STAT3 ↓ MICA Yes. (102, 103)
Achieved: Genetic deletion of STAT3.

NF-kB ↑ MICA No (104, 105)
BCR-ABL ↑ MICA/B Yes. (106–109)

Achieved: Genetic deletion of BCR-ABL.
PI3K ↑ MICA/B Yes. (110, 111)

Achieved: Genetic deletion of PI3K.
HER2/HER3 ↑ MICA/B Yes. (110, 112,

113)Achieved: Genetic deletion and epigenetic activation/repression of
HER2.

MAPK ↑ MICA No (114, 115)
↑ ULBP1

c-MYC ↕ MICA/B Yes. (116–119)
↕ ULBP1/2/3 Achieved: Epigenetic repression and genetic deletion of c-MYC.

TLR-4 ↑ MICA Yes (120, 121)
Achieved: Genetic deletion of TLR-4.

TLR-7/8 ↑ MICA/B No (120)
ATF4 ↑ ULBP1 Yes. (122, 123)

Achieved: Genetic deletion of ATF4.
Post-
transcription

miR-10b ↓ MICB Yes. (124, 125)
Achieved: Genetic deletion of miR-10b.

miR-34a/c ↓ ULBP2 No (126)
miR-520b ↓ MICA No (127)
miR-17-5p/20a/93/106b/372/373/520c ↓ MICA/B Yes. (128–130)

Achieved: Genetic deletion of miR-93 and epigenetic repression of
miR-20a.

HCMV-miR-UL112/EBV-pri-miR-BART2-5p/
KSHV-miR-K12-7

↓ MICB No (131, 132)

miR-J1-3p ↓ ULBP3 No (133)
FUBP3/HuR/XRN2/MATR3/CUGBP1/Vigilin ↓ MICB No (134, 135)
IMP3 ↓ MICB Yes. (136, 137)

↓ ULBP2 Achieved: Genetic deletion of IMP3.
IGF2BP2 ↑ MICB No (134)

Post-
translation

MMP9/MMP14 ↓ MICA Yes. (138–142)
↓ ULBP2 Achieved: Genetic deletion of MMP9.

ADAM10/ADAM17 ↓ MICA/B Yes. (143–147)
↓ ULBP2 Achieved: Genetic deletion of ADAM10 and ADAM17.

ADAM9 ↓ MICA Yes.
Achieved: Genetic deletion of ADAM9.

(148–150)

ERP5 ↓ MICA No (151)
Histamine ↓ MICA No (152)

↓ ULBP1
K5 ubiquitin E3 ligase ↓ MICA/B No (153)
Frontiers in Imm
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↑, Increase; ↓ decrease; ↕ increase or decrease depending on context; CRISPR, clustered regularly interspaced short palindromic repeats; HSF1, heat shock factor 1; MICA/B, MHC class-
I polypeptide-related sequence A/B; ULBP1/2/3/4, UL16-binding protein 1/2/3/4; ATM, ataxia-telangiectasia mutated; ATR, ATM and Rad3-related; ROS, reactive oxygen species;
STAT3, signal transducer and activator of transcription 3; NF-kB, nuclear factor kappa B; BCR, breakpoint cluster region; PI3K, phosphoinositide 3-kinase; HER/2, human epidermal
growth factor receptor 2/3; MAPK, mitogen-activated protein kinase; TLR-4/7/8, toll-like receptor 4/7/8; ATF4, activating transcription factor 4; miR, microRNA; HCMV, human
cytomegalovirus; EBV, Epstein-Barr virus; KSHV, Kaposi’s sarcoma-associated herpesvirus; FUBP3, far upstream element binding protein 3; HuR, human antigen R; XRN2, 5’-3’-
exoribonuclease 2; MATR3, matrin-3; CUGBP1, CUG triplet repeat RNA binding protein 1; IMP3, IMP U3 small nucleolar ribonucleoprotein 3; IGF2BP2, insulin-like growth factor 2 mRNA-
binding protein 2; MMP9/14, matrix metalloproteinase 9/14; ADAM9/10/17, a disintegrin and metalloprotease 9/10/17; ERP5, endoplasmic reticulum protein 5.
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hijack and dysregulate NKG2D-L at multiple levels. At the
transcriptional level, viral proteins (e.g. HBV’s HBx and HBc)
have been shown to directly suppress MICA/B (154). A similar
strategy is achieved by tumors (e.g. melanoma), whereby cells
with highly methylated NKG2D-L loci are selected for, given the
resultant suppression of transcription (54). Although
mechanistically different, both viral proteins and tumor-
mediated methylation converge at the DNA level to hinder
transcription of NKG2D-L and facilitate immune evasion.

At the post-transcriptional level, viruses and tumor cells
exhibit convergence in their use of microRNAs (miRNAs) to
inhibit NKG2D-L transcript translation. For instance, viral
microRNAs have been shown to directly bind to the 3’
untranslated region of MICB (HCMV-miR-UL112, EBV-pri-
miR-BART2-5p, KSHV-miR-K12-7) (128, 131) and ULBP3
(JCV-miR-J1-3p) (155), to trigger transcript destabilization and
degradation. In addition, viral miRNAs can act indirectly by
preventing translation of key components of the GPI-anchoring
machinery (HSV1-miR-H8) (156) or blocking translation of
surface shedding inhibitors (HCMV-miR-US25-2-3p) (157).
Interestingly, host oncogenic miRNAs (124, 126–128, 158) also
bind to the 3’ untranslated region of MICA (miR-520b) (127),
MICB (miR-17-5p, miR-20a, miR-93, miR-106b, miR-372, miR-
373, miR-520c) (128) and ULBP2 (miR-32a/c) (126), in a similar
fashion to viral miRNAs, with some binding sites identified by
Bauman &Mandelboim (155) as overlapping with those targeted
by the viral miRNAs referenced above. Altogether, the shared
binding sites and action of oncogenic and viral miRNAs indicate
the convergent evolution of tumorigenic and viral immune
evasion mechanisms at the post-transcriptional level.

Interference with NKG2D-L expression at the protein level is
often a major target of both viruses and tumors. The two major
mechanisms of reducing NKG2D-L surface expression have been
reviewed by others (77, 89, 159, 160), and are understood to be
(1), intracellular retention and degradation, and (2), surface
shedding. In the context of viruses, key viral proteins (e.g.
HCMV’s UL16, UL142) have been found to reside in the
endoplasmic reticulum and cis-Golgi apparatus of cells, and
cause intracellular retention and degradation of MICA/B and
ULBP1-3 (161–164). Alternatively, viral infection with HIV or
HCMV has also been shown to activate the shedding molecules
ADAM10/17, which are otherwise essential for development and
homeostasis, resulting in cleavage of MICA/B and ULBP2 (4,
157, 165). Manipulation at the protein level in a similar fashion is
also extensively seen in cancer. For example, NKG2D-L have
previously been shown to be retained in the endoplasmic
reticulum or cytoplasm in a variety of cancer types, including
melanoma, breast, colorectal, lung and gastric cancers (51, 166),
resulting in reduced cell surface expression. Similarly, NKG2D-L
shedding from tumor cells via enhanced expression of
ADAM10/17, is understood to contribute significantly to the
poor immunogenicity of many cancers (143–145). Again, the
similarities between viruses and tumors in targeting NKG2D-L at
the DNA, RNA and protein level is strongly suggestive of
convergent evolution and highlights fundamental immune
evasion mechanisms.
Frontiers in Immunology | www.frontiersin.org 6
THERAPEUTIC POTENTIAL LIES IN
CRISPR-MEDIATED GENETIC AND
EPIGENETIC MANIPULATION

The ability to modify loci at the genetic and epigenetic level in a
specific manner using CRISPR-associated (Cas) proteins, such as
Cas9 (167, 168), has greatly expanded our knowledge of diseases,
their genetic components and the development of targeted
therapies. When combined with a short guide RNA (sgRNA),
consisting of a non-coding trans-activating RNA annealed to a
target-specific 20 nucleotide RNA, Cas9 is able to base pair with
any target DNA located adjacent to a conserved protospacer-
adjacent motif (5’-NGG-3’ in the frequently used Streptococcus
pyogenes Cas9) and induce specific DNA cleavage. This process
allows efficient and precise DNA editing. Beyond the CRISPR-
Cas9 system, the synthesis of engineered variants, such as
nuclease-deactivated Cas9 (dCas9), has provided new avenues
for gene editing and regulation. The CRISPR-dCas9 system
harbors two mutations (D10A and H840A), which deactivate
Cas9’s cleavage capability (169). In doing so, the RNA-guided
DNA-binding specificity of Cas9 can be harnessed to precisely
direct effector domains that mediate transcriptional activation
(170–172) or repression (173–175).

Despite the success of wild-type Cas9, its ability to introduce
irreversible genetic changes, particularly at off-target sites, has
raised safety concerns. Therefore, to date, clinical trials utilizing
the CRISPR-Cas9 system have been performed ex vivo, where
extensive off-target checks can be conducted (176, 177).
Although clinical use of Cas9 remains limited due to these
trepidations, the application of dCas9 in gene therapy is
becoming increasingly likely, given its transient nature and
inability to permanently alter the genetic code (178).
Moreover, unlike other methods of gene therapy, dCas9-based
methods are highly scalable and versatile, with the capability to
target multiple loci simultaneously, termed multiplexed editing
(179). Furthermore, as seen in combinatorial Cas9 screening
systems (180), multiple orthologues of Cas9 can be used
concurrently, allowing for synchronized activation and
repression of separate loci.
CRISPR-BASED TECHNOLOGIES OFFER
THE ABILITY TO MAXIMISE THE NKG2D
PATHWAY IN IMMUNITY

In the context of viral infection and cancer, significant potential
lies in the use of CRISPR-Cas9 [including other Cas proteins,
such as the alternative DNA nuclease Cas12 (181), and RNA
nuclease Cas13 (182)] and dCas9-based methods to target
NKG2D and its ligands for enhanced immune recognition and
elimination. The ease of use, high specificity and multiplexable
nature of CRISPR-Cas9/dCas9-based genetic and epigenetic
editing has clear applications in the development and
improvement of NKG2D-directed therapies, as discussed below.
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CRISPR-Cas9 Genetic Editing
To date, adoptive cell transfer (ACT) therapies, whereby
peripheral blood mononuclear cells are collected, edited,
expanded and reinfused back into patients, have successfully
been developed to express NKG2D (largely on T cells) and
shown considerable anti-tumoral and anti-viral potential in
vitro (183–185). However, in vivo responses to NKG2D-
focused chimeric antigen receptor (CAR) ACT therapy to date
do not appear to be as robust, suggesting that inducing NKG2D
alone may not be sufficient (186). To our knowledge,
transduction of NKG2D in combination with other receptors
within the same cell for improved CAR therapy has only recently
been applied clinically, with one (1/9) active registered trial (as of
27 July 2021 on ClinicalTrials.gov) combining transduction of
NKG2D and ACE2 for treatment of SARS-CoV-2 (NCT04324996).
Most currently active trials (8/9) aim to solely target the NKG2D
receptor, and this is partially to reduce the risk of insertional
mutagenesis and gene dysregulation (187, 188). CRISPR-Cas9,
however, provides a novel avenue for ACT therapy by providing a
means to conduct targeted gene insertion in a multiplexed fashion
to maximize host immunity (176, 177). Strong evidence suggests
that CRISPR-based knockout of receptors responsive to
immunosuppressive mediators, such as transforming growth
factor beta receptor 2 (TGFbR2), or immune checkpoints
(dampeners of cellular activation), such as programmed cell
death 1 (PD-1), which play key roles in physiological immune
homeostasis, are likely to improve NKG2D-mediated cellular
cytotoxicity (189–191). Simultaneous editing of multiple loci,
particularly immune checkpoints, in autologous or allogenic
cells in this way is also likely to complement immune
checkpoint inhibitor (ICI) therapy, such as anti-PD-L1.
Moreover, CRISPR-Cas9 expands the potential of ACT
therapeutics by facilitating targeted insertion of gene sequences
(192), such as KLRK1, in cell subsets that otherwise have no or low
expression of the NKG2D receptor. Similarly, knockout of
inhibitory receptors within the same effector cell using CRISPR-
based therapies is predicted to be an excellent starting point in
improving ACT therapy outcomes via CRISPR-based methods.
Notably, enhancement of NKG2D-dependent immune responses
in this way requires careful consideration and evaluation of the
potential for collateral adverse autoimmune reactions. Indeed,
given the central role of the NKG2D receptor-ligand axis in
autoimmune conditions, such as Crohn’s disease (36), coeliac
disease (193), and rheumatoid arthritis (194), care needs to be
taken to not generate autoreactive lymphocytes.
CRISPR-dCas9 Epigenetic Editing
Apart from direct gene editing to induce or improve NKG2D-
mediated immunity, enhancing NKG2D-L on tumor or virus-
infected cells represents both an alternative and complementary
strategy to augment ACT therapy, ICIs and overall host
immunity . In this approach, CRISPR-dCas9-based
transcriptional activation or repression may be used to directly
activate NKG2D-L loci and ensure their surface expression.
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Recently, Sekiba et al. (195), have shown this to be possible in
vitro by applying CRISPR-dCas9 to transcriptionally activate
MICA in Huh7 and HepG2 human hepatocellular carcinoma cell
lines. Although no other NKG2D-L have been targeted in this
way to date, it is predicted that multiplexed activation of several
types of NKG2D-L is likely to be most effective in promoting
NKG2D-mediated immunity and may resolve the low response
rate of NKG2D-ACT therapy in vivo. However, our group and
others (178, 196, 197) have extensively reviewed that multiplexed
CRISPR-based editing, particularly in vivo within the tumor or
virally infected cell, is best conducted with an optimized set of
targets, rather than a large panel, so as to avoid reduced editing
efficiency (retroactivity) and extensive off-target effects.
Therefore, an accurate understanding of individual ligands and
outcome of their binding to NKG2D is strongly recommended.
For instance, given the locational and functional specialties
within the ULBP family (80, 81), we suggest that activation of
these ligands, either individually or in combination, is needed to
elucidate their contribution to the NKG2D pathway in different
tumoral/viral contexts. Moreover, it is likely that only a subset of
ULBP or MIC members need to be targeted, with some unable to
engage NKG2D effectively, as previously reported (81). Notably,
given the higher affinity of ULBP1 for the NKG2D ligand,
compared to MICA and MICB (59), it may serve as a better
therapeutic target. However, further investigation is needed to
elucidate the affinities of the remaining ULBP family members,
and whether higher affinity to the NKG2D ligand directly
translates to improved cytotoxicity. CRISPR-dCas9 can also
theoretically be applied to other levels of NKG2D-L regulation
(Table 1) for improved expression and immunity. An obvious
example of this is in the transcriptional repression of genes
involved in NKG2D-L shedding, such as ADAM10/17 or
MMP9/14, which are commonly hijacked during viral infection
and tumorigenesis, and are known to be targetable using
CRISPR-based technologies (Table 1) (143, 165). Targeting the
molecules responsible for proteolytic shedding of NKG2D-L in
this way is likely to be beneficial both in the clinic and in
furthering our basic biological understanding of the
mechanisms driving proteolytic shedding. Although CRISPR-
dCas9 epigenetic editing is transient and does not induce
permanent genetic alterations, significant care needs to be
taken to deliver this technology specifically to the target tissue
or cell using precise delivery systems, so as to avoid inducing a
severe systemic inflammatory state, particularly if used in
combination with NKG2D-ACT therapeutics.
CONCLUDING REMARKS

Manipulation of the NKG2D receptor-ligand axis to improve
host immunity is emerging as a novel therapeutic avenue in the
era of CRISPR-based technologies. In addition to the direct
enhancement of NKG2D on cell subsets to generate potent
cytotoxic effector cells using Cas9 genetic editing, potential
exists to use dCas9-based epigenetic editing methods to
August 2021 | Volume 12 | Article 712722

https://ClinicalTrials.gov
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Alves et al. CRISPR-Mediated Manipulation of NKG2D/NKG2D-L
activate and lock NKG2D-L expression on tumor or virus-
infected cells to promote their recognition and elimination.
Although gaps remain in understanding how to optimize
NKG2D-mediated immunity in different contexts, CRISPR-
based multiplexed editing of NKG2D jointly with other genes
on effector cells, or epigenetic activation of NKG2D-L in
combination with one another on tumor or virally infected
cells is likely to provide important insights to novel
therapeutic approaches.
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Cell-Derived Exosomes Promote Natural Killer Cell Activation and
Proliferation: A Role for NKG2D Ligands and IL-15ra. PloS One (2009) 4
(3):e4942. doi: 10.1371/journal.pone.0004942

62. Guilloton F, Thonel A, Jean C, Demur C, Mas V, Laurent G, et al. Tnfa
Stimulates NKG2D-Mediated Lytic Activity of Acute Myeloid Leukemic
Cells. Leukemia (2005) 19:2206–14. doi: 10.1038/sj.leu.2403952

63. Crane CA, Austgen K, Haberthur K, Hofmann C, Moyes KW, Avanesyan L,
et al. Immune Evasion Mediated by Tumor-Derived Lactate Dehydrogenase
Induction of NKG2D Ligands on Myeloid Cells in Glioblastoma Patients.
Proc Natl Acad Sci (2014) 111(35):12823–8. doi: 10.1073/pnas.1413933111

64. Molinero LL, Fuertes MB, Rabinovich GA, Fainboim L, Zwirner NW.
Activation-Induced Expression of MICA on T Lymphocytes Involves
Engagement of CD3 and CD28. J Leukocyte Biol (2002) 71:791–7. doi:
10.1189/jlb.71.5.791

65. Roy S, Barnes PF, Garg A, Wu S, Cosman D, Vankayalapati R. NK Cells Lyse
T Regulatory Cells That Expand in Response to an Intracellular Pathogen.
J Immunol (2008) 180(3):1729–36. doi: 10.4049/jimmunol.180.3.1729

66. Bahram S, Bresnahan M, Geraghty DE, Spies T. A Second Lineage of
Mammalian Major Histocompatibility Complex Class I Genes. Proc Natl
Acad Sci (1994) 91(14):6259–63. doi: 10.1073/pnas.91.14.6259

67. Gaudieri S, Kulski JK, Dawkins RL, Gojobori T. Different Evolutionary
Histories in Two Subgenomic Regions of the Major Histocompatibility
Complex. Genome Res (1999) 9:541–9. doi: 10.1101/gr.9.6.541

68. Kumar V, Kato N, Urabe Y, Takahashi A, Muroyama R, Hosono N, et al.
Genome-Wide Association Study Identifies a Susceptibility Locus for HCV-
Induced Hepatocellular Carcinoma. Nat Genet (2011) 43(5):455–8.
doi: 10.1038/ng.809

69. Tong HV, Toan NL, Song LH, Bock CT, Kremsner PG, Velavan TP.
Hepatitis B Virus-Induced Hepatocellular Carcinoma: Functional Roles of
MICA Variants. J Viral Hepat (2013) 20(10):687–98. doi: 10.1111/jvh.12089

70. Iwaszko M, Swierkot J, Dratwa M, Wysoczanska B, Korman L, Bugaj B, et al.
Association of MICA-129met/Val Polymorphism With Clinical Outcome of
Anti-TNF Therapy and MICA Serum Levels in Patients With Rheumatoid
Arthritis. Pharmacogenom J (2020) 20(6):760–9. doi: 10.1038/s41397-020-
0164-3

71. Isernhagen A, Schilling D, Monecke S, Shah P, Elsner L, Walter L, et al. The
MICA-129met/Val Dimorphism Affects Plasma Membrane Expression and
Shedding of the NKG2D Ligand MICA. Immunogenetics (2016) 68(2):109–
23. doi: 10.1007/s00251-015-0884-8

72. Komatsu-Wakui M, Tokunaga K, Ishikawa Y, Kashiwase K, Moriyama S,
Tsuchiya N, et al. MIC-A Polymorphism in Japanese and a MIC-A-MIC-B
Null Haplotype. Immunogenetics (1999) 49(7):620–8. doi: 10.1007/
s002510050658

73. Komatsu-Wakui M, Tokunaga K, Ishikawa Y, Leelayuwat C, Kashiwase K,
Tanaka H, et al. Wide Distribution of the MICA-MICB Null Haplotype in
East Asians. Tissue Antigens (2001) 57(1):1–8. doi: 10.1034/j.1399-
0039.2001.057001001.x

74. Aida K, Russomando G, Kikuchi M, Candia N, Franco L, Almiron M, et al.
High Frequency of MIC Null Haplotype (HLA-B48-MICA-Del-MICB*0107
Frontiers in Immunology | www.frontiersin.org 10
N) in the Angaite Amerindian Community in Paraguay. Immunogenetics
(2002) 54(6):439–41. doi: 10.1007/s00251-002-0485-1

75. Anzai T, Shiina T, Kimura N, Yanagiya K, Kohara S, Shigenari A, et al.
Comparative Sequencing of Human and Chimpanzee MHC Class I
Regions Unveils Insertions/Deletions as the Major Path to Genomic
Divergence. Proc Natl Acad Sci (2003) 100(13):7708–13. doi: 10.1073/
pnas.1230533100
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