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a b s t r a c t 

Anthropogenic litter density and composition data were ob- 

tained by conducting aerial surveys on 44 beaches along the 

Saudi Arabian Coast of the Red Sea [1] . The aerial surveys 

were completed with commercial drones of the DJI Phantom 

suite flown at a 10 m altitude. The stills have a resolution 

of less than 0.5 cm pixels −1 , hence, litter objects of few cen- 

timetres like bottle caps are easily detectable in the drone 

images. We here provide a subsample of the drone images 

acquired. To spare the time needed to visually count the lit- 

ter objects in the thousands of drone images acquired, these 

were automatically screened using an object detection algo- 

rithm, specifically a Faster R-CNN, able to perform a binary 

classification in litter and non-litter and to categorize the ob- 

jects in classes. The multi-class classification, however, is a 

challenging problem and, hence, it was conducted only on 

the 15 beaches that showed the highest performance after 

the binary classification. The performance of the algorithm 

was calculated by visually screening a subsample of images 

and it was used to correct the output of the Faster R-CNN. 
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The described steps allowed to obtain an estimate of the lit- 

ter density in 44 beaches and the litter composition in 15 

beaches. By multiplying the relative abundance of each lit- 

ter class and the median weight of objects belonging to each 

class, we obtained an estimate of the total mass of plastic 

beached on 15 beaches. Possible predictors of litter density 

and mass are the population and marine traffic densities at 

the site, the exposure of the beach to the prevailing wind 

and the wind speed, the fetch length and the presence of 

vegetation where litter could get trapped. Making such raw 

data (i.e. litter density and composition and their predictors) 

available can help building the base for a robust global esti- 

mate of anthropogenic litter in coastal environments and it is 

particularly important if data regards an understudied region 

like the Arabian Peninsula. Moreover, we share a subsample 

of the original drone images to allow usage from stakehold- 

ers. 

© 2021 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

S

 

pecifications Table 

Subject Pollution 

Specific subject area Beach anthropogenic litter and, specifically, macroplastics 

Type of data Table 

Image 

How data were acquired Data acquisition: aerial surveys using a drone and automatic object detection 

on drone images using a Faster R-CNN. 

Hardware and software for aerial surveys: DJI Phantom 3 Advanced and 4 

Professional coupled with UgCS v.2.10 software and DJI GS Pro-app, 

respectively. 

Software for image processing (photogrammetry): PhotoScan Professional 

v.1.3.0 

Software for Faster R-CNN: PyCharm 2019.1.3 

Software for extraction of population and marine traffic density data from 

raster layers: QGIS v.2.18.14 

Data format Raw 

Analyzed 

Parameters for data collection Sites were randomly chosen among sandy beaches along the Saudi Arabian 

Red Sea coast. The sandy beaches had to be reachable by land or sea or had to 

be within the transmission range of the drone. Each drone image tested was 

previously cut in 12 portions to reduce the computing effort and the portions 

were seawater was framed for more than 3/4th of the area were excluded 

before automatic object detection. 

Description of data collection The drone was flown at 10 m altitude with the camera gimbal at nadir point 

to acquire stills of the beach. Litter objects on the drone images were 

automatically counted using a Faster R-CNN, an object detection algorithm. The 

sensitivity and positive predictive value of the Faster R-CNN were estimated by 

visually counting objects on a subsample of images and then used to correct 

the counts obtained from the algorithm. By dividing corrected counts per 

cumulative area of the drone pictures we estimated the litter density. A 

multi-class Faster R-CNN was applied to obtain litter composition data. 

Data source location Institution: King Abdullah University of Science and Technology 

City/Town/Region: Thuwal 

Country: Saudi Arabia 

Latitude and longitude (and GPS coordinates, if possible) for collected 

samples/data: From 18.1 to 29.2 ° N; from 34.5 to 41.6 ° E. 

( continued on next page )
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Primary data sources: 

Population density data: CIESIN, 2018. Gridded Population of the World, 

Version 4 (GPWv4): Population Density, Revision 11. 

Marine Traffic density data: https://www.marinetraffic.com 

Wind speed data: https://power.larc.nasa.gov/ 

Data accessibility The dataset (table) is with the article, drone images are on a public repository 

Repository name: Mendeley Data 

Direct URL to data: http://dx.doi.org/10.17632/gpdsntb3y6.1 

Related research article Co-submission of: 

Martin, C., Zhang, Q., Zhai, D., Zhang, X., Duarte, C.M. Enabling a Large-Scale 

Assessment of Litter along Saudi Arabian Red Sea Shores by Combining Drones 

and Machine Learning, Environmental Pollution , 277 , 116730. 

Value of the Data 

• Despite the high throughput of papers on beach litter assessments, it is not common practice

to publish raw data [2] . However, raw data can be useful, especially in combination with

other datasets, to unveil patterns and anomalies otherwise hidden by a small sample size

and the local scale of the surveys. 

• The dataset and the drone images can be of interest to a broad audience, including marine

and environmental scientists, policymakers and the general public. 

• The original drone images we provide can be used as training and testing material for other

object detection algorithms or to extract features other than beach litter (e.g., vegetation,

animal prints, nests). 

• The dataset can be used as a source of data for a global beach litter assessment, which is

limited by availability of raw data, or for waste management purposes in the region. 

• The methodology used to compile this dataset is relatively young. Hence, the dataset provides

useful guidelines for those using the same method and thus promotes comparability of data.

• The dataset provides litter density estimates in the Arabian region, which is understudied [2] .

1. Data Description 

We provide data on 44 beach litter surveys conducted on sandy beaches along the Saudi

Arabian Red Sea coast [1] . We applied an emerging methodology based on drone surveys to effi-

ciently survey large areas in a short time coupled with the automatic detection of anthropogenic

litter objects on the drone images by use of a machine learning algorithm [3–5] . 

The algorithm we developed can also be used as a multi-class classifier, a task that, however,

involves a higher level of difficulty compared to a generic object detection [1] . For this reason,

the automatic classification of litter objects was applied only on the images of the 15 beaches

that resulted in the best performance of the algorithm when used for object detection. 

The accumulation of anthropogenic litter on beaches is generally determined by the vicinity

of sources (e.g. human settlements and shipping activities), by the circulation of winds and cur-

rents, which are carriers of litter, and by the presence of potential litter retainers like the beach

vegetation [3,6,7] . Hence, for completeness, for each of the 44 surveyed beaches, we provide

data on possible drivers of litter distribution too. 

We provide the complete dataset and the original drone images of 5 beaches among those

that resulted in the best performance of the object detection algorithm [8] . 

The dataset is provided as a Microsoft Excel Workbook, including 2 sheets: 

Sheet 1 reports, for each of the 44 surveyed beaches, the metadata of the beach surveyed

(i.e. geographic coordinates, sampling date), specifics on the aerial surveys (i.e. the drone

model used, the area covered and the number of images acquired), the output and per-

formance of the machine learning algorithm when used for object detection, the esti-

mates of litter density and the data on possible predictors of litter density distribution

https://www.marinetraffic.com
https://power.larc.nasa.gov/
http://dx.doi.org/10.17632/gpdsntb3y6.1


4 C. Martin, Q. Zhang and D. Zhai et al. / Data in Brief 36 (2021) 107056 

 

 

 

 

1

2

 

p  

a  

c  

h  

e  

b  

t

 

t  

c  

2  

t  

m  

n  

fi  

l  

a  

a  

i  

o  

v  

a  

b  

o  

a  

d  

o  

A  

t  

2  

a  

o  

a  

t

 

s  

n  

p  

t  

a  

e  
(i.e. population and marine traffic density, exposure of the beach to the prevailing wind,

wind speed, fetch length and vegetation coverage). 

Sheet 2 reports, for each of the 15 beaches tested with the multi-class classifier, the output

of and performance of the classifier for each of 14 categories and the estimated anthro-

pogenic litter composition. 

The drone images are available in Mendeley Data at the following link: http://dx.doi.org/10.

7632/gpdsntb3y6.1 . 

. Experimental Design, Materials and Methods 

We surveyed 44 sandy beaches along the Saudi Arabian Red Sea coast to estimate anthro-

ogenic litter density and composition [1] . Surveys took place from March 2017 to April 2018

nd spanned over 11 ° of latitude (Sheet 1). The beaches were chosen by searching for sandy

oasts on the satellite images of the Red Sea available in Google Maps [9] . The beaches were

ence dominated by sand with occasional rocky outcrops and/or low cliffs, and were located

ither on islands or along the main shore. Despite the chosen beaches were all reachable either

y land or sea, the aerial survey can be completed also without accessing the beach as long as

he area of interest is within the radius needed to pilot the drone. 

The drones used are commercial drones of the DJI Phantom suite. Specifically, the DJI Phan-

om 3 Advanced (Adv) was used to complete the surveys in March 2017, while later we pur-

hased a DJI Phantom 4 Professional (Pro) to complete the surveys from November 2017 to April

018. Due to legal restrictions on the use and import of drones in Saudi Arabia, we initially used

he Phantom 3 Adv, being available to us, and switched to a Phantom Pro-once government per-

its to import the new model became available. Both drone models are quadcopters, hence do

ot require large take-off platforms, they are lightweight ( < 1.5 kg), thus easy to carry in the

eld, and they are relatively cheap ( < 20 0 0 USD). The DJI Phantom 4 Pro-has a longer battery

ifetime than the DJI Phantom 3 Adv (30 min instead of 23 min), sensors for obstacle avoidance,

 longer transmission distance with the controller (7 km instead of 5 km) and it is coupled with

 higher resolution camera (20 MP instead of 12 MP). To survey the beaches, we flew the drones

n the automated mode, in order to maintain a constant height and speed of the aircraft and in

rder to acquire stills at regular time intervals. The automatic flights were planned using UgCS

.2.10 [10] and the DJI Ground System (GS) Pro-app [11] when flying the DJI Phantom 3 Adv

nd 4 Pro, respectively. When planning a flight with UgCS, the maximum transmittance radius

etween controller and aircraft drops to 500 m. The missions were designed to cover, by mean

f parallel transects, the entire area between the swash zone, where waves break on the beach,

nd the dunes and they were planned in order to consume only one battery for each beach. The

rones were flown at a 10 m altitude with a nadir pointing camera, which results in a footprint

f 13 × 17 m and a resolution of 0.5 cm pixel −1 for images acquired with the DJI Phantom 3

dv and a 9 × 16 m footprint and 0.3 cm 

−1 resolution for those acquired with the DJI Phan-

om 4 Pro. The altitude was chosen to be able to detect, on the drone images, objects down to

.5 cm, the lower limit of the macro-litter.The aircraft speed was kept at approximately 2 m s −1

nd stills were acquired every 2 s, which allowed to obtain images with a 70% front and side

verlap. Thanks to the overlap, drone images, that are also georeferenced, can be combined into

n orthomosaic, which we produced in PhotoScan Professional v.1.3.0 [12] , also used to measure

he area of the beach covered by the survey (Sheet 1). 

Since not all the objects are visible from the drone images (e.g. small objects with undefined

hapes and items half-buried in the sand or hidden by vegetation), a ground truth assessment is

eeded to account for the underestimation. Briefly, after the drone survey on a beach was com-

leted, a section of the beach was delimited and objects in it were counted and classified. Later,

he drone was flown again to take a picture of the delimited section at a 10 m altitude. This

llows to estimate the proportion of objects visible in a 10 m-drone image compared to those

ffectively present on the beach. In the dataset, we provide the average value of the proportion

http://dx.doi.org/10.17632/gpdsntb3y6.1
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of objects detectable from drone images acquired with the DJI Phantom 4 Pro, obtained after

conducting 12 ground truth assessments [1] and the value for drone images acquired with the

DJI Phantom 3 Advanced obtained from Martin et al. [3] . 

The set of images acquired during the drone survey covering the entire beach area were

automatically screened to detect and classify anthropogenic litter objects. To this end, we de-

veloped a machine learning algorithm, specifically a Faster R-CNN. In an automatic detection of

objects, the image, in this case the one acquired with the drone, is entirely scanned by mean

of a multi-scale window, with adaptable size and frame ratio, hence, able to detect objects of

different dimensions. While scanning, visual features are extracted to provide a representation

of the image portion framed by the sliding window. Based on the visual features, the framed

portion is classified in ‘positive’ (i.e. the object of interest) or ‘negative’ (i.e. the background),

when doing a binary classification, or in types, when doing a multi-class classification [13] . A

Faster R-CNN is composed of two networks, a Regional Proposal Network (RPN) that generates

boxes around possible objects of interest and provides the probability that the framed object is a

‘positive’, and the detection network that classifies the objects proposed by the RPN as ‘positive’

into types [14] . 

However, the algorithm needs to be first trained to distinguish the feature of the objects of

interest from the background or from other objects. The training occurs providing examples of

the objects of interest, in our case anthropogenic litter items. To do so, we selected the drone

images of two beaches that have uniform backgrounds (station n. 30 and 40, Sheet 1), which

facilitates the extraction of the object visual features. Indeed, the two selected beaches do not

have vegetation, rocks or other natural elements and the contrast between the litter objects

and the bare background is thus enhanced. The images of the two beaches are available at

http://dx.doi.org/10.17632/gpdsntb3y6.1 . Since each drone image sizes 6 MB, the images were

first cut in 12 non-overlapping portions each to reduce the computing effort while training the

algorithm. From the high throughput of portions obtained cutting the hundreds of drone images

of the two beaches, we selected 750 portions and we labelled all the litter objects they con-

tained, by using the freely-available software LabelImg [15] . We labelled 1608 objects by clas-

sifying them in 14 categories [1] (Sheet 2). LabelImg produces one .xlm file for each labelled

portion of drone image and each .xlm file contains the cartesian coordinates of the litter objects

in the corresponding image portion and the label assigned to them. The portions of the drone

images and the corresponding .xlm file are both used to train the algorithm that learns how to

distinguish anthropogenic litter items from the background. We used the toolkit API in Tensor-

flow as implementation medium and we set the learning rate to 0.0 0 01. The batch size was 100

and training epochs were 30 0 0. We used cross entropy loss and Adam optimizer as cost function

and optimizer, respectively. 

Once trained, the algorithm was applied to detect and hence count litter objects on the pic-

tures of all the 44 beaches, including stations 30 and 40, since not all their drone images were

used for the training phase. The drone images of a subsample of stations (i.e., 21, 23, 30, 40

and 44) are available at http://dx.doi.org/10.17632/gpdsntb3y6.1 . To reduce the computing ef-

fort, all the drone images were cut each in 12 non-overlapping portions and the portions that

were framing seawater for more than 3/4th of their area were excluded since the focus of the

study is on beach litter. The Faster R-CNN was applied on the set of images of one beach at a

time in order to obtain, as output, the total number of litter objects in each beach. Indeed, the

algorithm first draws boxes around the objects that it has classified as ‘positive’ and then counts

them. 

To estimate the performance of the algorithm, we randomly selected 10 drone images per

beach and we manually counted the true and false positives and the false negatives in the cor-

responding cut portions. The true positives are the objects that were framed as ‘positive’ by the

algorithm and that are indeed anthropogenic litter objects, the false positives are background or

natural objects that were wrongly proposed as ‘positive’ by the algorithm and the false nega-

tives are anthropogenic litter objects that were not considered by the algorithm. True and false

positives and false negatives are used to calculate performance parameters like sensitivity, that

indicates the fraction of anthopogenic litter objects present in the image and that the algorithm

http://dx.doi.org/10.17632/gpdsntb3y6.1
http://dx.doi.org/10.17632/gpdsntb3y6.1
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as able to detect, the Positive Predictive Value (PPV), which is the fraction of ‘positives’ that are

ctually anthropogenic litter objects, and the F-score which is a measure of the overall goodness

f the Faster R-CNN. These are calculated as follows: 

Sensit i v it y = 

T rue Positi v es 

T rue Positi v es + F alse Negati v es 

Posit i v e P redict i v e V alue ( P P V ) = 

T rue Posit i v es 

T rue Posit i v es + F alse Positi v es 

F − score = 

2 ∗ Sensit i v it y ∗ P P V 

Sensit i v it y + P P V 

f, for example, Sensitivity is 60%, it means that the algorithm can detect 60% of the anthro-

ogenic objects present in the drone images, hence, it is underestimating the number of objects.

f the PPV is 60% however, it means that only 60% of the objects that were counted as ‘positives’

y the algorithm are indeed anthropogenic objects, hence the algorithm is, in this case, overes-

imating. The calculated Sensitivity and PPV of the 10 drone images were averaged and used to

orrect the output of the algorithm for each beach i as follows: 

N. of ob jects ( corrected ) i = 

N. of detected ob ject s i ∗ P P V i 

Sensit i v it y i 

here P P V i and Sensit i v it y i are the mean values of PPV and Sensitivity calculated for the 10

andomly selected drone images per beach and provided in Sheet 1. 

This value, however, is an estimate of the number of objects detectable in a drone image,

hich, as we explained before, is an underestimation due to the challenge of seeing, in a drone

mage, the smaller and half-hidden objects that are on the beach. To correct for this underesti-

ation, the value above has to be further divided for the proportion of objects on the beach that

an be seen in a drone image, proportion that we obtained with the ground truth assessment

Sheet 1). The whole calculation is provided as formula in Sheet 1, Column O. The corrected

umber of objects obtained as described is then divided for the total area of the drone im-

ges of each beach in order to obtain the estimate of the anthropogenic litter density per beach

Sheet 1). The total area of the images is obtained multiplying the number of drone images per

he image footprint, namely the area of beach covered by each image. It should be noted that

he total area of the images is much larger than the area of beach surveyed because of the 70%

ide and front overlap between acquired images. 

The calculated mean F-score value per beach (Sheet 1) was used to select the best performing

eaches and apply the multi-class classifer. We selected the 15 beaches with the best F-score. In

his case, the output of the Faster R-CNN is the number of objects per each category per beach.

he algorithm draws boxes around the objects that it proposes as ‘positives’ and labels them

ith the name of one of the 14 categories, listed in Sheet 2. We calculated the performance of

he multi-class classifier similarly to what done for the binary classification. We randomly se-

ected 10 drone images per beach and counted the true and false positives and false negatives

er each category and calculated Sensitivity and PPV per category per beach. We had to ran-

omly select 20 drone pictures for stations n. 21, 23, 26, 34, 38 and 40 because of the scarcity

f objects in the first 10 images that did not allow to calculate Sensitivity and PPV for each

ategory. However, some categories were still under-represented in the selected images and it

as not possible to calculate the values of Sensitivity and PPV of those categories for some of

he beaches. In that case, we averaged the available values of Sensitivity and PPV of those cate-

ories across beaches and reported the average instead in Sheet 2. Sensitivity and PPV for each

ategory and beach were used to correct the output of the Faster R-CNN as follows: 

N. of ob jects ( corrected ) j,i = 

N. of det ect ed ob ject s j,i ∗P P V j,i 

Sensit i v it y j,i 
P ( detec tion ) j 
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Where i indicates the beach, j the category, P P V i, j and Sensit i v it y i, j are the mean values of PPV

and Sensitivity per category per beach. P ( detection ) j indicates the probability of detecting the

beach litter objects of a category j from a drone image, obtained from the ground truth assess-

ment and provided in Sheet 2. 

Once we obtained the litter density and composition at a beach, we could estimate the stocks

( s i ) of plastic litter in g m 

−2 , as follows: 

s i = � ( d i ∗ p j,i ∗ ˜ w j 

Where � is the sum, d i is the density of all litter objects (items m 

−2 ) in each beach i , p j,i is the

relative abundance of objects of each category j in each beach i and 

˜ w j is the median weight

(g) of objects of each category j, excluding categories of non-plastic objects (i.e. “glass”, “metal”

and “anthropogenic wood”). We concentrated on plastic litter only being the most abundant

on the surveyed beaches [1] and because the median weights of non-plastic objects was not

available. The median weights of plastic objects from each of the 14 categories were obtained

from Martin et al. [16] . In Sheet 1, we provide the stock values ( s i ) at the 15 beaches for which

litter composition data were estimated. 

In Sheet 1, we provide data on possible predictors of anthropogenic litter density distribution

on sandy beaches. Population density data were obtained from the NASA Socioeconomic Data

and Applications Center (SEDAC) website [17] . We specifically downloaded the raster layer of

Population Density, v4.11 (20 0 0, 20 05, 2010, 2015, 2020) and we extracted, by using the Point

Sampling Tool plug-in of QGIS v.2.18.14 [18] , the population density values from 2015 to 2020

at the 44 sampling points, at 3 resolutions, i.e. 5, 30 and 110 km pixel −1 . We then averaged the

values from 2015 to 2020 at each sampling point and resolution to obtain an estimate of the

population density in 2017–2018, when the surveys took place. 

We obtained a color-coded map of marine traffic densities in the Red Sea for year 2017 from

https://www.marinetraffic.com [19] . By using the Zonal Statistics plug- in QGIS, we extracted the

mean RGB values from the marine traffic density map in a radius of 5, 30 and 110 km from the

sampling points. To convert the RGB values to marine traffic density values (in number of routes

km 

−2 y −1 ), we used the color bar of the density map. Specifically, we compared the marine

traffic density values provided in the map color bar and the corresponding values of the RGB

spectra and we found that the blue values of the RGB spectra are exponentially proportional

to the marine traffic density values. Therefore, the blue values of the RGB spectra at the 44

sampling points were converted accordingly to number of routes km 

−2 y −1 at the 3 resolutions

(Sheet 1). 

Wind speed data were obtained from https://power.larc.nasa.gov/ [20] . For each sampling

point, we downloaded the monthly wind speed (m s −1 ) at 10 m altitude for the year preceding

the sampling date and the daily wind speed data for the 30 days preceding the sampling date.

The monthly wind speed data were averaged to provide an estimate of the wind speed in the

year preceding the sampling, while the daily speed data were averaged to provide an estimate

of the wind speed in the month and in the week preceding the sampling (Sheet 1). We provide

also the wind speed value on the day of the sampling for each sampling point (Sheet 1). 

The fetch length, the linear distance travelled by winds without encountering obstacles, was

measured in Google Maps for each sampling point as the perpendicular linear distance between

the beach line and the closest land mass. 

The exposition of the beach is provided in Sheet 1 as cardinal point and deviance angle to

the prevailing wind. Particularly, for each beach, we indicated the closest between 8 cardinal

points (N, NE, E, SE, S, SW, W, NW). For instance, if the beach faces NNE, we indicated either N

or NE as the closest cardinal point, depending on the angle of the exposure. If the beach is not

linear (e.g. station n. 7) and has two exposures, we indicated both. The deviance angle, instead,

is calculated as the angle between the prevailing wind and the 90 ° angle to the beach line.

In winter months, when the surveys occurred, the prevailing wind comes from NW. Therefore,

deviance angles between 0 and 90 ° mean that the beach is exposed to the prevailing wind,

while deviance angle > 90 ° mean that the beach is sheltered. 

https://www.marinetraffic.com
https://power.larc.nasa.gov/
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The relative vegetation coverage is obtained as the area covered by vegetation divided per

rea of the beach surveyed, both measured on the orthomosaics of the beaches using Photoscan

ro. 
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