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Abstract: Research on human stem cells, such as pluripotent stem cells and mesenchymal stromal
cells, has shown much promise in their use for regenerative medicine approaches. However, their
use in patients requires large-scale expansion systems while maintaining the quality of the cells.
Due to their characteristics, bioreactors have been regarded as ideal platforms to harbour stem cell
biomanufacturing at a large scale. Specifically, single-use bioreactors have been recommended by
regulatory agencies due to reducing the risk of product contamination, and many different systems
have already been developed. This review describes single-use bioreactor platforms which have been
used for human stem cell expansion and differentiation, along with their comparison with reusable
systems in the development of a stem cell bioprocess for clinical applications.

Keywords: single-use bioreactors; regenerative medicine; human pluripotent stem cells; human
mesenchymal stromal cells

1. Introduction

The expression “regenerative medicine” dates back to at least 1992 [1], but its concept,
the regeneration of tissues and cells damaged by ageing or disease, can be found as far
back as Greek mythology [2,3]. Enraged by Prometheus’s betrayal, Zeus chained him to a
rock and had his liver being eaten by an eagle every day, while it would fully regenerate
every night. While regenerative medicine is not yet this efficient, landmark discoveries in
stem cell biology and bioengineering in the past few years are leading to exciting advances
that may revolutionise the field in the next decades.

Stem cells do not have a specialised function but, at the same time, are of crucial
importance for human development and homeostasis. Stem cells can self-renew, generating
identical copies of themselves upon division, and differentiate into specific, functional cells.
The extent of cell types into which stem cells can differentiate depends on their potency.

Human pluripotent stem cells (hPSCs) can differentiate into any of the cell types
comprising the human body (but not extraembryonic tissues). hPSCs include human
embryonic stem cells (hESCs), which result from the in vitro culture of cells from the
inner cell mass of the blastocyst [4], and human-induced pluripotent stem cells (hiPSCs),
which are obtained by reprogramming of somatic cells [5,6]. Since the derivation of hESCs
requires the destruction of human embryos, their use is forbidden in various countries.
hiPSCs do not carry this ethical burden and can be derived from the patients’ own cells,
thus overcoming the possibility of immune rejection. Besides regenerative medicine, hPSCs
have been regarded as a promising source of cells for a variety of other applications such as
drug screening and disease modelling [7], due to their ability to provide, in vitro, cells—or
even structures—from diverse human systems and organs such as the heart, the central
nervous system, or the liver [8,9].
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The adult body also contains stem cells, responsible for the replacement/generation
of specific cell types. Most of these stem cells are multipotent, generating only a limited
number of different lineages. Concerning regenerative medicine applications, human
mesenchymal stromal cells (hMSCs) are commonly regarded as promising candidates for
cell therapies. These cells can differentiate into lineages such as bone, cartilage, and fat,
and can be found in a variety of tissues, including the bone marrow (BM), umbilical cord
matrix (UCM), adipose tissue (AT), peripheral blood, and synovial tissue [10]. hMSCs
have been shown to be less immunogenic than other cells, allowing them to avoid adverse
immune effects when transplanted to an allogeneic host, and also immunomodulatory,
tuning and reducing the immune response of the host [11–13]. These characteristics have
led to the exploration of hMSCs and their secretome for regenerative medicine applications
(e.g., bone, cartilage, skin or trachea regeneration [14–16]), as well as for treatment and
prevention of immune diseases, such as graft-versus-host disease, Crohn’s disease and
multiple sclerosis [11,12,15]. hMSCs may also be promising for the treatment of patients
afflicted with COVID-19, although some studies are still required on their safety and
efficacy in this regard [17].

Nevertheless, despite the promise of both these types of stem cells, this promise can
only be fulfilled if the cells can be expanded in a robust and reproducible manner to achieve
the number of clinical-grade cells necessary for a patient. Effective hMSC doses are around
108 cells/patient, with maximal effectiveness, in most clinical trials, with doses in the range
of 70 million to 190 million cells/patient (intravenous administration requiring higher
doses due to loss of some MSCs in the lungs) [18]. Point studies, however, have successfully
applied higher dosages, including a phase 1b/2a clinical trial with 6.0 × 108 MSCs/dose
for Crohn’s disease [19] and a phase 2 clinical trial for acute ischaemic stroke using
1.2 × 109 MSCs/dose [20]. In the case of hiPSC derivatives, one dose may constitute
109–1010 cells [21]. Many stem cell bioprocesses, especially at lab scale, still employ planar
culture platforms, including cell culture plates, T-flasks, or multi-plate trays. While cells
produced in this manner may express normal markers and differentiation potential, as
described in many studies, the 2D culture format affects their phenotype, altering surface
marker localisation and sensitivity to signalling, as well as their behaviour, in terms of cellu-
lar processes such as expansion, differentiation, and apoptosis [22,23]. Therefore, these cells
may not be of ideal quality for transplantation or for in vitro studies. Moreover, the increase
in the scale of the vast majority of 2D platforms can only be performed using a scale-out
approach—increasing the parallel number of culture vessels (plates, flasks, etc.)—rendering
them unpractical or even unfeasible for the production of cells at a clinical scale.

Bioreactors have been long since established as promising platforms for the man-
ufacturing of a number of different bioproducts [24–27] since they provide an agitated
and homogenised 3D environment, as well as generally being available at many scales,
allowing for scale-up approaches—increasing the size of the bioreactor itself. Furthermore,
bioreactor vessels are typically equipped with probes, which can measure crucial culture
variables such as pH, dissolved oxygen, and nutrient and metabolite concentrations (e.g.,
glucose and lactate, respectively), and which are associated with a controller system, which
can react when these variables approach the limits of the established operating range, for
instance, by adding acid/base, increasing aeration, changing the agitation speed or chang-
ing the culture medium flow rate. This know-how from traditional biological products
has already been applied to stem cells, and various different studies already describe the
expansion and/or differentiation of stem cells in different bioreactor configurations [28].

This review will detail the importance of single-use bioreactors in the production of
stem cells for clinical applications, as well as explore some of the bioreactor systems which
have already been described for the bioproduction of stem cells such as hPSCs and hMSCs.

2. Single-Use Bioreactors for Stem Cell Biomanufacturing

Despite all the advances in stem cell products for human use, regulation by agencies
such as the European Medicines Agency (EMA) and the US Food and Drug Administration
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(FDA) is a critical concern. EudraLex (available online at https://ec.europa.eu/health/
documents/eudralex, accessed on 11 April 2021) details the legislation for pharmaceutical
products in the European Union, and Volume 4, in particular, details the guidelines for
good manufacturing practices (GMP) for medicinal products for human and veterinary
use. These GMP apply to various steps of the life of a stem cell product, from the cell bank
establishment and maintenance to the manufacturing, downstream processing, fill, and
finish (Figure 1). Among other things, GMP guidelines aim to avoid product contamination,
thus requiring the sterilisation of the reagents and materials. Whenever possible, cleaning
in place (CIP) and steaming in place (SIP) should be applied to sterilise materials between
batches. The same regulation also permits and suggests the use of single-use technologies
(EudraLex Volume 4, Part IV). In particular, the bioreactor parts which directly contact the
cells can be disposable, which minimises the risk of contamination, and overrides the need
for their sterilisation, thus reducing the time between batches and allowing a faster process
pipeline and, thus, higher productivity.
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Figure 1. Process pipeline for the production and clinical application of a stem cell product (either autologous or allogeneic).
European Medicines Agency legislation established good manufacturing practices to be applied from the initial cell isolation
and processing to the product fill and finish while also requiring a clear definition of the storage and shipping conditions of
the finished cell product. We note that the figure depicts a general stem cell product pipeline and, although most processes
already at clinical scale do not perform yet differentiation in the bioreactors. However, we believe the field will move in that
direction since using planar platforms will be hardly feasible at a clinical scale.
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The following sections will detail some single-use bioreactor platforms which have
already been successfully applied in the biomanufacturing of stem cells. A summary of the
results obtained in these bioreactors is presented in Table 1.

Table 1. Comparison of single-use bioreactor systems for stem cell culture. Working volume ranges indicate a change in
volume during the culture. Final cell densities presented are the maximum average obtained among different conditions
and/or donors: hESC—human embryonic stem cell; hHSPC—human haematopoietic stem/progenitor cell; hiPSC—human
induced pluripotent stem cell; hMSC—human mesenchymal stromal cell; hNSC—human neural stem cell; RBC—red
blood cell.

Bioreactor Type Cell Type Working
Volume/Area

Culture Time
(days) Maximum Final Cell Density Ref.

Stirred tank

hiPSCs
125 mL 7 (2.9 ± 0.3) × 10 6 cells·mL–1 [29]

1.0–1.5 L 7 (1.99 ± 0.09) × 10 6 cells·mL–1 [30]

hMSCs

15 mL 8 8.1 × 10 5 cells·mL–1 [31]
100–200 mL 10 1.8 × 10 5 cells·mL–1 [32]

1.0–2.0 L 7 4.1 × 10 5 cells·mL–1 [33]
2.0 L 7 (2.7 ± 0.2) × 10 5 cells·mL–1 [34]

1.0–2.4 L 14 ~1 × 10 5 cells·mL–1 [35]
35 L 7 3.1 × 10 5 cells·mL–1 [34]
50 L 11 2.6 × 10 5 cells·mL–1 [36]

hHSPCs 10 mL 10 1.4 × 10 7 cells·mL–1 [37]

Fixed bed hMSCs

3 mL 20.8 N/A (1) [38]
14.2 mL 5.6 (2.9 ± 0.1) × 10 6 cells·mL–1 [39]
60 mL 7.0 1.75 × 10 6 cells·mL–1 [39]

300 mL 6.9 2.05 × 10 6 cells·mL–1 [39]
500 mL 7 (8.3 ± 1.6) × 10 5 cells·mL–1 [40]

Hollow fibre

hESCs 2.1 m2 5 3.4 × 10 4 cells·cm–2 [41]

hiPSCs 2.1 m2 6–7 (3.3 ± 0.4) × 10 4 cells·cm–2 [42]

hNSCs 2.1 m2 7–11 1.5 × 10 5 cells·cm–2 [43]

hMSCs

2.1 m2 7–9 N/A (2) [44]
2.1 m2 17 ± 6 (4.7 ± 0.6) × 10 3 cells·cm–2 [45]
2.1 m2 8 ± 2 (8.0 ± 2.5) × 10 3 cells·cm–2 [46]
2.1 m2 5 (9.8 ± 1.0) × 10 3 cells·cm–2 [47]
2.1 m2 5 (1.1 ± 0.2) × 10 4 cells·cm–2 [48]
2.1 m2 7.9–9.9 (1.8 ± 0.2) × 10 4 cells·cm–2 [49]
2.1 m2 6 (1.9 ± 0.3) × 10 4 cells·cm–2 [50]
2.1 m2 6 2.9 × 10 4 cells·cm–2 [51]
2.1 m2 6–13 4.7 × 10 4 cells·cm–2 [52]

Rotary cell culture
system

hNSCs 4 mL 3 ~5 × 10 5 cells·mL–1 [53]

hMSCs 10 mL 14 N/A (1) [54]

Rotating bed hMSCs
2000 cm2 5 (1.2 ± 0.1) × 10 4 cells·cm–2 [55]

6000 cm2 9 (5.8 ± 0.9) × 10 4 cells·cm–2 [56]

Rocking motion

hESCs
150 mL (3) 4 2.8 × 10 6 cells·mL–1 [57]
400 mL (3) 4 1.4 × 10 6 cells·mL–1 [57]

1.0 L (3) 4 1.3 × 10 6 cells·mL–1 [57]

hMSCs
50–200 mL 100 (1.32 ± 0.09) × 10 6 cells·mL–1 [58]
50–600 mL 10 4.4 × 10 4 cells·mL–1 [59]
50–600 mL 11 2.2 × 10 5 cells·mL–1 [60]

hHSPC-RBCs 200 mL–1 L 33 4.5 × 10 12 cells·mL–1 [61]
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Table 1. Cont.

Bioreactor Type Cell Type Working
Volume/Area

Culture Time
(days) Maximum Final Cell Density Ref.

Vertical-Wheel

hiPSCs

60 mL 80 N/A (1) [62]
60 mL 7 (2.3 ± 0.2) × 10 6 cells·mL–1 [63]

60–73 mL 7 (1.79 ± 0.03) × 10 6 cells·mL–1 [63]
80 mL 9 (1.21 ± 0.02) × 10 6 cells·mL–1 [64]

300 mL 8 (8.6 ± 1.5) × 10 5 cells·mL–1 [64]
100 mL 6 (6.3 ± 0.4) × 10 5 cells·mL–1 [65]
100 mL 6 (6.5 ± 0.6) × 10 5 cells·mL–1 [66]
500 mL 6 ~4 × 10 5 cells·mL–1 [66]

hMSCs

60 mL 4 1.1 × 10 5 cells·mL–1 [67]
60–100 mL 7 (5.3 ± 0.4) × 10 5 cells·mL–1 [68]
60–100 mL 7–11 5.3 × 10 5 cells·mL–1 [69]
90–92 mL 5 ~6 × 10 5 cells·mL–1 [70]

2.2 L 14 ~3 × 10 5 cells·mL–1 [71]
(1) Non-proliferative and/or differentiating cells. (2) The exact cell density achieved is not stated by the authors but is inferred from the text
to be around 105 cells·cm–2. (3) Part of a consecutive passage experiment with increasing scale; overall fold increase of ~280 over 16 days.
Individual experiments at each scale with optimised conditions led to better results, but the exact cell density is not indicated in the article.

2.1. Single-Use Stirred-Tank Bioreactors

Stirred-tank bioreactors (STBRs) have been among the most commonly used setups
for the manufacturing of a variety of products, such as viruses or recombinant proteins, in
a multitude of cell types including bacterial, insect, plant, or animal cells [24–27]. STBRs
typically employ a glass or stainless-steel vessel, along with one or multiple impellers
distributed along the height of the bioreactor and ensuring efficient agitation of the medium
(Figure 2). Depending on the frailty of the cells, different impellers can be employed—
Rushton turbines are suitable for more resistant cell types, such as bacteria, while animal
cells, which are more shear sensitive, require gentler mechanisms of agitation such as
marine or pitched-blade impellers. In fact, shear stress is a common point of contention in
the translation of stem cell culture to 3D, due to its effect on cell fate (reviewed in [72,73]).
Nevertheless, there is a notorious lack of studies in this regard, with only a few reports
of phenomena such as agitation-induced hPSC differentiation [74], as well as priming
of hMSCs towards an osteogenic fate through high shear stress [75]. The decades of
STBR use in the biopharmaceutical industry ensures these bioreactors are now very well
characterised, in terms of agitation profiles, shear stress, power dissipation, and oxygen
mass transfer, with well-established empirical correlations, as well as defined criteria for
scale-up [76–78]. In STBRs, however, the existence of “hot spots” of high shear forces has
been described as well as “dead zones” where mixing is inferior or almost inexistent. This
heterogeneous mixing profile may give cues for undue cell differentiation and/or apoptosis
due to the high shear itself or cell settling and formation of very large cell aggregates.

The STBR can be easily converted into a single-use system, by replacing parts which
contact the cells with disposable equipment, such as the vessel itself, the impeller, and the
probes. Examples of commercially available single-use STBRs which have already been
successfully applied for stem cell culture are described in Table 2. Together, these systems
cover from a 10 mL laboratory scale to a 200 L production scale.
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Table 2. Examples of single-use stirred-tank bioreactor systems with successful use for stem cell culture.

Bioreactor Company Impeller Working Volume Range

BioBLU® Eppendorf Eight-blade or pitched-blade 100 mL–40 L
Mobius® CellReady Merck Marine (scoping) 1.0–2.4 L

Ambr® Sartorius Stedim Biotech Pitched-blade or Rushton 10–250 mL
BIOSTAT® CultiBag STR Plus Sartorius Stedim Biotech Three- or six-blade 12.5–200 L

UniVessel® SU Sartorius Stedim Biotech Three-blade 600 mL–2.0 L

Kropp et al. have described the expansion of hiPSCs as aggregates in BioBLU (from
Eppendorf, Hamburg, Germany) bioreactors (125 mL working volume), using different
feeding strategies. By applying a perfusion strategy, in which constant withdrawal of
wasted medium and replenishment of fresh medium are performed (retaining the cells
inside the vessel), the cell yield was improved by 47%, in comparison to a repeated batch
approach, with a discrete medium exchange every 24 h. The authors obtained a final
density of (2.85 ± 0.34) × 106 cells·mL–1, although with a shift to a metabolism more reliant
on oxidative phosphorylation [29]. Kwok et al. expanded hiPSCs as aggregates in Mobius
CellReady (from Merck, Darmstadt, Germany) bioreactors at a 1.5 L scale, generating a
total of 2 billion cells [30]. hPSC differentiation in STBRs is also possible—Halloin et al.
have adapted a standard cardiac differentiation protocol and report the generation of about
1 × 106 cardiomyocytes·mL–1 at both 100 mL and 350–500 mL scales, with purity above
90%. The bioreactors used in this study are available with both single-use and reusable
vessels, which should allow for easy transition of protocols developed on one of those
formats to the other [79].

Microcarrier-adherent hMSC expansion has also been described, in Mobius CellReady
(from Merck, Darmstadt, Germany), UniVessel SU (from Sartorius, Göttingen, Germany),
and CultiBag STR (from Sartorius, Göttingen, Germany) bioreactors. Schirmaier et al.
optimised AT-derived hMSC culture at a 2 L scale, followed by a scale-up experiment to 35 L,
and were able to maintain a similar cell density at both scales—(0.27 ± 0.02) × 106 cells·mL–1
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and 0.31 × 106 cells·mL−1, respectively [34]. Lawson et al. attempted BM–hMSC culture at
a 50 L scale, obtaining 1.28 × 1010 cells in 11 days of culture [36].

While obtaining high cell numbers is vital for the production of cells to be used in
a clinical setting, bioprocess optimisation is preferably performed in a high-throughput
platform. Ratcliffe et al. performed human haematopoietic stem/progenitor cell (hHSPC)
expansion in the Ambr (from Sartorius, Göttingen, Germany) 15 bioreactor system, a fully
automated and controlled platform entailing 24 vessels with 15 mL maximum volume,
allowing for the simultaneous testing of many different conditions. By optimising culture
parameters, including inoculation density, oxygen tension, and medium feeding, the
authors could obtain a maximum density of 1.37 × 107 cells·mL–1 in 11 days [37]. This
platform was also used for optimisation of BM–hMSC expansion with microcarriers in
serum-free medium, resulting in over 8.1 × 105 cells·mL−1 and a 10-fold increase in
reproducibility in comparison to serum-containing, manual culture [31].

2.2. Fixed-Bed Bioreactors

Fixed-bed bioreactors are a common staple of the food and wastewater industry
due to their setup—a vessel filled with a macroporous material or large beads to which
cells and/or enzymes may be attached, and through which the liquid phase is passed
through continuously (Figure 3). In fact, many studies have already described the use of
fixed-bed bioreactors for applications such as the production of biodiesel [80,81] and biohy-
drogen [82], and various aspects of wastewater treatment [83,84]. Beyond the possibility
for these applications, fixed-bed bioreactors also have some characteristics which have
led to their use for culture of anchorage-dependant mammalian cells. The geometry and
setup of these bioreactors confer a large surface-to-volume ratio, allowing for a smaller
footprint, compared to stirred-tank bioreactors, and enabling a much higher volumetric
productivity. Depending on their mechanism, fixed-bed bioreactors may also be naturally
compatible with a perfusion feeding regime, and, due to the lack of agitation, the shear
stress conveyed to the cells is low. The lack of an impeller is, simultaneously, a disadvan-
tage, due to allowing for the formation of concentration gradients (of nutrients, metabolites,
growth factors, oxygen, etc.) inside the bioreactor. Moreover, cell harvesting until the end
of the culture is impossible, rendering cell growth monitoring notably difficult. Never-
theless, fixed-bed bioreactors have seen used for applications such as viral production in
mammalian cells [85–87], and even hHSPC expansion [88].

Single-use fixed-bed bioreactors require both a single-use vessel and cell adhesion
matrix. Weber et al. have developed a small-scale disposable fixed-bed bioreactor system
using a 3 mL plastic syringe, connected to two 250 mL flasks for medium feeding and for
waste, and equipped with a small oxygen sensor in the outflow. This bioreactor system
was used for the culture of alginate-encapsulated hMSC–TERTs. These cells are hMSCs
transfected with telomerase, which compensates the telomere shortening which occurs
during mitosis, thus enabling more population doublings in comparison to unaltered
hMSCs [89]. These cells were not proliferative but could be maintained in culture for
at least 500 h with increasing viability [38]. The same group also described larger-scale
fixed-bed bioreactor systems—using 60 mL glass syringes, and glass tubes between two
stainless-steel plates (serving as lid and bottom) for a volume of 300 mL. These bioreactors
were filled with 2 mm diameter non-porous borosilicate glass spheres which served as
a surface for cell adhesion and made use of non-invasive oxygen sensors both at the
inlet and the outflow. At the 300 mL scale, the authors were able to produce 6.2 × 108

hMSC–TERTs after 167.3 h of culture, however, only 50% to 60% of the inoculated cells
attached to the borosilicate spheres [39]. Mizukami et al. have used a commercial fixed-bed
bioreactor system—FibraStage® bottles (discontinued) loaded with Fibra-Cel® disks, both
from Eppendorf (previously from New Brunswick Scientific) for the expansion of human
cord blood-derived hMSCs. The bellows at the base of the bottle control the medium level
by compression and expansion. With one 500 mL FibraStage bottle, the authors could
produce (4.15 ± 0.81) × 108 cells in 7 days of culture [40].
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2.3. Hollow Fibre Bioreactors

Hollow fibre bioreactors are composed of numerous capillary tubes inside an outer
shell, which, similarly to fixed-bed bioreactors, confer them a high surface area with a
low footprint (Figure 4). In hollow fibre bioreactors, the cells adhere to the surface of the
capillaries, either on the intracapillary (IC) or the extracapillary (EC) loop. Medium and
reagents may be pumped through the loop in which the cells are adhered to, contacting
them directly. The capillary membrane is semipermeable, thus also enabling the diffusion
of dissolved gases and small molecules (e.g., glucose, lactate) through it, and allowing for
mass exchange between the cells and the fluids perfused through the other loop [90]. Once
more, the lack of an impeller reduces the shear stress conveyed to cells, especially due to
the two-loop system and the possibility of indirect mass transfer. However, the growth of
cells inside the hollow fibre bioreactors is hard to monitor due to the impossibility of cell
harvesting until the end of culture. Having a membrane-based system also renders these
bioreactors particularly susceptive to fouling—as the capillary membrane pores clog, either
due to the cells or other solids, mass transfer through the capillaries becomes increasingly
difficult [91]. The high cell densities which can be obtained in a hollow fibre reactor, along
with the resulting high product titres, have led this configuration to be attractive for the
production of recombinant proteins, monoclonal antibodies, and viruses [92–94] while
also seeing the use for wastewater treatment [95,96] and biocatalytic reactions [97,98].
Furthermore, hollow fibre bioreactors have already been applied for the bioproduction of
stem cells for clinical trials [43].

Regarding single-use hollow fibre bioreactors for stem cell expansion, many studies
describe the use of the Quantum® Cell Expansion System (QES; Terumo BCT). This closed
and fully automated system is composed of about 11,500 hollow fibres, providing a 2.1 m2

surface area for cell growth (the same as 120 T-175 flasks) with a 0.3 m2 footprint.
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Roberts et al. have harvested up to 5.4 × 108 hESCs in 5 days in the QES, achieving
1.8-fold the cell density of T-25 flasks in an equivalent time, while reducing medium
consumption per unit area in 68%, [41]. Mesquita et al. demonstrated hiPSCs could be
expanded in the QES, and that laminin coating of the IC area was more favourable (both
in terms of the maximum cell number and the time required to achieve it) for cell growth
over vitronectin, possibly due to a stronger interaction of laminin with the QES fibres.
Furthermore, to overcome some of the monitoring limitations of the bioreactor system, the
authors correlated the total number of cells with the produced lactate, allowing them to
estimate the growth curve of the hiPSCs. After 6–7 days of culture, the authors obtained
an average of (6.9 ± 0.9) × 108 cells with laminin coating [42]. Tirughana et al. described
the production of GMP-grade human neural stem cells (hNSCs) in the QES. These hNSCs
were modified to produce the prodrug-activating enzyme cytosine deaminase. A total of
1.4–3 × 109 of these cells could be produced in one QES in 7–10 days, allowing for the
production of an FDA-approved clinical lot (1.5 × 1010 cells) in seven parallel bioreactors
in nine days, which was then used in a phase I trial with seven brain tumour patients. The
same cell line was additionally modified by adenoviral transduction in the QES to produce
a modified carboxylesterase, and 1.5–1.8 × 109 cells could be recovered after 8 days. Using
5 QES in parallel, a clinical lot of 8 × 109 transduced hNSCs was produced for a future
study regarding the treatment of metastatic neuroblastoma patients [43].

The QES has already been extensively described for the culture of hMSCs of various
sources–AT [45,48,51], BM [44,46,52], UCM [46,47,50], and periosteum [49]. Of these
studies, Haack-Sørensen et al. were able to obtain the highest cell number. The authors
performed a comparison of two media—foetal bovine serum (FBS) or human platelet
lysate (hPL)-supplemented—for the derivation of hMSCs from an inoculum of the stromal
vascular fraction of human subcutaneous abdominal fat, over the course of two passages
in the QES. Overall, this study revealed hPL to be more favourable for cell growth. In the
first passage, hPL increased cell yield by fivefold and in half of the expansion time when
compared to FBS (9 days for hPL vs. 17 days for FBS). Both supplements led to comparable
growth in the second passage, but with a higher difference in the expansion time (6 days
for hPL vs. 21 days for FBS). FBS is an animal-derived supplement, which complicates
the approval process in the case of a clinical-grade process. In contrast, hPL is of human
origin, being free of xenogeneic components. Nevertheless, this supplement may also suffer
from batch-to-batch variability [99]. At the end of culture, up to 5.5 × 108 AT–MSCs were
obtained in 9 days from stromal vascular fractions, and 6.1 × 108 AT–MSCs were recovered
after the first passage, following 6 days in culture [51]. Russell et al. have performed a
cost breakdown, comparing automated hMSC expansion in the QES with manual culture
for the production of 100 doses of 108 cells (for a clinical trial with 100 patients). The
automated system allowed for savings of about 49% in reagents and consumables, having
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an estimated cost of about USD 108,000 for 100 doses, while hands-on work could be
reduced from 361.6 h (in a 24.0 week production time, thus requiring two technologists)
to 35.0 h (for a 20.0 week production, demanding a single technologist) [44]. Mizukami
et al. performed a more thorough cost-of-goods analysis, comparing a multilayer vessel, a
stirred-tank bioreactor, a packed-bed bioreactor, and a QES. While the QES resulted in a
higher cell proliferation rate, expansion fold, and harvesting efficiency, its high consumable
and equipment cost led it to be predicted as the least cost-effective option. In fact, for
the QES to compete with the other systems at an economical level, it would require a
sevenfold increase in harvesting density, along with an 85% consumable and equipment
cost reduction and a 28% cost savings in the medium [47].

2.4. Rotary Cell Culture Systems

The advancements in space travel in the past years have led to significant research on
the effects of microgravity in humans, and more specifically, in some cell types. While cell
culture has already taken off to space [100], microgravity can also be simulated on Earth.
The rotary cell culture system (RCCS) is a bioreactor developed by NASA which can be
used to culture cells in a microgravity environment (Figure 5). In this bioreactor system,
the cells are inoculated in a high aspect ratio cylindrical vessel, which is completely filled
with medium. The vessel rotates horizontally and will cause the medium inside to rotate
as well. If operating at a certain range of speeds, after some time, the medium will rotate at
the same velocity as the vessel itself, unlike in other bioreactor systems where the fluid is
moving in reference to the vessel walls (e.g., agitated liquid and still vessel walls). This
minimises the effect of the Earth’s gravity on the particles inside the vessel, resulting in an
effective gravitational force of 10–2× g [101]. Moreover, the particles inside the vessel have
an almost null terminal velocity and therefore move with the medium upon the rotational
axis, with limited movement alongside other axes—a cell will return to approximately the
same location upon each complete vessel rotation. Therefore, the cells can be cultured in
suspension in a laminar regime; thus, with minimal shear stress (<5 × 10–2 Pa), further
reduced by the lack of headspace and, consequently, no formation of air bubbles [101–103].
Ensuring both these effects will require the rotation of the RCCS in a limited velocity
range—a low rotation speed will not overcome the Earth’s gravitational force, causing the
cells to settle, while high rotation will result in a predominant centrifugal force which will
drive the cells towards the outer wall (Figure 5b–d). Furthermore, while the low shear
stress conveyed by the RCCS limits the extent of shear-mediated cell damage, it also limits
mass transfer by convection. In fact, in the RCCS, diffusive mass transfer prevails, which
may lead to the formation of microenvironments of low nutrient concentration and high
waste accumulation in the vicinity of the cells [103,104].
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Figure 5. Schematics of a rotary cell culture system (RCCS): (a) four-station rotator base with one 50 mL vessel and two
10 mL vessels; (b) at low rotation speeds, the cells will settle along the bottom of the vessel; (c) at very high rotational speeds,
the cells will be subjected to a predominant centrifugal force, driving them towards the outer wall of the vessel; and (d) at a
certain velocity range, the cells will be in suspension, in a simulated microgravity environment.
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Single-use RCCS operate using disposable vessels, or cassettes, as these are the only
part of the bioreactor which directly contacts the cells. Single-use RCCS systems are
available commercially from Synthecon but only at a 10 mL and 50 mL scale, limiting
their scalability.

Chiang et al. have employed the RCCS for hESC-derived hNSC culture and observed
the effect of simulated microgravity in the development of these cells. RCCS culture led to
increased β-adrenoreceptor expression and subsequent mitochondrial function of hNSCs,
with increased mitochondrial mass and ATP production. Moreover, the proliferation of
the hNSCs was increased, leading to a final density of ~5 × 105 cells·mL–1 after 3 days,
a twofold increase over the static control [53]. The culture of adult BM–hMSCs in these
bioreactors has also been described. Cells were harvested from BM and seeded in the
RCCS in a chondrogenic medium. The results were compared with a standard protocol
of cartilage production in conical tubes. After 2 weeks, RCCS culture led to about three-
fold larger (diameter-wise) and 10-fold heavier cellular constructs in relation to conical
tubes, with a 1.5-fold higher glycosaminoglycan/DNA ratio and with histological and
immunohistological characteristics of hyaline cartilage [54].

2.5. Rotating Bed Bioreactors

Rotating bed bioreactors apply rotation to the previously described fixed-bed system—
the cells adhere to plates, which rotate inside the vessel (Figure 6). These bioreactors can be
operated at full volume, or similarly to roller bottles, by not filling the vessel totally and
allowing for the cells to intermittently contact the medium and the headspace. Rotating
bed bioreactors share most advantages and disadvantages of fixed-bed bioreactors—both
provide a large surface-to-volume ratio, are compatible with perfusion, and convey low
shear stress to the cells, while cell harvesting and monitoring cannot be performed during
the culture. Rotating bed bioreactors, however, can provide some more homogeneity to the
contents of the vessel by means of rotation employed. Applications of these systems also
include biocatalysis [105,106] and wastewater treatment [107,108], and it has already seen
use in mammalian cell culture [109].
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attachment area, respectively. These bioreactors consist of a cylindrical vessel containing a
bed of polycarbonate plates which rotate through the action of a magnetic drive. Their setup
allows for operation under a perfusion feeding regime. Moreover, they are equipped with
a sampling device for supernatant analysis as well as pH and oxygen sensors connected
to a control unit. The single-use parts comprise the vessel, tubing system, and measuring
devices [55,56].

Neumann et al. characterised the Z®RP 2000 H bioreactor and applied it for UCM–
hMSC expansion. The authors verified homogenisation of the culture under normal
operating conditions for both a half-full (70 mL) and full (120 mL) vessel, and the Boden-
stein number was characteristic of a stirred-tank reactor-type mixing even for the lowest
mixing speed and full volume. After 5 days of culture, a total of (2.46 ± 0.24) × 107

hMSCs could be obtained at a 125 mL scale, maintaining hMSC immunophenotype and
trilineage differentiation potential [55]. Reichardt et al. applied rotating bed bioreactors
with a 6000 cm2 surface area and a 340 mL working volume for human umbilical cord
artery cells (HUCACs), harvesting (3.48 ± 0.55) × 108 cells in 9 days, albeit with full de-
pletion of glucose at some timepoints (despite the perfusion feeding regime). The authors
compared bioreactor culture to maintenance in static T-25 flasks and estimated 311 of
these flasks would be required to achieve the same cell numbers, encompassing an over
threefold increase in the medium volume necessary (about 12.1 L versus 3.83 ± 0.69 L in
the bioreactor) [56].

2.6. Rocking Motion Bioreactors

Rocking motion bioreactors were first described in 1998 [110] and were established as
an alternative to STBR in the culture of insect and mammalian cells for processes such as the
production of viruses and recombinant proteins. These bioreactors rely on an impeller-free
agitation mechanism where the vessel, a plastic bag, is placed on the top of a base which
moves in a back-to-forth rocking motion. The agitation causes the formation of waves in
the air–liquid interface, ensuring efficient mixing, with a high mass transfer and no particle
settling while also avoiding high shear stress (Figure 7) [111,112]. Cell damage is further
avoided by the lack of a sparging mechanism and associated bubble formation. While the
shear stress generally increases with the agitation velocity, at certain agitation speeds a
resonance phenomenon is observed, causing unusual behaviour such as higher vorticity
and shear stress. Zhan et al. observed that, for a half-filled 10 L rocking motion bioreactor,
agitation at 15 rpm led to an approximation to the natural frequency of the bioreactor
(calculated by approximating its shape to a perfect ellipse), causing higher turbulence than
agitation at 22 rpm and 30 rpm [113]. Therefore, during process development with this
bioreactor system, it is important to estimate the natural frequency and avoid choosing a
rocking velocity close to this frequency.
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Rocking motion bioreactors were first developed as single use, employing a disposable
culture bag. Rocking motion bioreactors commercially available include the Xuri Cell
Expansion System (previously WAVE BioreactorTM) and CellbagTM vessels from Cytiva
(Marlborough, MA, USA), and the Biostat® RM and Flexisafe RM bags (replacing CultiBag)
from Sartorius (Göttingen, Germany), and cover working volumes from 50 mL up to 500 L.

Davis et al. have cultured both hESCs and hiPSCs as aggregates in the Xuri Cell
Expansion System, with perfusion and non-perfusion Cellbags, at various scales—150 mL,
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250 mL, and 1 L—and also performed consecutive passage experiments. The authors also
optimised the culture conditions and were able to obtain up to 9.5-fold expansion in 4 days.
Serial passaging from 250 mL to 1 L under optimised conditions led to a 39.2-fold expansion
(~3.9 × 109 cells in 8 days), while passages from two sequential 150 mL bioreactors to
250 mL and to 1 L in non-optimised conditions resulted in a cumulative 280-fold increase
in cell number (~1.7 × 1010 cells in 16 days). The authors also estimated how operating
these bioreactors under automated perfusion, besides allowing a closed process and en-
suring sterility, could lead to a substantial increase in cell yield per spent medium—from
4.2 × 105 cells/mL in six-well plates to 1.5 × 106 cells/mL in 1 L perfusion bioreactors [57].

hMSC expansion in rocking motion bioreactors has also been demonstrated by differ-
ent groups. Nguyen et al. were able to expand these cells for 100 days in bioreactors with a
200 mL working volume, maintaining hMSC viability and chondrogenic and osteogenic
differentiation potential. A maximum of (2.64 ± 0.18) × 108 cells were counted on day
40. However, despite a decrease to (8.7 ± 2.1) × 107 cells by day 90, the authors did not
observe dead cells through a LIVE/DEAD assay and speculated the decrease in countable
cell number to be attributed not to cell death but to hMSC migration to the inside of the
microcarrier pores [58]. Da Silva et al. observed some cell deposition in Cellbags, which
resulted in stagnated cell growth, and designed an acrylic grid which would allow for the
Cellbag to remain in contact with the base for temperature control but would also raise
the Cellbag wall, avoiding cell deposits. The authors also verified some deposits at the
Cellbag wall due to the microcarriers sticking to it. The adhesion phase was first performed
in spinner flasks, then in the modified Cellbags in dynamic conditions, and in static with
reduced volume. The latter conditions led to the best overall cell expansion, with a final
yield of 2.56 × 108 UCM–hMSCs in 600 mL [59]. The same group then compared the
expansion of these cells in the modified Cellbags (600 mL working volume) and 500 mL
spinner flasks. Neither platform impacted hMSC tri-lineage differentiation potential nor
differently regulated biological systems; however, spinner flask culture was more efficient,
both in terms of final cell number and in the time at which the maximum was achieved.
Maximum cell yields of (4.65 ± 0.14) × 108 cells in 6 days and 1.32 × 108 cells in 11 days
were obtained for the spinner flask and the rocking motion bioreactor, respectively [60].

Timmins et al. have used rocking motion bioreactors for the production of red blood
cells (RBCs) from umbilical cord blood (UCB)-derived hHSPCs. By controlling the cell
density at regular intervals, the authors obtained an average 2.25 × 108-fold increase in cell
number in 33 days—a production averaging 4.5 × 1015 RBCs in a culture of up to 1 L of
working volume and allowing to harvest 560 units of RBCs per UCB donation [61].

2.7. Vertical-Wheel Bioreactors

As mentioned in Section 2.1, stirred-tank bioreactors are the gold standard in tradi-
tional bioprocessing approaches but are undesirable for stem cell culture due to the high
levels of shear stress their agitation mechanism conveys. While most other bioreactor
systems already mentioned avoiding the issue by not employing an impeller, this impairs
mass transfer and may compromise the homogeneity of the culture. The Vertical-WheelTM

bioreactors (VWBRs), introduced by PBS Biotech (Camarillo, CA, USA), were designed
to provide a homogeneous culture environment while using a more gentle and efficient
agitation mechanism (Figure 8) [114]. The vessels contain a large vertical wheel, which
format results in both radial and axial agitation. Moreover, the U-shaped bottom of the
vessel avoids “dead zones” underneath the impeller, thus limiting cell settling. Overall,
this results in a more efficient mixing, allowing for low agitation speeds to be used and,
consequently, less shear stress to be conveyed to the cells. Furthermore, the large size
of the impeller allows for the dissipation of its rotational energy over a substantial area,
thus resulting in narrower gradients of energy dissipation rate, with maximum values of
20–25%, compared to horizontal-blade impellers [114]. These bioreactors can have two
different agitation mechanisms: in AirDrive VWBRs, agitation is controlled by bubble
sparging, which are captured in specific zones of the vertical wheel, allowing for its motion;
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in MagDrive VWBRs, agitation is driven by magnetic coupling between magnets present
in the vertical impeller and in the base unit. These bioreactors were developed to be single
use and are available in various scales, from 100 mL to 80 L (MagDrive) or from 3 L to
500 L (AirDrive), and feature an embedded automatic controller starting from the 3 L units
(Figure 8). The characterisation of VWBRs is so far limited, and therefore, no empirical
correlations for bioreactor scale-up are yet available, but reports of computational fluid
dynamics-based hydrodynamic modelling have already been published [66,114].
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hiPSC culture in VWBRs has already been described, culturing the cells as aggre-
gates (with a maximum yield of (7.1 ± 0.7) × 107 cells in a repeated batch approach and
(6.1 ± 0.7) × 107 cells using a fed-batch process, both in 7 days and at a 60 mL scale [63])
and attached to vitronectin-coated microcarriers (maximum yield of (1.0 ± 0.1) × 108 cells
in 9 days at an 80 mL scale, and (2.6 ± 0.5) × 108 in 8 days using a 300 mL working vol-
ume [64]). Notably, the addition of the polysulfated compound dextran sulphate, a staple
of the biopharmaceutical industry due to aggregate size control via cell surface charge
modulation and anti-apoptotic effect [115,116], improved the aggregate culture about
twofold in terms of cell yield, leading to a maximum of (1.4 ± 0.1) × 108 cells in 5 days
with repeated batch and (1.26 ± 0.02) × 108 cells in 6 days using a fed-batch process [63].
Borys et al. tested hiPSC expansion in 100 mL VWBR and found normoxic conditions using
repeated batch to lead to a higher cell growth than experiments with hypoxia (3%) and/or
batch conditions. By performing a low-density inoculation with pre-formed aggregates,
they obtained up to (6.3 ± 0.4) × 108 cells in 6 days, and about 2.1 × 1012 cells in 28 days,
over the course of four consecutive passages [65]. The same group then optimised the
culture protocol, in terms of inoculation (pre-formed aggregates vs. single cell), agitation
speed and harvesting enzyme, and exposure time. With the optimised conditions, a max-
imum of (6.5 ± 0.6) × 108 cells could be obtained, which could be passaged to 500 mL
volume vessels [66]. In all cases, the expression of pluripotency markers and differentiation
potential of the cells were found to be maintained. In a recent study, Silva et al. have
demonstrated cerebellar differentiation of hiPSCs in VWBRs. The dynamic culture system
was shown to maintain cell viability for at least 80 days of differentiation as well as to
enhance extracellular matrix formation and to activate angiogenesis-related pathways in
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comparison to the static control [62]. This spontaneous onset of angiogenesis, in particular,
is a very promising development since in vitro organoids are generally limited in this
regard and necessitate alternative strategies for blood vessel formation [117].

Various studies also describe hMSC expansion in VWBRs. Yuan et al. developed a
method for scalable BM–hMSC aggregation [67]. The authors designed thermal responsive
poly(N-isporopylacrylamide) (PNIPAM) microcarriers to which cells could attach at 37 ◦C,
and be detached from at the end of expansion by incubation at 23 ◦C. Following thermal
detachment and microcarrier removal from the vessel, the cells would be left to sponta-
neously aggregate. The authors performed cell expansion, harvesting, and aggregation in
both spinner flasks and VWBRs. In the spinner flask, the harvesting resulted in mainly
single cells which did not aggregate even after 24 h. Expansion in the VWBRs at a 60 mL
scale led to a production of 6.8 × 106 cells in 4 days, which could be harvested in 10 min
at 23 ◦C and could form aggregates, with a comparable diameter and cell viability to
an AggreWell-based protocol, as well as with similar immunomodulation and cytokine
secretion. Lembong et al. also describe BM–hMSC expansion in VWBRs, using a xeno-free,
fed-batch approach. Following optimisation of the cell and microcarrier concentration, as
well as the agitation, the fed-batch, and microcarrier addition strategies, and harvesting
process (speed, quench hold time, and solution temperature) the authors could obtain
1.8–5.5 × 107 cells across hMSCs of five different donors after 5 days in a 92 mL working
volume [70]. Another report of xeno-free UCM– and AT–hMSCs expansion in VWBRs led
to the production of (5.3 ± 0.4) × 107 and (3.6 ± 0.7) × 107 cells, respectively, in 7 days
and with a 100 mL working volume. Furthermore, the VWBR was established as an eco-
nomical alternative to T-175 flasks, as a cost analysis estimated a reduction of the process
cost per dose, from USD 17,000 to USD 11,100 for UCM–hMSCs and from USD 21,500
to USD 11,100 for AT–hMSCs [68]. Similar conditions were used for extracellular vesicle
(EV) production from BM–, AT– and UCM–hMSCs expanded in 100 mL working volume
VWBRs. EVs comprise a prospective therapy for a variety of diseases, either by their own
characteristics or as drug delivery vehicles. Up to (5.3 ± 5.5) × 107 hMSCs were obtained
after the culture (which ranged from 7 to 11 days depending on the cell donor and source).
All three cell sources led to EV production in higher amounts when compared to static
cultures (averaging 5.7 ± 0.9), with a maximum average of (6.9 ± 1.7) × 109 particles/mL
for UCM–hMSCs. The purity of these EVs was also improved and more consistent between
runs in comparison to static culture [69]. Finally, BM–hMSCs have also been expanded at a
2.2 L scale, in AirDrive VWBRs. About 6.6 × 108 cells could be obtained after 14 days of
culture, with a similar cell concentration to 250 mL STBRs, although with a significantly
lower percentage of apoptotic cells, as well as less HLA–DR expression (3% in VWBRs
vs. 30% in STBRs). This lower HLA–DR expression, in particular, is promising for the
development of allogenic cell therapies [71].

3. Challenges of Single-Use Bioreactor-Based Processes

The various examples of single-use bioreactors presented have shown that these
platforms can provide an answer to the limitations of reusable bioreactor systems for the
biomanufacturing of stem cells for regenerative medicine applications. In fact, disposable
hollow fibre bioreactors have already been used in this context [43], and promising results
on stem cell expansion and/or differentiation in other platforms, such as STBRs, rocking
motion bioreactors, and VWBRs may lead into clinical trials with stem cells and derivatives
produced in these bioreactors in the near future. The choice of bioreactor will depend on
various factors, as each bioreactor has a subset of advantages and limitations (summarised
in Table 3); however, the overall development of processes with single-use bioreactors also
provides some challenges, independently of the platform of choice.
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Table 3. Advantages and limitations of single-use bioreactors as whole and specific single-use platforms.

Platform Advantages Drawbacks/Limitations

Single-use bioreactors

• Compatible with GMP guidelines
• Pre-sterilised—no CIP and SIP

necessary
• Closed systems—minor contamination

risk
• Reduced downtime and higher

productivity
• Lower overall environmental impact

than reusable systems
• Lower initial investment

• Risk of leachables—possible cell
growth impairment

• Maximum scale limited by material
resistance

• Environmental impact of vessel
manufacturing, packaging, shipping,
and disposal throughout the whole
process

• High running costs

Stirred tank

• Vast know-how and characterisation
• Available at many different scales
• Availability of empirical correlations

and criteria for variable estimation and
scale-up

• Variety of agitation mechanisms
• Some are naturally compatible with

perfusion

• High overall shear stress
• Heterogeneity of shear stress

distribution—existence of hot-spots
and stagnated zones

Fixed bed

• Low shear stress
• High surface-to-volume ratio and

small footprint
• Naturally compatible with perfusion

• Formation of concentration gradients
• Cell harvesting only possible at the

end of the culture
• Difficult cell monitoring

Hollow fibre

• Low shear stress
• High surface-to-volume ratio and

small footprint
• Semipermeable membrane system,

allowing for indirect mass exchange
• Naturally compatible with perfusion

• Formation of concentration gradients
• Cell harvesting only possible at the

end of the culture
• Difficult cell monitoring
• Susceptibility to fouling
• Expensive operation
• Available only at a single scale (2.1 m2)

Rotary cell culture system

• Low shear stress
• Simulated microgravity environment
• No air bubbles
• Some are naturally compatible with

perfusion

• Formation of concentration gradients
• Available only at low scales (up to

50 mL)

Rotating bed

• Low shear stress
• High surface-to-volume ratio and

small footprint
• Intermittent contact with medium and

headspace
• Naturally compatible with perfusion

• Cell harvesting only possible at the
end of the culture

• Difficult cell monitoring

Rocking motion

• Efficient mixing with low shear stress
• No air bubbles
• Some are naturally compatible with

perfusion
• Available at many different scales

• Resonance phenomenon—spike of
shear stress at certain rocking
velocities

• Some cell deposition and microcarrier
sticking to vessel walls

Vertical-Wheel

• Efficient mixing with low shear stress
• Vessel format avoids cell settling

beneath the impeller
• Narrow gradients of energy

dissipation rate
• Available at many different scales
• Naturally compatible with perfusion

starting from the 3 L scale

• Still not well characterised
• Small-scale (100 mL and 500 mL)

bioreactors not controlled and
incompatible with perfusion
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Reusable bioreactors necessitate resistant materials for their components, such as glass
and/or stainless steel, in order to prolong their lifetime even under many successive/long
cultures and various autoclaving or steaming cycles. The disposable parts of single-use
bioreactors can employ less resistant materials, such as polymeric compounds, as they need
only to be used for one culture process. However, their sterilisation with γ-radiation and
their use under culture conditions can lead to the degradation of these polymers, which
then leach to the culture medium. Marghitoiu et al. identified 53 different extractables from
four different single-use vessels [118]. One of these, bis(2,4-di-tert-butylphenyl)phosphate
(BdtBPP), is of special concern. BdtBPP results from the degradation of tris(2,4-di-tert-
butylphenyl)phosphite (TBPP), an agent which is commonly added to polyolefins to protect
them from oxidation by high temperatures or ionising radiation. BdtBPP was found to be a
very potent inhibitor of cell growth [119–121], with a half-maximal effective concentration
(EC50) for viable cell density between 0.12 mg/L and 0.73 mg/L across nine different CHO
cell lines, while up to 2 mg/L could be extracted from single-use vessels [120]. Notably,
as the ageing of single-use vessels leads to a reduction in the leachable compounds, some
vessels where cell growth was impaired by the presence of BdtBPP could sustain normal
cell growth after some time [122]. Nevertheless, due to the possibility of leaching-mediated
impaired cell growth, extensive tests on the vessel extractables and care in the use of
compounds such as TBPP are of crucial importance. The lesser resistance of the single-use
bioreactors in comparison to reusable systems may also limit the scale at which cultures
can be performed—at very high scales, the vessels may not be able to withstand the liquid
volume and rupture. While this is not a problem for autologous therapies, especially if
high-density cultures can be performed, the establishment of off-the-shelf products may be
more difficult.

Single-use bioreactors also present an important sustainability issue. In fact, the
disposal of possibly hundreds or thousands of single-use vessels over the lifetime of a
process will contribute to a higher footprint since these vessels, due to having harboured
expanding cells, are treated as biological waste and cannot be recycled, being incinerated,
or sent to landfills. The manufacturing, packaging, sterilisation, and shipping of these
bioreactors also pose sustainability constraints, as these steps have to be constantly repeated
throughout the process. However, a set of life cycle analyses of monoclonal antibody and
adenoviral vaccine production in reusable and single-use systems actually concluded the
single-use process to be more environmentally sustainable. In fact, the major environmental
impact of traditional systems lies in the sterilisation, specifically, on the water for injection
and clean steam requirements. Conversely, the end of life of disposable systems was
found not to be significant in comparison to the impact of both their production and of
the bioprocess operation. Therefore, overall, single-use bioreactors were considered by
the authors a “greener” approach, but their environmental impact can be reduced even
further by, for instance, ensuring the bioproduction facility is as close as possible to the site
of vessel manufacturing, and by promoting the recycling of any non-contaminated parts,
namely, the packages and wrapping [123]. Furthermore, this study focused on traditional
biological processes, as such, it still remains unanswered if the same conclusions can be
extrapolated to the bioproduction of stem cells with its associated specificities.

The transition to disposable systems is also of economic concern [124,125]. While
disposable vessels are less expensive than their reusable counterparts, resulting in a smaller
initial investment, the need for new vessels for each bioreactor run may lead to higher
running costs throughout the lifetime of the process. The differences in single-use bioreactor
process cost will depend on the lower initial investment and higher consumable cost, in
addition to other factors such as the time saved in sterilisation cycles and the potential
lower risk of contaminated batches. Furthermore, processes with single-use bioreactors
may face smaller regulatory hurdles, reducing the time-to-market and, consequently, the
pay-back and pay-out times. The evaluation of the most financially attractive process will
require a thorough economic analysis. Even with this analysis, the choice will depend on
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what the final goals are—for instance, to obtain a higher profit in the lifetime of the process
or to break even with the initial costs at the earliest opportunity.

Regardless of the type of bioreactor used, the development of a stem cell bioman-
ufacturing process benefits from a quality by design (QbD) framework. This approach
allows for the definition of the design space in which the process can operate, allowing
for some flexibility in the process while ensuring the final product quality. Furthermore,
quality control is shifted upstream in the process timeline—instead of being applied at the
product level, the whole process is subjected to quality control, allowing for early detection
should problems arise. If the characteristics of each single-use vessel are included as criti-
cal process parameters, QbD may allow mitigating the effect of possible vessel-to-vessel
variations. QbD is also fuelled by continuous and iterative improvement—as more insight
on the process is gathered, it can be modified to account for this new information [126].
Therefore, QbD is an important tool for the development of a robust bioprocess while
reducing expenses on product quality control and failed batches and allowing for further
steps towards meeting GMP guidelines.

4. Conclusions

Human stem cell-based therapies have gained much traction in recent years. However,
the myriad of issues raised by the large-scale manufacturing processes of stem cells and
their derivatives—such as the limited knowledge about the complexity of human stem
cells; the impact of the dynamic culture environment provided by bioreactors on cell
phenotype, viability, or quality; the prohibitive cost of platforms and reagents; the shift in
paradigm from cells as a factory to cells as the final product, and the regulatory hurdles
associated with this shift—have slowed their transition to the clinic. Furthermore, cell
differentiation, which is required in many cases (namely, in all processes involving hPSCs),
increases the complexity of the processes and the various studies already performed in
2D may be difficult to translate to a bioreactor environment. Nevertheless, some of these
barriers are being breached, and it is already possible to produce clinical-scale numbers
of stem cells without compromising their quality. In fact, most reported studies using
bioreactors to culture stem cells and derivatives perform evaluations of cell phenotype
as well as genomic integrity. However, more comprehensive studies (e.g., proteomic or
transcriptomic analysis of static vs. dynamic cultures [62]) are still necessary to fully
understand the effect of the dynamic culture microenvironment present in bioreactors
on the identity of the generated cells, namely envisaging their clinical use. While earlier
reports employed reusable bioreactor systems, the various types of single-use bioreactors
here reviewed have also been established as competent platforms to ensure hPSC and
hMSC expansion and differentiation. Furthermore, single-use bioreactors reduce the risk of
contamination of the final product, thus allowing for a more GMP-compliant process. As
processes with single-use systems develop and more insight is gathered on how to answer
their limitations, they can be expected to take an important role in the establishment of
stem cell products, thus allowing for more steps to be taken towards regenerative medicine
being more than just a promise, and Prometheus’s regenerating liver more than just a myth.
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