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ABSTRACT
Large cylindrical sediment-filled structures interpreted as mammal burrows occur
within the loess-paleosol sequence of the late Miocene Cerro Azul Formation of central
Argentina. A total of 115 burrow fills from three localities were measured. They are
typically shallowly dipping, subcylindrical, unbranched structures with rounded ends
and lacking enlargements. The horizontal diameter of the burrows range between 0.15
and 1.50 m, with most of the burrows in the interval of 0.39 to 0.98 m. Geometric
morphometric analysis of transverse cross-sections support their distinct subcircular
and elliptical (horizontally flattened) shapes. Burrow fills are typically laminated in
the lower part and massive in the upper part. The laminated intervals reflect pulses of
flowing water entering the abandoned burrow during moderate rains, whereas massive
intervals reflect mass flow input of dense sediment-water mixtures during heavy rains
that produced sheet floods. Approximately 1% of the burrows contained fragmentary,
disarticulated and weathered mammal bones that were introduced in the open burrow
by currents along with other sedimentary particles. Analysis of the tetrapod burrow
fossil record suggests that Miocene burrows, including those studied herein, reflect a
remarkable increase in the average size of the fossorial fauna.We conclude that large late
Miocene mammals dug burrows essentially as a shelter against environmental extremes
and to escape predation. The simple architecture of the burrows suggests that the
producers essentially foraged aboveground. Several mammal groups acquired fossorial
habits in response to cold and seasonally dry climatic conditions that prevailed during
the late Miocene in southern South America. The considerable range of horizontal
diameters of the studied burrows can be attributed to a variety of producers, including
dasypodids, the notoungulate Paedotherium minor, Glyptodontidae and Proscelidodon
sp.

Subjects Animal Behavior, Paleontology
Keywords Tetrapod burrow, Taphonomy, Laminated burrow fill, Xenarthra

INTRODUCTION
Fossil vertebrate burrows are relatively common biogenic structures and the oldest
convincing evidence of tetrapod burrows are Early Permian (Asselian-Artinskian)
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Figure 1 Plot of horizontal diameter of fossil tetrapod burrows vs age. Plot of the average horizontal di-
ameter (Dh) of fossil tetrapod burrows in the published literature against the age of the hosting rock, dis-
tinguishing between burrows with remains that were interpreted as belonging to the producer, those lack-
ing bone remains and the present study. Note that the age axis contains two gaps in the Cretaceous and
Paleocene. Source of information on Article S1. Image credit: Ricardo N. Melchor and María C. Cardo-
natto.

Full-size DOI: 10.7717/peerj.4787/fig-1

lysophorid amphibian burrows from Kansas, USA (Hembree, Martin & Hasiotis, 2004).
Most pre-Cretaceous tetrapod burrows have been attributed to therapsids, in part on
the basis of the finding of articulated skeletons in a few Late Permian-Early Triassic
burrows (Smith, 1987; Groenewald, Welman & MacEachern, 2001; Damiani et al., 2003;
Modesto & Botha Brink, 2010). A common architecture for Permian to Jurassic tetrapod
burrows is a shallowly inclined ramp with a rounded and not enlarged end, of reduced
horizontal diameter (Fig. 1), with discrete scratch marks, always showing a horizontally
flattened elliptical cross-section, and commonly with a bilobed bottom (e.g.,Damiani et al.,
2003; Sidor, Miller & Isbell, 2008; Riese, Hasiotis & Odier, 2011; Liu & Li, 2013; Melchor &
Loope, 2016; Krummeck & Bordy, 2018). Most of Jurassic tetrapod burrows occur in eolian
sequences including the oldest subhorizontal burrow systems that have been assigned
to primitive mammals from the Early Jurassic Navajo Sandstone of USA (Riese, Hasiotis
& Odier, 2011) (Fig. 1). In contrast, there is a dearth of reports of Cretaceous tetrapod
burrows which could possibly be due to the more equable climates that existed for most
of this period. An exceptional occurrence for the Late Cretaceous is the unique dinosaur
burrow containing an adult and two juvenile remains of ornithopods, further suggesting
denning behavior and parental care (Varricchio, Martin & Katsura, 2007).

Most Cenozoic tetrapod burrows have been attributed to mammals, mainly to Rodentia
and Xenarthra (e.g., Voorhies, 1975; Martin & Bennett, 1977; Benton, 1988; Gobetz &
Martin, 2006), whereas a few examples are related to Carnivora (e.g., Hunt, Xiang-Xu
& Kaufman, 1983; Hembree & Hasiotis, 2008). The record of Paleogene tetrapod burrows
is meager and may also be linked to dominantly benign climate conditions (Fig. 1). The
Miocene record of tetrapod burrows is more varied and abundant, with a diversification of
the architectural patterns and behavioral strategies that, commonly, appeared under
stressed volcaniclastic and eolian environments. The early Miocene volcaniclastic
floodplains of Nebraska, USA, witnessed the appearance of (1) the celebrated vertical
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helical burrows ending in a ramp and terminal chamber named Daimonelix (e.g., Barbour,
1892;Martin & Bennett, 1977), as well as (2) smaller, complex subhorizontal rodent burrow
systems with terminal chambers and subcircular cross-section (Gobetz & Martin, 2006),
and (3) the first carnivore den (Hunt, Xiang-Xu & Kaufman, 1983;Hunt, 1990). Also in the
early Miocene, the coastal dunes of Germany preserved the oldest fossil food cache (Gee,
Sander & Petzelberger, 2003). The main tetrapod burrowing innovation during the middle
Miocene is represented by cylindrical, subhorizontal, unbranched tunnels with a meniscate
backfill interpreted as foraging tunnels of small Dasypodidae from southern South America
(Melchor et al., 2012;Melchor et al., 2016). Pliocene burrows are small (horizontal diameter
less than 250mm) and those from theAtlantic coast of the Buenos Aires province, Argentina
have received a considerable attention, because they are common and a significant number
of the burrows contains bone remains (e.g., Genise, 1989; Quintana, 1992; Fernández,
Vassallo & Zárate, 2000; Elissamburu, Dondas & De Santis, 2011). These are subcircular
burrows assigned to rodents and notoungulates. The Pleistocene megafauna of South
America is also reflected in the burrow trace fossil record in the form of huge tunnels (up
to 2 m wide), with horizontally flattened elliptical cross-sections from Argentina and Brazil
(e.g.,Quintana, 1992; Vizcaíno et al., 2001, Buchmann, Pereira Lopez & Caron, 2009, Genise
& Farina, 2012; Frank et al., 2012; Frank et al., 2015). The smaller burrows are attributed
to Dasypodidae and Pampatheriidae and the larger to ground sloths. It has been suggested
that the adoption or generalization of burrowing behavior by large Pleistocene herbivorous
mammals may reflect the arrival of large carnivorans after the Great American Biotic
Interchange, just before the Pliocene-Pleistocene boundary (Soibelzon et al., 2009).

A trend towards larger diameter burrows is evident from the early Miocene to the
late Pleistocene (see Fig. 1). Pre-Miocene burrows attain a maximum average horizontal
diameter (Dh) of 420 mm (the examples from the Navajo Sandstone described by Loope,
2006); however, most are in the range of 100–200 mm. From theMiocene on, burrows with
an average horizontal diameter in excess of 500 mm are recorded (Fig. 1), including those
studied herein. The Neogene record also includes more common and smaller burrows
(Dh∼< 200 mm) that are mostly attributed to rodents and small Dasypodidae (Fig. 1).

In this context, the tetrapod burrows from the late Miocene Cerro Azul Formation are
the largest pre-Pleistocene tetrapod burrows and can help to understand the reasons for
acquisition of burrowing habits in large Cenozoic mammals from South America. These
structures have been partially and briefly described (Genise et al., 2013), but a detailed
description has yet to be done and is an objective of this study. The purposes of this
work are: (1) to infer the likely producers of these late Miocene large burrows and (2) to
interpret the taphonomic processes involved in the preservation of the burrow casts and
its paleoecological and paleoenvironmental meaning.

MATERIAL & METHODS
The studied localities with late Miocene burrows are distributed in a latitudinal belt of
approximately 25 km (Fig. 2): Salinas Grandes de Hidalgo (SG, 37◦12′55′′S, 63◦35′25′′W;
100 masl); Laguna Chillhué (LC, 37◦19′15.13′′S; 64◦14′31.52′′W; 145 masl); and Laguna La
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Paraguaya near Carhué city (LLP, 37◦5′53.57′′S; 62◦47′34.98′′W; 101 masl). The first two
localities belong to La Pampa province, whereas the remaining is located in the adjacent
Buenos Aires province. The burrow fills appear in outcrop as transverse to oblique,
longitudinal, tangential and plan view exposures.

Another locality of the Cerro Azul Formation, a roadcut in national road 154 (R154,
37◦49′28.5′′S, 64◦4′8.9′′W), has been previously described as having vertebrate burrows
(De Elorriaga & Visconti, 2001). However, this locality is not considered herein because the
burrows probably postdate significantly the deposition of the unit. The reasons for this
inference are: (1) burrow diameters are considerably larger than those described herein (Dv
up to 2.25m) andmore consistent with burrows attributed to a large Pleistocenemegafauna
(e.g., Vizcaíno et al., 2001; Frank et al., 2012); and (2) the burrow cut the carbonate nodules
of the capping calcrete. Although absolute dating of the calcrete is not available, it has been
suggested that the calcretization process significantly postdates the deposition of the Cerro
Azul Formation (Vogt, Carballo & Calmels, 1999; Melchor & Casadío, 2000; Visconti et al.,
2010). The main argument for this inference is that the calcrete is developed in sedimentary
sequences ranging in age from late Miocene to Pleistocene.

Standard measurements in burrows were horizontal diameter (Dh), vertical diameter
(Dv), preserved length, mean azimuth of burrow fill and inclination of fill laminae. The
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Figure 3 Example of location of landmarks. Location of landmarks (red points) on burrow fills pre-
served in cross section. Photo credit: Ricardo Néstor Melchor.

Full-size DOI: 10.7717/peerj.4787/fig-3

mean azimuth was measured using a compass and considering the burrow fill boundary
and dominant plunge of laminated fill. When changes of dip direction or inclination were
observed in a single burrow fill they were recorded separately. Burrow diameter (especially
Dh) was measured orthogonal to the main axis of the structure. The horizontal diameter
was obtained from almost all types of exposures (except for longitudinal ones), whereas
the vertical diameter was mostly an apparent value, except for the rare transverse sections,
where it can be considered the true vertical diameter. At each location, GPS coordinates
were recorded; the burrow fills were photographed and sketched.

The burrow fills exposed in transverse section (n= 24) were used for a 2-D geometric
morphometric analysis. From field photographs, the outline of the burrow boundary
was sketched in Corel DrawTM. These images were used to build a file with the TPSutil
software. Burrow cross section outlines were oriented with respect to the top and bottom
of the hosting bed and treated as symmetrical outlines. For each image a total of 16 type II
landmarks (Slice et al., 2008) were digitised using the TPSdig2 software- Landmark 1 and 9
were positioned in the intersection of the burrow outline and the maximum vertical axis,
whereas landmarks 5 and 13 resulted from the intersection of the maximum horizontal
axis with the burrow outline. The remaining landmars were arranged with an equidistant
pattern on the burrow outline (Fig. 3 and Article S2). Landmarks were aligned using the
Procrustes superposition method (MacLeod, 2009) and the principal component analyses
(PCA) using MorphoJ software. Results are presented by eigenvalue diagrams and PC
scores, along with transformation grids.
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From scaled sketches of transverse sections of burrow fills, the cross-sectional area of
the burrow was estimated using ImageJ software. This cross-sectional area was used to
estimate the body mass of the producer using the allometric relations ofWu et al. (2015).

At each locality, a detailed sedimentary log was measured and samples of host rock and
burrow fill were collected for petrographic analysis. Also, a selected locations a detailed
sedimentologic log of the burrow fill was measured. Mammal bones found in situ within
burrow fills were recorded and collected for preparation and taxonomic identification.
Fossil bones found outside burrows were not recorded or collected. Fossil remains from La
Pampa province collected during this study are housed at the Paleontological Collection
of the Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa
Rosa city, La Pampa, Argentina, under the acronym GHUNLPam. Fossil material collected
in burrows from Laguna La Paraguaya locality (Buenos Aires province) are housed at the
Museo Histórico Regional de Guaminí ‘‘Coronel Marcelino E. Freyre’’ under the acronym
MHG-P. Field work was approved by the Dirección Provincial de Museos y Preservación
Patrimonial, under the Project ‘‘Vertebrados del Mioceno tardío-Plioceno en el área de las
lagunas encadenadas del oeste de la provincia de Buenos Aires. Aportes a la bioestratigrafía
del Cenozoico tardío de la Región Pampeana’’, permit nr. 2015-3-P-156-2.

Geological setting
The Cerro Azul Formation outcrops are located in the north-western, central, and eastern
part of La Pampa province and adjacent western Buenos Aires province, Argentina
(Linares, Llambías & Latorre, 1980; Folguera & Zárate, 2009; Visconti et al., 2010). The unit
is characterized by a monotonous succession of loess containing moderately developed
paleosols (Fig. 4) that has been assigned to the late Miocene (Huayquerian Land Mammal
age) essentially on the basis of its mammal remains (Montalvo & Casadío, 1988; Verzi,
Montalvo & Vucetich, 1999; Verzi, Montalvo & Tiranti, 2003). In particular, the formation
is considered as representing the interval between 10 and 5.7 Ma (Cione et al., 2000;
Verzi, Montalvo & Deschamps, 2008). The maximum exposed thickness in outcrop is 54
m, although the unit reaches about 180 m in the subsurface (Visconti et al., 2010). The
formation is essentially composed of structureless, light brown (5YR 6/4), pale reddish
brown (10R 5/4) or grayish orange pink (5YR 7/2), sandy siltstones and fine-grained
sandstones, showing moderate selection and common carbonate cementation.

RESULTS
Sedimentology of the burrow—bearing sections
Macroscopic features of the studied sections are very similar to those of the classical
localities of the Cerro Azul Formation outcrops (e.g., Visconti et al., 2010; Genise et al.,
2013; Cardonatto et al., 2016), especially those of the Salinas Grandes de Hidalgo and
Laguna La Paraguaya. Paleosol profiles are typically composed of two horizons (Fig. 4).
The upper horizon is a clayey siltstone that is distinguished by the presence of subangular
blocky, granular or prismatic peds and a darker color (5 YR 6/4) than the underlying
horizon. Carbonates are rare except for the local occurrence of calcareous rhizoliths. This
upper horizon can be compared with a Bt horizon and its thickness averages 0.60 m (range
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= 0.35–1.00 m, n= 5), which is very close to the average for the formation (Cardonatto et
al., 2016).

The lower horizon is characterized by lighter colored (5 YR 7/2), siltstone to fine-
grained sandstone with pervasive carbonate cementation, both in the form of nodules and
rhizoliths. Rhizoliths are small to medium sized and commonly 1–30 mm in diameter. The
lower horizon can be up to more than 5 m thick and contain relicts of primary sedimentary
structures, like tangential cross-bedding or horizontal bedding, as seen in the Salinas
Grandes de Hidalgo section (Fig. 4). Mudstone intraclasts are common throughout. The
remains of primary sedimentary structures and carbonate cementation suggest comparison
with a Bk or Bk/C horizon. The trace fossils described in this paper occur in both horizons.

The section at Laguna Chillhué also contains similar paleosols (Fig. 4) and differs from
the other localities by the presence of a 2 m thick, dark-red, laminated mudstone interval
in the lower part of the section (Montalvo et al., 1995). The presence of a mudstone interval
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in the lower section of the Cerro Azul Formation has been questioned by Lorenzo, Mehl
& Zárate (2013), who supposed a younger age for this mudstone interval on the basis of
geomorphological inferences. However, at this location the laminated mudstone interval
is overlain, through a normal sedimentary contact, by lithologies typical of the Cerro
Azul Formation containing mammal remaims of Huayquerian (late Miocene) age, with
no evidence of reworking. Vertebrate burrow fills were not observed in the laminated
mudstone interval.

Description of large burrow fills
A total of 115 fossil burrows were measured from three localities: 53 from Salinas Grandes
de Hidalgo, 59 from Laguna La Paraguaya, and three from Laguna Chillhué (see Table S1).
The studied burrow fills are distinguished on the basis of the presence of a thinly laminated
siltstone to mudstone interval that contrasts with the structureless host rock. When the
upper part of the fill is massive and similar in grain size to the host rock, the upper burrow
boundary is indistinct. Burrow fills exhibit an induration, composition and cementation
similar to the hosting rocks, suggesting that they are too of late Miocene age. At Laguna
La Paraguaya locality, the preferential carbonate cementation of the burrow fills resulted
in 3-D exposures (Fig. 5A). At this locality the density of fossil burrows is locally high and
may be difficult to find unburrowed intervals. Cross-cutting relationships between two or
more burrows are common (Figs. 5B, 5C).

Size and plan view pattern
Observed horizontal diameter (Dh) ranges from 0.15 to 1.50m ( n= 112) and the frequency
distribution suggests a roughly normal distribution where three subpopulations can be
distinguished (Fig. 6). The small subpopulation has a Dh from 0.15 to 0.34 m (8 %),
the intermediate subpopulation has a Dh from 0.39 to 0.98 m (84 %), and the large
subpopulation exhibits a Dh from 1.05 to 1.50 m (8 %).

In plan view exposure, which is found only at SG and LLP localities (n= 78), a number
of morphologies can be distinguished (Fig. 7). (1) Themore common are straight to slightly
curved burrows (89 % of cases), which exhibits a Dh= 0.15–1.15 m, showing a uniform
inclination of internal laminae (ranging from≈ 0◦ to 27◦), the maximum height difference
between the proximal and distal portion of a burrow is 0.6 m, and the maximum preserved
length is 5.18 m (Figs. 7A, 7B). Some burrow fills in this category display a decrease in
inclination of internal laminae toward more distal positions (i.e., from 27◦ to 8◦). (2) A
sinuous burrow that displays two opposite curves in plan view was recorded in 5% of
the cases (Figs. 7C, 7D). The horizontal diameter of sinuous burrow ranges from 0.42 to
0.80 m, dip of internal laminae is subhorizontal to slightly inclined (up to 8◦), and the
maximum observed length is 8 m. (3) The third plan view pattern is a C-shaped curve
observed in 6% of the burrows, with an horizontal diameter ranging from 0.44 to 0.72 m
(Figs. 7E 7F), which commonly appears as a ramp with a height difference of up to 0.55 m,
the inclination of internal laminae can be uniform (from 3◦to 12◦) or show a shallowing
toward the distal position (from 14◦ to subhorizontal).

In a few cases, the distal portion of burrow showed a lateral expansion of up to 23%
of the Dh, commonly having a subhorizontal lamination (Figs. 7G, 7H). Other burrow
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Figure 5 Abundance and cross-cutting relationships of burrows, from LLP locality. (A) General view
of the outcrop showing several burrows (yellow arrows). (B–C) Field view and diagram of cross-cutting
relationships between different fossil burrows (distinguished in C with different shades of gray). Photo
and image credit: Ricardo Néstor Melchor.

Full-size DOI: 10.7717/peerj.4787/fig-5

Cardonatto and Melchor (2018), PeerJ, DOI 10.7717/peerj.4787 9/36

https://peerj.com
https://doi.org/10.7717/peerj.4787/fig-5
http://dx.doi.org/10.7717/peerj.4787


horizontal diameter (cm)

fr
e
c
u
e
n
c
y

0

1

2

3

4

5

6

7

8

15 20 25 30 35 40 5045 6055 65 70 75 80 85 90 95 100 105110 115 120125 130150

small

subpopulation

large

subpopulation

(n= 9)

small

subpopulation

(n= 9)

intermediate subpopulation

(n= 94)

Figure 6 Histogram of horizontal diameter.Histogram showing the frequency distribution of horizon-
tal diameter (Dh) for the studied fossil burrows. Three subpopulations can be distinguished. Image credit:
María Cristina Cardonatto.

Full-size DOI: 10.7717/peerj.4787/fig-6

fills exhibit a rounded end with no enlargement that can be accompanied by an upward
bending of mudstone laminae against the walls of the burrow.

Cross-sectional shape and body mass
The analysis of the well defined cross-sectional shape of burrows (n= 24 from all localities)
suggest a distinction between elliptical (with the major axis subhorizontal) and subcircular
cross-sections. Elliptical cross-sections are more common (n= 18) and the corresponding
Dh ranges from 0.39 to 1.50 m (belonging to the intermediate and large subpopulations,
Fig. 6), with an averageDv/Dh ratio of 0.55. The burrowswith elliptical cross-section include
a few cases (n= 4) with a flat bottom and convex top. The subcircular cross-sectional shape
(n= 6) is represented in the intermediate subpopulation with a Dh ranging from 0.39 to
0.56 m, and an average Dv/Dh ratio of 0.88.

Morphometric analyses suggest that 90.13 % of the variation is explained by the first
two principal components (Fig. 8B), and deformation grids range from elliptical (score =
−0.12) to subcircular (score = 0.17) (Fig. 8A).

Body mass estimates of the producers of the burrow on the basis of the cross-sectional
area (using the method by Wu et al., 2015) suggest that there are two ranges (Table S1).
Most of the estimates (n= 18) belongs to the intermediate subpopulation with a range
from 37 to 439 kg, whereas the remaining estimates comes from the large subpopulation
(n= 7) with a range 708 to 1,623 kg. Burrows with subcircular cross-section from the
intermediate subpopulation, are linked with a producer having body mass from 92.84 to
186.0 kg.
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Figure 7 Burrowmorphology in plan view. (A–B) Field photograph and diagram of slightly curved bur-
row. (C–D) Field photograph and diagram of sinuous burrow. (E–F) Field photograph and diagram of
‘‘C’’ shaped burrow. (G–H) Field photograph and diagram of burrow with slightly enlarged and rounded
end. Curved lines in the diagrams represent weathered laminae. Photo credit: Ricardo Néstor Melchor.
Image credit: María Cristina Cardonatto.

Full-size DOI: 10.7717/peerj.4787/fig-7
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Figure 8 Results of geometric morphometric analysis of fossil burrows preserved in cross section. (A)
Plot of principal components 1 and 2, distinguishing by study locality, and deformation grids for elliptical
(PC1 score−0.12) and subcircular (PC1 score 0.17) shapes. (B) Histogram of variance of principal com-
ponents. Image credit: María Cristina Cardonatto.

Full-size DOI: 10.7717/peerj.4787/fig-8

Orientation and inclination
Readings of plunge azimuths of burrow fills from all localities are variable but most values
are located in the northeast to southeast quadrants (i.e., betweenN20◦ andN140◦) (Figs. 9A,
9C). The average dip angle of all measured burrows with respect to the paleohorizontal
is 7.25◦and ranges from nearly 0 to 27◦ (Fig. 9B). Most orientation data come from the
intermediate subpopulation (Dh = 0.39–0.98 m) and especially from LLP locality.
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Figure 9 Orientation of fossil burrows compared with modern data from dasypodid burrows. (A)
Rose diagram showing the dip azimuth of fossil burrows. (B) Equal area projection of dip azimuth and
dip angle of fossil burrows. (C) Entrance orientation of fossil burrows, assuming that it is located at 180◦

of measured dip azimuth. The data in A–C is from SG and LLP localities, those from the remaining local-
ity are preserved only in cross-section. (D) Entrance orientation of several species of dasypodid burrows
from semiarid settings of northern-central Argentina build from data by Crespo (1944). (E) Entrance ori-
entation of Dasypus hibridus burrows from a grassland setting in Uruguay build from data by González,
Soutullo & Altuna (2001). (F) Entrance orientation of Chaetophractus villosus burrows from cultivated land
in Buenos Aires province, Argentina build from data by Abba, Udrizar & Vizcaíno (2005). Image credit:
Ricardo Néstor Melchor.

Full-size DOI: 10.7717/peerj.4787/fig-9

Composition of burrow fills
The vertebrate burrows are easily spotted in the field because of the distinctive laminated
structure of the infilling sediments that contrasts with the structureless host rock. The
filling is composed of an alternation of laminated claystone and siltstone with massive
fine-grained sandstone and siltstone containing floating claystone intraclasts. Laminated
intervals are a few millimeters to about 50 mm thick, whereas massive intervals tend to
be thicker. Most of the burrow fills display a laminated interval in the lowermost part of
the fill, with the upper part massive, especially in the Salinas Grandes de Hidalgo locality
(Figs. 10A–10C). A few burrows display a poorly defined lamination to massive structure
throughout (Fig. 10D). Claystone and siltstone laminae at the bottom of the structure
typically deflect upwards against the burrow wall, which is a good criterion to distinguish
burrow fills that are mostly exhumed by erosion. Laminae tend to be horizontal but
successive laminated packages resting at low angles were also identified. Individual laminae
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Figure 10 Features of fossil burrow fills. (A–B) Detailed sedimentary logs of the fill of selected burrows
(see Table S1 for information on these burrow fills). References as for Fig. 4. (C) Cross-section of lami-
nated to massive burrow fill # 648 from SG, represented in (B). Elliptical outline of fill indicated by yellow
arrows, black arrow point to subvertical rhizolith cutting the laminated fill. (D) Cross-section of burrow
fill # 714 from LLP. Subcircular outline of poorly laminated to massive burrow fill indicated by yellow ar-
rows. (E) Pseudomeniscate structure in burrow fill # 704 from LLP seen in plan view. Yellow arrows point
the outline of the burrow and black arrows to individual pseudomenisci. (F) Detail of laminated burrow
fill (# 632 from SG) showing direct grading in siltstone to claystone laminae (yellow arrows), synsedimen-
tary fault (white arrows) and onlap of clay laminae on burrow wall (black arrow). Image credit: Ricardo
Néstor Melchor.

Full-size DOI: 10.7717/peerj.4787/fig-10
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are normally graded (typically siltstone grading to claystone), and locally disrupted giving a
brecciated aspect. Both synsedimentary faulting and deformation were identified (Fig. 10F).
A pseudomeniscate structure was identified in two cases (one from Salinas Grandes de
Hidalgo and the other from Laguna La Paraguaya). This structure is composed of massive
siltstone or fine-grained sandstone arranged in adjacent crescent-shaped bodies with the
convex margin pointing downslope that span the full width of the fill (Fig. 10E). Horizontal
width of individual pseudomeniscate bodies taken parallel to the burrow axis is 120 mm.

Associated ichnofossils
Only the ichnofossils found within or very close to the burrow fills are considered. We
found within the fills abundant rhizoliths and rare smaller vertebrate burrows, vertebrate
footprints and ?Rosellichnus isp. In the paleosol adjacent to the fills we found Taenidium
barretti, Attaichnus kuenzelli and Coprinisphaera isp.

Calcareous rhizoliths, including rhizocretions and root casts, are abundant and
were recorded in all studied localities. Rhizoliths are arranged in vertical, oblique and
subhorizontal position (Fig. 10C). Rhizoliths are submillimeter to 30 mm thick and the
maximum preserved length is 500 mm. Rhizoliths occurring inside burrow fills are similar
in shape and cementation to those of the hosting rock.

A single small burrow (Fig. 11A) that cuts the laminated interval of a larger vertebrate
burrow fill was identified at Salinas Grandes de Hidalgo (# 638). The 43 mm in diameter
structure displays a subcircular outline and a poorly laminated siltstone fill.

A partially eroded burrow fill from Laguna La Paraguaya (# 708) exposed an internal
bedding plane of the filling showing closely spaced elliptical depressions with a noticeable
marginal rim (Fig. 11C). These are tentatively interpreted as footprints of a quadrupedal
animal composing a 316 mm wide trackway. If this is a trackway a pace angulation of 112◦

and a stride length of 600 mm can be inferred. Measurements on individual footprints
indicate that average footprint length is 144 mm, average footprint width is 93 mm, and
the marginal rim is of uniform thickness and about 50 mm wide.

A group of five subcircular rings in the upper part of a burrow fill (# 659A from SG) is
tentatively identified as a cluster of bee cells and compared with the ichnogenus Rosellichnus
(Fig. 11D). The presence of the ichnogenus at this locality, although at other section, was
already documented by Cardonatto et al. (2016).

Adjacent to the burrow fills at Salinas Grandes de Hidalgo, several specimens of
Attaichnus kuenzelii were identified, in some cases very close, but no cross-cutting
relationship were seen. A few specimens of Taenidium barretti also occur at this locality, in
the form of subcylindrical burrows, 12 mmwide and 80 mm long with an average meniscus
thickness of 2.2 mm. At Laguna La Paraguaya we also found two specimens of cemented
and compact spherical chambers (diameter 18.7–23.0 mm) with a large emergence hole
(10–11 mm) assigned to Coprinisphaera isp. (Fig. 11B).

Bone remains found within burrow fills
Mammal bones within the burrow fills are scarce (only 1% of burrows contained fossil
remains) and usually appear disarticulated and poorly preserved, in some cases with
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Figure 11 Ichnofossils associated with burrow fills. (A) Small burrow fill (black arrows) cutting the
laminated fill of a larger mammal burrow from SG locality. (B) Coprinisphaera isp. from LLP locality. (C)
Tetrapod footprints on the top of laminated fill of a burrow from LLP locality. Numbers refers to individ-
ual footprints. (D) ?Rosellichnus isp. (arrowed) inside a burrow fill from SG. Photo credit: Ricardo Néstor
Melchor.

Full-size DOI: 10.7717/peerj.4787/fig-11

signs of abrasion (Fig. 12A). The fossil remains from the SG locality are Proscelidodon
sp. and Glyptodontidae indet., whereas the rest of the fossil material was found at LLP
locality, including: Paedotherium minor (two specimens), Doellotatus sp., Eosclerocalyptus
sp., Mesotheriinae indet., Gyptodontidae indet. (three specimens), and undeterminate
mammals (two specimens). For details about the taxonomy and illustrations of mammal
remains, see Article S3 and Fig. S1. The only articulated remains are glyptodont osteoderms
found at Laguna La Paraguaya (# 702) that are assigned to Eosclerocalyptus sp. (Fig. 12B),
and remains of a carapace with several articulated osteoderms from the same locality (# 670)
assigned to Glyptodontidae indet. Proscelidodon sp. remains (including a hemimandible
with teeth and postcranial elements) appeared disarticulated but associated within a single
burrow fill. The fossil remains display different degree of weathering and corrosion, as well
as biostratinomic fractures.
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Figure 12 Bone remains inside burrow fills. (A) Close-up of isolated, weathered and fragmentary
glyptodontid osteoderms from a vertical section of a burrow fill from SG locality. The burrow boundary
is not shown in the photograph. (B) Partly articulated osteoderms of Eosclerocalyptus sp. found inside a
burrow fill from LLP locality. Photo credit: Ricardo Néstor Melchor.

Full-size DOI: 10.7717/peerj.4787/fig-12

DISCUSSION
Producers
The studied fossil burrows are unbranched and display a significant variation in the
horizontal diameter, which ranges from 0.15 m to 1.5 m (Fig. 6). The simple, ramp type
morphology of the studied burrows suggests that the animals foraged aboveground (e.g.,
Reichman & Smith, 1990). In order to infer the likely producers of the fossil burrows there
are several constraints that need to be considered: (1) the faunal remains found inside the
burrow fills; (2) the fossorial mammals that were recorded in the Cerro Azul Formation,
especially those from the studied localities; (3) the size of burrows, as expressed by the
Dh; and (4) the overall architecture and cross-section of burrows (including the Dv/Dh
ratio) and the extrapolated body mass of its digger. The surface ornamentation of burrows
is commonly a very useful clue to the producer (e.g., Seilacher, 2007); however, it is not
preserved in the studied cases.

Faunal remains found in burrow fillings
In general, bone remains found inside a burrow can be considered as belonging to its
producer or occupant only if they are articulated, disarticulated but still closely associated,
nearly complete, are commonly found in a terminal portion and fit the size (cross-sectional
diameter) of the burrow (e.g., Smith, 1987; Groenewald, Welman & MacEachern, 2001;
Damiani et al., 2003). The remains found inside the studied burrows do not fulfill any
of these criteria. In most cases, these bone remains have been passively introduced and
it is uncertain if they belong to the producers. The remains are essentially fragmentary,
disarticulated, with evidence for abrasion and weathering (Fig. 12A, Fig. S1); suggesting
that they spent some time at the surface and then were introduced into the burrows by
currents along with other sedimentary particles. The fragmentary and disarticulated state of
Doellotatus sp. and one of the specimens of Paedotherium minor and the considerably small
size of the animals (body mass about 1–2 kg, Table 1) in comparison with the containing
burrows; further suggest that these remains were introduced by currents. In the case of
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Table 1 Bodymass estimate of producers. Relationship between cross-sections and body mass of the
putative producers, estimated body mass according toWu et al. (2015). See estimate of cross-sectional area
and body mass for every burrow in Table S1.

Range of
burrow
Dh (m)

Estimaded
bodymass
(kg)

Fossil remains
inside burrow
fill

Potential
burrow
producer

Bodymass of potential producer
(kg)

0.15–0.34 1–13 Paedotherium
minor

Paedotherium 1.86 (Elissamburu, 2004)

Doellotatus Less than 1 (Vizcaíno & Fariña,
1999)

Chasicotatus Less than 1 (Scillato-Yané, Krm-
potic & Esteban, 2010)

Proeuphractus 2–3 (Perea & Scillato-Yané, 1995)
Chorobates 1–10 (Vizcaíno & Fariña, 1999)
Lagostomus 1–10 (Vizcaíno & Fariña, 1999)

0.39–0.94 37–439 Mesotheriinae
indet.

Mesotheriinae 20.88–60.13 (Croft, Flynn & Wyss,
2004)

Eosclerocalyptus
sp.

Eosclerocalyptus More than 100 (Vizcaíno & Far-
iña, 1999)

Gliptodontidae
indet.

Coscinocercus More than 100 (Vizcaíno & Far-
iña, 1999)

Gliptodontidae
indet.

Aspidocalyptus More than 100 (Vizcaíno & Far-
iña, 1999)

Macrochorobates 10–100 (Vizcaíno & Fariña, 1999)
Macroeuphractus 10–100 (Vizcaíno & Fariña, 1999)

Proscelidodon
sp.

Proscelidodon 581.8 (De Esteban-Trivigno,
Mendoza & De Renzi, 2008); 850
(Bargo et al., 2000); 1,057 (Fariña,
Vizcaíno & Bargo, 1998). Body
mass of S. leptocephalum

Paedotherium
minor
Doellotatus sp.

1.05–1.5 708–1,623 Gliptodontidae
indet.

Glyptodontidae More than 100 (Vizcaíno & Far-
iña, 1999)

Proscelidodon 581.8 (De Esteban-Trivigno,
Mendoza & De Renzi, 2008); 850
(Bargo et al., 2000); 1,057 (Fariña,
Vizcaíno & Bargo, 1998). Body
mass of S. leptocephalum.

Notes.
Dh, horizontal diameter.

Proscelidodon sp., the bones are disarticulated but associated, which suggest that they can
belong to a single specimen, and the partial horizontal diameter of the burrow match the
size of this ground sloth. The only articulated remains are fragments of the dorsal carapace
of Glyptodontidae that occur in burrows large enough to hug these animals (Dh = 0.78 to
1.50 m) (Table 1). In consequence, the unique remains that can belong to the producer of
the burrows are Proscelidodon sp. and those of Glyptodontidae.
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Fossorial mammals of the Cerro Azul Formation and size of burrows
The mammals with fossorial habits recorded in the Cerro Azul Formation include
xenarthrans, notoungulates and rodents (e.g., Goin, Montalvo & Visconti, 2000; Cerdeño
& Montalvo, 2001; Urrutia, Montalvo & Scilato-Yané, 2008). Among the Xenarthra, the
Glyptodontidae, Dasypodidae andMylodontidae display fossorial adaptations. The same is
true for Mesotheridae and Hegetotheriidae (Notoungulata); and Caviidae, Octodontidae,
and Chinchillidae (Rodentia). Below we discuss the potential producers for each size class
of the burrows (Table 1) as expressed by the horizontal diameter and cross-sectional area
of the burrows.

For the small subpopulation (Dh = 0.15–0.34 m, 8% of cases), with a body mass
ranging from 1 to 13 kg, the likely candidates are the notoungulate Paedotherium minor,
the dasypodids Doellotatus, Chorobates, Proeuphractus, and Chasicotatus; and the rodent
Lagostomus. Paedotherium (Hegetotheriidae) is amedium-sized rodent-like ungulate native
to South America. This taxon is very common in the Cerro Azul Formation, both in La
Pampa and Buenos Aires provinces (e.g.,Montalvo, Tomassini & Sostillo, 2016). Articulated
remains of this genus have been found within Pliocene burrow casts (about 0.16–0.22 m
wide) from the Atlantic coast of Buenos Aires province (e.g., Genise, 1989; Scognamillo,
1993; Elissamburu, Dondas & De Santis, 2011) and a morphofunctional analysis of its
postcranial skeleton suggest a digging capacity (Elissamburu, 2004).

The Dasypodidae show a neotropical geographic distribution and were important
components of the late Miocene-Pliocene South American fauna (Scillato-Yané, 1982;
Ortiz Jaureguizar, 1998). Dasypodids exhibit fossorial habits and were abundant during
the late Miocene in the Pampean region of Argentina, suggesting preference for open
environments and well drained soils (Scillato-Yané et al., 2013). Most dasypodids recorded
in the Cerro Azul Formation were small- to medium-sized, with body mass in the range
1–10 kg forDoellotatus,Chasicotatus, Proeuphractus andChorobates (Table 1). In particular,
the holotype of Chasicotatus ameghinoi is a nearly complete carapace about 150 mm wide
(Scillato-Yané, Krmpotic & Esteban, 2010), which match the lower size range of the small
subpopulation. Modern dasypodid burrows are usually simple ramps lacking significant
enlargements (e.g., González, Soutullo & Altuna, 2001; Abba, Udrizar & Vizcaíno, 2005),
which is similar to the architecture of the fossil burrows.

In the same localities of Paedotherium-bearing burrows from the Atlantic coast of the
Buenos Aires province, there are also burrows containing articulated remains of Lagostomus
that partially overlap in diameter with those containing Paedotherium remains (Genise,
1989; Elissamburu, Dondas & De Santis, 2011). The extant Lagostomus maximus (plains
vizcacha) is well known for its digging adaptations and for living in communal burrow
systems (e.g., Jackson, Branch & Villarreal, 1996). Plains vizcacha burrow systems show
an average entrance horizontal diameter of 0.26 m and a range of 0.17–0.37 m (Llanos &
Crespo, 1952), which matches the range of the small subpopulation. However, extant L.
maximus burrow systems have several entrance ramps that typically converge into a central
chamber or a much more complex architecture (e.g., Llanos & Crespo, 1952; Rafuse et al.,
in press), which contrast with the simple ramp type morphology of the fossil burrows.
The 43 mm in diameter subcircular burrow identified in the fill of a larger burrow at

Cardonatto and Melchor (2018), PeerJ, DOI 10.7717/peerj.4787 19/36

https://peerj.com
http://dx.doi.org/10.7717/peerj.4787


Salinas Grandes de Hidalgo (# 638) is probably related to a caviomorph rodent (Caviidae
or Octodontidae).

For the dominant intermediate subpopulation (Dh = 0.39–0.94 m, 83% of measured
burrows), with an estimated body mass ranging from 37 to 438 kg, the likely candidates
are the Mesotheriinae (Mesotheriidae, Notoungulata); Eosclerocalyptus, Coscinocercus,
and Aspidocalyptus (Xenarthra, Glyptodontidae); Macrochorobates and Macroeuphractus
(Xenarthra, Dasypodidae); and Proscelidodon (Xenarthra, Mylodontidae). The fossil
remains found in this size range that are likely candidates are those of Glyptodontidae
and Proscelidodon sp. (Table 1). There are two Mesotheriinae species recognized for
the late Miocene of central Argentina: Pseudotypotherium subinsigne and Typotheriopsis
silveyrai (Cerdeño & Montalvo, 2001). These species exhibited a small to medium size
(20.88 to 60.13 kg after Croft, Flynn & Wyss, 2004) (Table 1). The Mesotheriidae shows
modifications in the appendicular skeleton that suggest a scratch-digging habit and fossorial
adaptations and are envisaged as having used its hypsodont teeth to cut roots and break
the substrate, to aid digging with claws (Shockey, Croft & Anaya, 2007).

Kraglievich (1934) andQuintana (1992) suggested that glyptodonts were not functionally
suited for digging. However, a geometric morphometric study of the limb bones of five
glyptodont species of Miocene and Pleistocene age and comparison with extant armadillos
led Vizcaíno et al. (2011) to conclude that were generalized diggers, as modern Dasypodini
and Euphractini. Generalized diggers are species that dig short burrows for protection
or in search of food and that feed on the surface or just below it by making ‘food
probes’ (Abba, Udrizar & Vizcaíno, 2005). In order to asses if glyptodonts were likely
producers of the fossil burrows we compared the width of the dorsal carapace and the
dorsal carapace height / width ratio with comparable values of the fossil burrows. Dorsal
carapace width of Miocene-Pliocene glyptodonts range between 0.40 and 0.77 m (Perea,
2005; Vizcaíno et al., 2011; Zurita et al., 2011), well in the range of horizontal diameter
of the fossil burrows. Information on the ratio between carapace height and width for
Miocene-Pliocene glyptodonts is incomplete, and similar data for Pleistocene South
American glyptodonts (Duarte, 1997; Zurita et al., 2010) average 0.87 (range = 0.78–0.91;
n= 4). In our case study, glyptodonts are considered good candidates for constructing the
subcircular burrows of the intermediate subpopulation, which are 0.39–0.56 m wide and
display an average Dv/Dh ratio of 0.88. Regarding the large dasypodids Macrochorobates
and Macroeuphractus, the available body mass estimates suggest a range of 10 to 100 kg
(Vizcaíno & Fariña, 1999) and little is known about their paleoecology.

Among the mylodontids, the Scelidotherinae, endemic to South America (McDonald,
1987; Taglioretti et al., 2014); are only represented for the Huayquerian—Chapadmalian
SALMAs (late Miocene to early Pliocene) by Proscelidodon, a ground sloth related to
open environments with grasslands, under temperate and warm climate (Miño Boilini
et al., 2011; Pujos et al., 2012; McDonald & Perea, 2002). A digging habit was inferred for
Proscelidodon after a morphofunctional study of a Montehermosian (latest Miocene-early
Pliocene) forelimb (Aramayo, 1988). Body mass estimates are only available for Pleistocene
scelidotherines (Table 1) and range from 584 to 1,057 kg (De Esteban-Trivigno, Mendoza
& De Renzi, 2008; Bargo et al., 2000; Fariña, Vizcaíno & Bargo, 1998). These would be
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maximum estimates for late Miocene scelidotherines because the primitive Mylodontidae
were smaller and there seems to be a trend toward progressively larger sizes in the
Pleistocene (e.g., McDonald & Perea, 2002). Large Pliocene-Pleistocene fossil burrows
near Mar del Plata city (Buenos Aires province) have been attributed to mylodonts on the
basis of the finding of bone remains inside the fill (Frenguelli, 1955) and using the surface
ornamentation of the burrows (Zárate et al., 1998; Dondas, Isla & Carballido, 2009).

For the large subpopulation, with a Dh ranging from 1.05 and 1.50 m (9% of cases) and
an extrapolated body mass of 700–1,600 kg, the more likely producer is Proscelidodon sp.
and, secondarily, the Glyptodontidae.

To summarize, the studied fossil burrows can be attributed to several producers,
according to their horizontal diameter. The more likely producers of the studied fossil
burrows are: (1) for the small subpopulation, the smaller dasypodids (Doellotatus,
Chasicotatus, Proeuphractus and Chorobates) on the basis of body mass, the fossorial habit
and architecture of modern dasypodid burrows and, secondarily, Paedotherium minor. (2)
For the intermediate and large subpopulations, the Glyptodontidae and Mylodontidae
(Proscelidodon sp.) are good candidates as these were the largest representatives of the
late Miocene burrowing fauna of the Cerro Azul Formation. The Glyptodontidae were
generalized diggers, like modern dasypodids, and exhibited a carapace fitting especially
the subcircular burrows. Proscelidodon sp. is also a likely candidate of the elliptical
and larger burrows. For the intermediate subpopulation, probably the large dasipodids
(Macrochorobates andMacroeuphractus) and Mesotheriinae should be considered.

Taphonomy of burrows
The horizontally laminated andmassive fill of the burrows suggest that the material entered
the excavation passively, that is after the burrow had been fully excavated, and without
any assistance by the digger. The infill also indicates that the burrows were abandoned and
received sediments in successive small pulses and large catastrophic events. Although we
cannot discard some secondary input of dust by wind, most of the filling of the burrows is
related to water transport as indicated by the well laminated and normal graded siltstone
to mudstone laminae (Figs. 10A–10C, 10F). Laminated intervals are linked to successive
pulses of sediment-laden water that eventually ponded in the terminal tracts of the
burrows. This is in agreement with the interpretation by Imbellone, Teruggi & Mormeneo
(1990) of similar Quaternary burrows and experimental results by Woodruff & Varricchio
(2011). Experiments by Woodruff & Varricchio (2011) indicate that well-laminated fills
were obtained by adding small amounts of sediment-water mixtures entering at a low angle
(5◦) into the burrow. In contrast, en masse pouring of the sediment-water mixture at high
angle (30◦) produced a massive and poorly sorted sediment fill, whereas en masse pouring
at a low angle (5◦) produced thicker graded beds (Woodruff & Varricchio, 2011). En masse
filling experiments also produced ‘‘arcuate structures’’ (Woodruff & Varricchio, 2011)
that are very similar to the pseudomeniscate structures described herein. Both features
are comparable to ‘‘arcuate surface ridges’’ produced in experimental debris flows that
reflect the pulsatory nature of experimental and natural debris flows (Major, 1997). The
experiments byWoodruff & Varricchio (2011) lend further support to the interpretation of
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themassive intervals as result of catastrophic input of large volume of unsorted sediment. As
the burrows are related to an essentially flat landscape and no fluvial channel deposits were
observed in any of the studied localities, the sediment pulses should be related with rainfall.
We speculate that one or more laminae may result from moderate to heavy precipitation
events. In contrast, massive intervals can be related to single heavy downpours producing
sheet flooding, which can generate hyperconcentrated flows (e.g., Smith & Lowe, 1991)
capable of transporting enough material to fill, at least, the terminal portion of a burrow in
a single event. High-energy sheet floods can also saturate burrow walls and produce roof
collapse.

Our studies also support the generalization that well laminated burrow fills will not
contain remains of the producer and that massive fills of the whole burrow or most of the
lower part have a greater chance of containing remains of the tetrapod that dug the burrow,
as proposed by Scognamillo (1993) and Groenewald, Welman & MacEachern (2001). For
the laminated burrow fills, the most likely scenario is that the burrow was vacated or, if the
animal died inside, it may result scavenged and/or weathered, which produces incomplete
and disarticulated remains. In the case of a massive fill, both live entombing (Scognamillo,
1993; Groenewald, Welman & MacEachern, 2001) and fast burial after death (Woodruff
& Varricchio, 2011) are required to produce a nearly articulated and complete skeleton.
Massive fills in the upper half of the burrow will not preserve remains of its producer.

The episodic nature of the filling processes is evidenced by the laminated fill and
further supported by the presence of footprints in the surface of some laminae and the
cluster of bee cells (?Rosellichnus isp.) found inside the fill. These trace fossils suggest that
partially filled burrows with a surface communication were explored or reoccupied by
other tetrapods and used by bees to nest. Alternatively, the bee cells may be constructed
after the complete filling of the burrow in the soil profile. Among the presumed producers
of burrows of intermediate size, the outline and size of the footprints match those of
Pleistocene glyptodonts but are quite different from those of ground sloths (compare
Aramayo et al., 2015). Disruption of laminae composing the fill of the burrows is explained
by drying and cracking of mud after a flood event, whereas synsedimentary faulting can be
related to trampling by tetrapods.

Attaichnus kuenzelli occur profusely in the SG locality, in some cases very close, but
never were cut by a large mammal burrow. These relationships suggest that the producers
of the burrows were apparently not foraging on A. kuenzelli, considered a nest chamber of
leaf-cutting ants (Genise et al., 2013).

Paleoecological and paleoenvironmental meaning
Detailed inferences about the paleoecological and paleoenvironmental meaning of the
studied large mammal burrows can be gained through sedimentological study of the
hosting rocks, analysis of orientation of fossil burrows and considering the associated trace
fossils. This information, along with the potential producers will help to understand the
reason for acquisition of burrowing habits in large late Miocene mammals.
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Sedimentology
Thick, monotonous, massive continental successions of siltstone showing moderate to
good sorting with associated paleosols, as those described for the Cerro Azul Formation,
are typical of loess deposits, whose dominantly eolian origin is well established (e.g.,
Johnson, 1989; Pye, 1995). The presence of pedogenic calcite is indicative of well-drained
soil profiles in sub-humid, semi-arid, and arid climates with low rainfall (less than 800
mm/yr) and high evapotranspiration (see review in Sheldon & Tabor, 2009). Previous
estimation of mean annual precipitation for the development of the paleosols of the Cerro
Azul Formation is 449 ±147 mm (Cardonatto et al., 2016). Paleosols showing a Bt horizon
and blocky or prismatic peds can be compared with mollisols (Cardonatto et al., 2016).
Some paleoenvironmental constraints can also be derived from the composition of the
mammal fauna, and the stable isotopic composition of enamel teeth. Vertebrate remains of
the Cerro Azul Formation, mainly notoungulates and rodents, suggest that these sediments
were deposited in open landscapes like steppes or herbaceous plains (Montalvo et al., 2008).
Carbon isotope composition from late Miocene herbivorous enamel teeth from Salinas
Grandes de Hidalgo and nearby localities indicates a dominance of C3 plants in lowland
areas (MacFadden, Cerling & Prado, 1996), which are favoured in climates with a cool
growing season (Ehleringer, Cerling & Helliker, 1997)

Orientation of burrows
Comparisonwith orientation data frommodernDasypodidae burrows can help to interpret
the orientation pattern of fossil burrows. As xenarthrans are imperfect homeotherms,
their body temperatures do change with the environment (e.g., McNab, 1980; McNab,
1985). It has been suggested that the burrow entrance orientation of armadillos avoid
prevailing winds and both uniform and preferential orientation has been documented
(e.g., McDonough & Loughry, 2008). The cases of no preferential orientation are related
to the invasive armadillo Dasypus novemcinctus from southern USA (Texas, Alabama,
Oklahoma) and Belize (Clark, 1951; Zimmerman, 1990; Platt, Rainwater & Brewer, 2004;
Sawyer et al., 2012). All these cases aremostly related to forested areas. Studies documenting
a preferred orientation of Dasypodidae burrows are from Argentina, Uruguay and Brazil,
involving open environments and several species (Crespo, 1944; Carter & Encarnaçao, 1983;
González, Soutullo & Altuna, 2001; Abba, Udrizar & Vizcaíno, 2005; Ceresoli & Fernandez-
Duque, 2012). The pioneer study by Crespo (1944) included three localities from western
Argentina, ranging from 27◦37′′S to 34◦13′′S with annual precipitation ranging from
less than 200 mm to 500 mm. The vegetation ranges from low bushes, to shrubland
and psammophilous grassland with sparse trees. These localities belong to the Monte
and Espinal biogeographic provinces (e.g., Roig, Roig-Juñent & Corbalán, 2009) and the
included armadillo species are: Chaetophractus vellerosus, C. villosus and Zaedyus pichiy.
A compilation of the entrance orientation data from the three localities of Crespo (1944)
suggests a dominant entrance orientation toward the west (Fig. 9D). This distribution is
remarkably similar to the fossil burrows if we assume that entrance orientation was at
180◦of dipping azimuth (Fig. 9C). Dominant surface wind patterns in northern Argentina
are humid and sometimes hot winds from the east and north (e.g., Barros et al., 2015),
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whereas cold winds are from the south. In consequence, the orientation pattern described
by Crespo (1944) from open environments of the semiarid region of Argentina can be
interpreted as preferential orientation of entrances avoiding dominant hot and cold winds.
Similar patterns of armadillo burrow entrance orientation avoiding prevailing winds were
documented by Carter & Encarnaçao (1983) in Minas Gerais, Brazil; González, Soutullo
& Altuna (2001) in Uruguay (Fig. 9E); Abba, Udrizar & Vizcaíno (2005) in Buenos Aires
province of Argentina (Fig. 9F); and Ceresoli & Fernandez-Duque (2012) in Formosa
province, northern Argentina. Alternative explanations for this preferential orientation are
that, as the armadillos seek food following an odour in the wind, they tend to approach a
site from downwind and dig in the lee side (Carter & Encarnaçao, 1983) and to maximize
sun exposure during cold winters (Ceresoli & Fernandez-Duque, 2012). In particular, the
most adequate example to evaluate the orientation of the fossil burrows is the data from
dasypodid burrows byCrespo (1944), which were collected in open semiarid settings similar
to those of the late Miocene of central Argentina. In consequence, it is possible to propose
that the late Miocene wind pattern of central Argentina was similar to the present one with
hot winds from the east and north and cold winds from the south.

Associated trace fossils
The trace fossil assemblage of the Cerro Azul Formation is of low diversity and abundance
and dominated by insect trace fossils (Celliforma, Rosellichnus, Fictovichnus, Rebuffoichnus
and Teisseirei), and was compared with the Celliforma ichnofacies (Cardonatto et al.,
2016). The Celliforma ichnofacies is typical of well-drained calcareous paleosols developed
under low vegetation coverage (Genise et al., 2010; Genise et al., 2016). The reduced size
of associated rhizoliths suggests that the vegetation was dominated by scrubs with minor
participation of herbaceous plants.

The local occurrence of cemented Coprinisphaera at LLP and additional occurrences of
fossil dung-beetle brood balls (Quirogaichnus coniunctus Laza, 2006) from the formation in
a nearby locality (Laza, 2006) is indicative of the presence of theCoprinisphaera ichnofacies,
suggesting herbaceous communities and wetter climatic conditions (Genise et al., 2016) for
the easternmost locations of the formation.

Burrowing habits in large late Miocene mammals
Mammal burrows are typically constructed as shelters from environmental extremes and
predators, and also for food storage, foraging and reproduction (e.g., Reichman & Smith,
1990; Kinlaw, 1999). From these common uses of burrows, protection from environmental
extremes and predators are more likely for the studied fossil burrows and no evidence
supporting the remaining functions is available. Top predators during deposition of
the Cerro Azul Formation are the Phorusrhacidae (Cenizo, Tambussi & Montalvo, 2012;
Vezzosi, 2012) that occupied the role of large carnivorans, as well as the Sparassodonta
(Goin, Montalvo & Visconti, 2000).

However, the main factor controlling the occurrence of large mammal burrows during
the late Miocene (Fig. 1) is herein related to environmental changes. It has been suggested
that different mammal groups acquired fossorial habits during the Cenozoic as a response
to the expansion of open, savanna-like environments under cold, dry and seasonal climates
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(Nevo, 1979;Nevo, 1995;Nevo, 2011). During the late Miocene (the Huayquerian SALMA),
southern South America experienced a global cooling as response to the increase in the
Antarctic ice sheet (Zachos et al., 2001) and the uplift of the Andes (e.g., Amidon et al.,
2017), which favored cold and seasonally dry climatic conditions. This regional framework
is confirmed by the inferences on the sedimentology, faunal remains and invertebrate
ichnology of the studied succession. This evidence suggests open environments, with well-
drained soils and low vegetation coverage, and a semiarid and seasonal climate. Considering
that the more likely candidates for the largest burrows are xenarthrans (Glyptodontidae
and Mylodontidae), which are imperfect homeotherms (e.g.,McNab, 1980;McNab, 1985),
the necessity and convenience for excavating an underground refuge is clear. In addition
to escape from predation, these animals used burrows to avoid extremely cold or warm
climatic conditions in order to conserve energy and water, and to breed because of the
particular physiology of xenarthrans (Vizcaíno et al., 2001).

CONCLUSIONS
Subcylindrical structures with a laminated fill occurring in a late Miocene loess-paleosol
sequence from central Argentina are interpreted as burrows of fossorial mammals. The
burrows occur associated with calcareous paleosols developed under a semiarid climate
in a flat landscape. A detailed analysis of more than one hundred structures permitted to
conclude that:
1. The more common geometry is a shallow ramp with a rounded end, lacking

bifurcations.
2. The ample variation of the horizontal diameter of the burrows, along with cross-

sectional shape and inferred body masses suggest that several producers were involved.
3. The smaller burrows (Dh = 0.15–0.34 m, 8% of cases, body mass ranging from 1

to 13 kg) were produced by small dasypodids and, secondarily, by the notoungulate
Paedotherium minor.

4. For the dominant burrows exhibiting an intermediate (Dh = 0.39–0.94 m, 83% of
measured burrows, producer body mass of 37 to 438 kg), and large horizontal diameter
(Dh = 1.05–1.50 m, 9 % of measured burrows, producer body mass of 700–1,600
kg), the Glyptodontidae and Mylodontidae (Proscelidodon sp.) are the best candidates.
The Glyptodontidae are related to the subcircular burrows of intermediate size and
Proscelidodon sp. would be the producer of the elliptical and largest burrows.

5. About 10% of the burrow fills contained fragmentary, disarticulated, abraded and
weathered bone remains that were introduced into the burrows by aqueous currents
and do not belong to the excavator of the burrow.

6. After abandonment, the burrows received sediments from the surface that progressively
filled the structure. The filling process was produced dominantly by several pulses of
sediment laden currents related to moderate rains (well laminated fill) and en masse
input of dense sediment-laden currents related to heavy rains producing sheet flooding
(massive fill). During filling, the abandoned burrows were visited or reoccupied by
other tetrapods and used by bees to nest,
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7. In general, it is not considered likely that well laminated burrow fills will contain
remains of the producer, whereas massive fills have a greater chance of containing
remains of the tetrapod that dug the burrow.

8. The main factor explaining the appearance of large mammal burrows in the late
Miocene are environmental changes, including the appearance of open environments
with low vegetation and semiarid and seasonal climate.
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