
1.  Introduction
Legacy sources of lead (Pb) contaminants in soils are underrecognized as a potential source of ongoing airborne 
Pb exposure to human populations. This is particularly critical to issues of environmental justice, as many urban 
and near-urban communities have received past soil-Pb contamination, and residences in these areas, particular 
rental units, may have poor landscape quality allowing soil Pb contamination to readily become resuspended as 
airborne dust during dry seasons. Focusing on current airborne emissions from facilities as the primary driver of 
airborne metal exposures underestimates the role of soil Pb. The mischaracterization of the role of legacy sources 
of metal toxicants improperly influences mitigation efforts because focusing on current sources alone fails to curb 
the 20th Century history of urban industrial Pb contamination of the soil.

One example of this overly narrow focus is found in a paper by Kodros and colleagues (Kodros et al., 2022). 
Kodros et  al.  (2022) acquired surface metals and PM2.5 monitoring measurements from the Environmental 
Protection Agency's Chemical Speciation Network (CSN) (Solomon et al., 2014) and Interagency Monitoring 
of Protected Visual Environments (IMPROVE) (Malm & Hand, 2007; Solomon et al., 2014). They observed 
that the ratio of the mean urban-to-nonurban Pb concentration in PM2.5 across the US is 4.3 (95th CI: 3.5–5.3) 
Furthermore, mean concentrations of atmospheric Pb in highly segregated counties are a factor of 5 (95th CI: 
3–8) higher than in well-integrated counties and a factor of 1.3 (95th CI: 1.0–1.7) higher than in moderately 
segregated counties. The observations in this paper are important and highlight the continued highly elevated 
atmospheric Pb exposure in racially segregated areas in the United States. But they mischaracterize the known 
science of Pb exposure sources in these areas and thus argue for policy avenues to mitigate environmental health 
disparities that don’t capture the full suite of Pb sources. We contend that atmospheric Pb concentrations and 
children's exposure in urban racially segregated areas are unnatural, and a portion originates primarily from the 
resuspension of legacy lead-contaminated soils; however, we do acknowledge the need to ban leaded avgas use in 
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small piston-engine planes because of its role in children's elevated blood Pb near general aviation airports where 
small aircraft use leaded gasoline (Zahran et al., 2023).

Urban soil Pb concentrations are typically highest in the inner cities and decrease with distance away from 
city centers in a bullseye pattern. Figure 1 illustrates the soil Pb bullseye in New Orleans (Mielke et al., 2019). 
Other cities such as Chicago (Watson et  al.,  2022), Indianapolis (Filippelli et  al.,  2005), Sydney (Laidlaw 
et al., 2014) and London (British Geological Survey, 2011), have the same Pb bullseye pattern. These inner-city 
soils have primarily been contaminated by past roadway Pb emissions from leaded gasoline (Mielke, Laidlaw, & 
Gonzales, 2011), the deterioration of exterior lead-based paints (Filippelli et al., 2020), and industrial emissions 
(Filippelli et al., 2020).

2.  Race, Soil Lead, and Blood Lead
Long-standing environmental and socioeconomic Pb exposure injustices have positioned Black populations at 
extreme risk of adverse health consequences. Expected lifespan provides an overview of a communities' health 
status. Between 1999 and 2020 premature death exposed Black Americans to a loss of over 80 million years of 
life (Caraballo et al., 2023). Another way of expressing the issue is that Black Americans suffered more than 
1.6 million excess deaths compared to their white counterparts (Caraballo et al., 2023). The disproportionate 
exposure to environmental Pb and environmental injustices within Black Americans and low-income communi-
ties have long been recognized (Lanphear et al., 1996; Leech et al., 2016; Sampson & Winter, 2016; Whitehead 
& Buchanan, 2019). Two studies were conducted in New Orleans to evaluate blood Pb, race, and income in the 
context of soil Pb. They illustrate the need for review and new directions to focus actions on urban soil and health 
(Laidlaw & Filippelli, 2008).

First, Pre-Katrina New Orleans (2005) soil Pb data collected between 1998 and 2000 is shown in Figure 1. The 
human geography of the high-Pb geochemical areas of the city considered race, income, and age in pre-Katrina 
New Orleans in the context of Pb in soils (Campanella & Mielke, 2008). In general, the population declined as 
soil Pb increased, except at soil Pb levels from 200–400 to 400–1,000 mg/kg, and then the population increased. 
High-Pb soil was disproportionately located in the inner city, home to New Orleans's largest African American 
population. Household income indicates that lower economic groups are at risk of higher soil Pb levels. High Pb 
exposures have numerous negative influences on the health and welfare of the inhabitants of the African Ameri-
can community (Egendorf, Mielke, et al., 2021).

A second, more detailed study of New Orleans soil Pb evaluated the spatiotemporal and racial characteristics 
of the city. The analysis was centered on matched soil Pb and blood Pb data from 2000–2005 and 2011–2016, 
or ∼15 years after the first survey (Mielke et al., 2019). Grounded with the community medians for soil Pb, 
children's blood Pb, racial composition, and household income, the hypothesis tested was whether African 

Figure 1.  The bullseye pattern of soil Pb in New Orleans appears in other traffic-congested cities having multiple Pb 
exposure sources that have accumulated in inner-city environments. Adopted and revised from the New Orleans mapping 
project (Mielke et al., 2022).
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Americans of New Orleans were disproportionately exposed to excessive environmental soil Pb and exhibited 
higher blood Pb levels over the course of two soil Pb and blood Pb surveys (Egendorf, Mielke, et al., 2021). The 
results indicated that in 2000–2005, the predominantly Black communities living in inner-city communities had 
9.3 times higher median soil Pb than predominantly White communities living in outlying areas of New Orleans. 
By 2011–2016, the predominantly Black community had 7.5 times higher median soil Pb than the predominantly 
White community living in outlying areas of New Orleans. In concrete numbers, in 2000–2005 the predominantly 
majority Black communities inhabited the inner-city areas where the median soil Pb was 410 mg/kg, whereas 
the predominantly majority White communities in the outlying areas exist, the median soil Pb was 44 mg/kg 
(Egendorf, Mielke, et al., 2021). By 2011–2016, the median soil Pb declined from 410 mg/kg to 187 mg/kg in 
the inner-city communities, and the soil Pb in the outlying areas declined from 44 mg/kg to 25 mg/kg (Egendorf, 
Mielke, et al., 2021). The declines in the Pb content of surface soil were surprising and probably a function of 
the curtailment of Pb additives in gasoline, plus an unidentified dynamic biochemical process operating in the 
surface soils.

Children's blood Pb results showed that in both the 2000–2005 and the 2011–2016 surveys, children living 
in Black communities presented with median blood Pb concentrations higher by a factor of ∼2 than children 
living in the predominantly White areas of New Orleans. The actual numbers show that the contrast is stark. In 
the 2000–2005 survey, the median blood Pb in the predominantly Black communities was 5.7 μg/dL while the 
median blood Pb in predominantly White communities was 3.07 μg/dL (Egendorf, Mielke, et al., 2021). The 
2011–2016 survey showed a concurrent reduction of children's blood Pb with the decline in soil Pb, and in the 
Black communities, the median blood Pb declined from 5.7 to 2.1 μg/dL while the median blood Pb of the chil-
dren living in the predominantly White community decreased from 3.0 μg/dL to 1.0 μg/dL.

Other studies note similar findings between soil Pb, race, and environmental injustices. For example, in Santa 
Ana, California, where the census tracts with median household income <USD $50,000, had five times higher 
soil Pb concentrations than high-income census tracts (Masri et al., 2020).

3.  Remobilized Urban Lead Dust From Soil
Dust from Pb-contaminated soil becomes remobilized during late summer and autumn when evapotranspira-
tion draws out soil moisture and dries them. The Pb dust-contaminated soil becomes a critical exposure source 
for children during the process. This has been demonstrated in Detroit, Birmingham, Chicago, and Pitts-
burgh using data from the USEPA IMPROVE network data (Laidlaw et al., 2012). The results show that the 
natural logs of atmospheric soil and Pb aerosols were associated in Pittsburgh from April 2004 to July 2005 
(R 2 = 0.31, p < 0.01), Detroit from November 2003 to July 2005 (R 2 = 0.49, p < 0.01), Chicago from November 
2003 to August 2005 (R 2 = 0.32, p < 0.01), and Birmingham from May 2004 to December 2006 (R 2 = 0.47, 
p < 0.01). Furthermore, Detroit Michigan (Zahran et al., 2013) used data from the USEPA IMPROVE database 
(IMPROVE, 2022a, 2022b) and showed that atmospheric soil and Pb exposure follow near-identical seasonal 
properties. Resuspended soil was an underlying source of atmospheric Pb. A 1% increase in the amount of resus-
pended soil resulted in a 0.39% increase in the concentration of Pb in the atmosphere (95% CI, 0.28%–0.50%). 
To derive atmospheric soil estimates, a mineral equation was used based on the soil elemental composition. Soil 
composition was derived by the quadratic sum of aluminum (Al), silica (Si), calcium (Ca), iron (Fe), and titanium 
(Ti) concentrations.

A recent example of the association between atmospheric Pb and soil dust in the PM2.5 fraction was observed in 
the analysis of data obtained from using the USEPA IMPROVE databases (IMPROVE, 2022a, 2022b). Figure 2 
shows the association for Indianapolis for 2018–2020 (R 2 = 0.041, p = 0.001181).

Based on these analyses, we argue that the emissions of Pb dust (and other metals) sourced from their deposition 
in soil are the dominant legacy source of currently elevated urban atmospheric Pb concentrations. Supporting 
this idea is isotopic research in London where remobilized soil Pb was a significant source of atmospheric Pb 
(Resongles et al., 2021). The phase-out of leaded gasoline reduced new additions of Pb to soil, and thus dust, 
and concurrently, blood Pb is decreasing (Mielke et al., 2019). Regulatory action that focuses only on current 
emissions will not reduce the bulk of exposures arising from Pb in soil, Pb-contaminated children's playgrounds, 
track-in of Pb-contaminated soil indoors, and remobilization of Pb-contaminated soil into the atmosphere. The 
essential soil Pb- human exposure linkage requires attention and remediation. The fundamental issue is to prevent 
Pb exposure by children in the first place.
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4.  Applying a Systems Approach to Address Systemic Injustices and Limit the Legacy 
of Lead
Egendorf, Groffman, et al. (2021) described the systemic interactions of humans and soil Pb at various scales in 
time and space. They discussed interventions for mitigating soil Pb exposure at each scale and provided examples 
of applied and participatory experiments to mitigate exposure at different scales currently being conducted in 
New York City, NY, USA. (Egendorf, Groffman, et al., 2021)” The intervention of Pb-contaminated soils has 
received attention from researchers in nations around the world (Laidlaw et al., 2017). Mapping soil Pb is an 
important first step, for example, Figure 1 (Mielke et al., 2022). While full city mapping of soil Pb and blood Pb 
provided a refined evaluation of Pb-contaminated soil and its influence on children's Pb exposure, the surveys are 
intensive, costly, and time-consuming. An alternative for demonstrating the soil Pb Bullseye pattern is through a 
relatively inexpensive project involving the collection and analysis of soil samples along a transect across a city 
from rural soil through the urban center to the rural soil on the other side of the city (Mielke et al., 1984).

Knowledge about the common bullseye of high Pb community soil reduces the size of the area needing remedia-
tion. There are a wide variety of methods available for soil Pb remediation. One method is capping the areas with 
the most highly contaminated soil with low Pb soil (Egendorf, Groffman, et al., 2021, Laidlaw et al., 2017). Every 
city has naturally low-Pb soil source in the outskirts and rural areas away from the traffic-congested, core of the 
city. The feasibility of reducing children's exposure to Pb polluted soil was tested at childcare centers in New 
Orleans (Mielke, Covington, et al., 2011). Soil Pb was determined at a selection of childcare centers in inner-city 
and outlying areas. Initially, the median soil Pb was 558 mg/kg (range 14–3,692 mg/kg). Soil Pb intervention 
was conducted by emplacing geotextile on the original soil surface and then covered by 15 cm of low Pb river 
alluvium. At the end of the project, soil Pb decreased to a median of 4.1 mg/kg (range 2.2–26.1 mg/kg) (Mielke, 
Covington, et al., 2011). At a one-time cost of ∼USD $100 per child, soil Pb, and surface loading were reduced 
to safer levels within hours, thereby conceptualizing primary prevention intervention of soil-Pb exposure at chil-
dren's playgrounds (Mielke, Covington, et al., 2011).

5.  Conclusions
The use of Pb in gasoline, paint, and by industry, resulted in significant air Pb emissions that accumulated in the 
environment and created the legacy of annually exposing millions of children worldwide. Lead in the air and soil 
is invisible. Urban soil Pb concentrations form a bullseye pattern, highest in the inner cities and decreasing with 

Figure 2.  Atmospheric Pb and atmospheric soil dust in the PM2.5 fraction between 2018 and 2020 in Indianapolis, Indiana 
(Data set—EPA Chemical Speciation Network, Site Code: 180970078).
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distance away from city centers. Empirical studies have demonstrated a strong association between soil Pb and 
blood Pb. Lead dust is a ubiquitous component of urban soil and is more strongly associated with city size and 
traffic flows than with the age of housing. Detailed soil Pb surveys combined with blood Pb surveys demonstrate 
the relationship between soil Pb and children's blood Pb. Black children are more highly exposed to Pb than 
White children. Multiple studies in various cities have demonstrated that soil Pb and blood Pb have a simultane-
ous bullseye pattern in urban environments.

Soil Pb is remobilized into the atmosphere thereby creating an air Pb, soil Pb, and multiple pathways nexus of 
human exposure. Long-standing environmental and socioeconomic Pb exposure injustices have positioned Black 
Americans at extreme risk of adverse health consequences. The disproportionate environmental injustices within 
Black and low-income communities have long been recognized. The racial injustices include environmental Pb 
as a component of excessive Pb exposure. As a result, racial disparities from Pb exposure play a tragic role in 
health and expected lifespan. Since 1999, Black Americans suffered more than 1.6 million excess deaths, relative 
to White Americans. Premature deaths have cost Black Americans over 80 million more lost years of life than 
White Americans.

Given the strong associations between soil Pb and children's Pb exposure and the connection between racial 
disparity and environmental Pb, new policies are needed to remedy the health and life expectancy effects of 
legacy Pb in high Pb bullseye communities. New policies must be designed as primary prevention actions to 
remedy children's Pb exposure by decreasing legacy Pb within high Pb bullseye urban communities.
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