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Abstract: Current efforts to find novel treatments that counteract multiple sclerosis (MS) have
pointed toward immunomodulation and remyelination. Currently, cell therapy has shown promising
potential to achieve this purpose. However, disadvantages such as poor survival, differentiation,
and integration into the target tissue have limited its application. A series of recent studies have
focused on the cell secretome, showing it to provide the most benefits of cell therapy. Exosomes are
a key component of the cell secretome, participating in the transfer of bioactive molecules. These
nano-sized vesicles offer many therapeutical advantages, such as the capacity to cross the blood-brain
barrier, an enrichable cargo, and a customizable membrane. Moreover, integrating of biomaterials
into exosome therapy could lead to new tissue-specific therapeutic strategies. In this work, the use of
exosomes and their integration with biomaterials is presented as a novel strategy in the treatment
of MS.

Keywords: exosomes; exosome functionalization; biomaterials; multiple sclerosis; neurodegenerative
diseases

1. Introduction

Multiple sclerosis (MS) is the most common demyelinating disease of the central
nervous system (CNS) and the leading cause of non-traumatic disability in young adults [1].
Currently, MS is considered a multifocal chronic inflammatory demyelinating disease
associated with neurodegeneration [2]. Several studies suggest that different genetic, im-
munological, infectious, and environmental factors contribute to the development and
progression of this disease. Although the underlying cause remains unclear, some factors
have been related to an increased chance of developing MS, such as smoking, viruses, low
vitamin D levels, high body mass index, and geographic latitudes [3]. Worldwide, over
2.8 million people live with MS [4,5]. This disease dramatically impacts the economic, social,
and health-related life quality of individuals, families, and society. Since there is currently
no cure for MS, different treatment strategies mainly focus on ameliorating symptoms,
treating acute attacks, speeding recovery from attacks, and slowing the disease progression
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(for a detailed review, see [6]). Efforts to find novel treatments with immunomodulatory,
anti-inflammatory, or immune reconstitution effects [7] have highlighted the need to de-
velop personalized therapeutic strategies. On the other hand, halting disability progression
remains a challenge for which different treatments have been proposed, mainly to provide
neuroprotection and achieve remyelination [8–11].

One cause of treatments’ failures in clinical trials is the limited capacity to cross the
blood-brain barrier (BBB) [12]. As a consequence, novel strategies for drug delivery to the
CNS are necessary. A promising approach is using nano-sized molecules, such as exosomes.
Exosomes are extracellular vesicles (EVs) secreted by cells that can freely cross the BBB,
penetrate different target tissues, and diffuse into the blood [13]. Exosomes act as molecule
exchange regulators across the BBB, mediating cell–cell communication in the brain [14].
Therefore, these nano-EVs have been used as carriers of small molecules, proteins, and
nucleic acids across the BBB [15,16]. Exosomes’ main advantage over synthetic nanocarriers,
such as nanoparticles, is their non-immunogenic nature, which implies enhanced stability
and long-lasting systemic circulation without causing cytotoxic side effects [13]. Despite
their therapeutic potential advantages, using exosomes as drug carriers faces multiple
challenges, for example, finding suitable cells for exosome extraction, protocol optimization
for cargo loading and assembly, and testing performance in toxicity and pharmacokinetic
studies. Different multidisciplinary strategies are currently being implemented to address
these limitations, as will be further discussed in this work.

2. Multiple Sclerosis

MS is a chronic autoimmune and neurodegenerative disorder of the CNS characterized
by inflammation, demyelination, and oligodendrocyte and neuron loss, which causes the
impairment of neuronal transmission and consequent neurological dysfunction [1].

It has been proposed that the development of the disease is influenced by genetic risk
factors accompanied by environmental cues such as tobacco, vitamin D, Epstein–Barr virus
infection, or sun exposure [17–19]. The inflammatory stimulus–response can trigger au-
toimmune activation. The peripheral antigens release caused by tissue disruption induces
an immune response in the lymphoid tissue leading to the infiltration of lymphocytes into
the CNS and causing subsequent neuroinflammation, demyelination, and neurodegen-
eration. The dysregulation of the innate immune system plays an important role in the
onset and progression of MS [20]. CNS autoreactive T lymphocytes lead to microglia and
astrocytes activation, perpetuating the activation of the autoimmune response and the
appearance of other cells, such as cytotoxic CD8 T cells or macrophages, which release
proinflammatory cytokines and cause CNS injury [21–23]. Early microglial activation could
be one of the initial events in developing MS lesions. Activated microglia may contribute
to the immunopathogenesis of MS through several mechanisms that involve an increased
secretion of proinflammatory cytokines, chemokines, free radicals, and glutamate [5]. The
overexpression of those molecules can provide a hostile microenvironment that limits
oligodendrocyte precursor cells (OPCs) migration and differentiation into myelinating
oligodendrocytes and leads to ineffective remyelination at the advanced stages of the
disease [24].

MS can cause a broad range of symptoms that vary greatly within one patient over time
and can be transitory or permanent. The symptomatology and severity are determined by
the lesion burden, location, degree of tissue injury progression, outbreaks, and/or relapses
of the pathology [25]. Therefore, therapeutic approaches aim to improve symptoms associ-
ated with the disease, evaluate disease-modifying drugs, and provide treatment of acute
flares [26]. However, finding curative drugs with a prophylactic effect or drugs capable
of repairing neurological alterations remains challenging. Currently, there are six disease-
modifying drugs for MS, namely three beta interferons, glatiramer acetate, natalizumab,
and mitoxantrone, although azathioprine, human immunoglobulins, immunosuppressive
drugs, steroids, and plasmapheresis have also been used. In addition, rehabilitative treat-
ment should be considered to improve the patient’s quality of life [27,28]. MS treatments
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are not limited to drug administration or monoclonal antibody usage. Preclinical studies
have shown that cell therapy could be a promising therapeutic strategy for remyelination
and functional recovery. The cell therapy intervention facilitates the regeneration of tissues
and organs by replacing damaged cells and, more likely, by simulating tissue self-repairing
processes through multicomponent trophic mechanisms mediated by cell secretome [29].
Cell secretome consists of a set of secreted bioactive molecules that are either dissolved
in the medium or encapsulated within EVs [30]. In a study with induced pluripotent
stem cells (iPSCs), these cells were differentiated into OPCs and were transferred to a
myelin-deficient mouse model [31]. The generated OPCs differentiated into astrocytes
and oligodendrocytes, leading to remyelination in the host animals and increasing their
survival rate. However, given the multifocal nature of MS, the successful migration of
OPCs to all demyelinated zones would be necessary [32]. For this purpose, biomaterials
have been suggested as a potential alternative that has not been explored yet [33]. On
the other hand, the use of chemoattractants to improve the remyelination process is being
investigated [34,35]. As mentioned, cell therapy has focused primarily on modulating
the inflammatory substrate of the disease, and efforts have recently focused on restoring
myelin and promoting endogenous remyelination [8,36]. In current clinical studies, efforts
have only been focused on modulating the immune response, thus preventing outbreaks
and sequelae of the disease [37]. Cell therapy effectiveness has a limited genuine CNS cell
replacement due to a limited differentiation rate at lesioned sites, including long-lasting
processes such as cell integration and survival. However, several studies support that cell
therapy’s therapeutic potential relies mainly on their secretome [38–40].

3. Exosomes

For a long time, the stem cell therapy paradigm was that progenitor cells mediate
tissue repair through their cell plasticity and differentiation potential. Currently, it has
been demonstrated that most benefits of stem cell therapy are mediated by the paracrine
modulatory effect rather than cell replacement [41,42]. This notion was demonstrated
when the administration of conditioned media from mesenchymal stem cells (MSCs)
culture had a similar effect to the cell treatment itself [43,44]. The proteomic profiling
of MSCs-conditioned media has revealed a broad spectrum of bioactive components,
usually classified as anti-inflammatory and pleiotropic cytokines, growth factors, growth
factor receptors, extracellular proteins, extracellular matrix remodeling enzymes, and
hormones [45,46]. It should be mentioned that none of these components, administered
individually or in combination, could recapitulate the robust effect promoted by cells or
cell-conditioned media administration, because multifactorial pathways are implicated
in the cell’s therapeutic activity [38]. In addition, it was reported that heterogeneous
compositions of proteins, lipids, and nucleic acids are selectively packaged into EVs [47].
These components play a role in the crosstalk communications between cells and participate
in tissue repair and regeneration processes [48]. Among them, exosomes are considered
key players in the molecule transfer between cells [40,49,50].

Exosomes are a type of EVs released by virtually all cell types under physiological and
pathological conditions [51]. These nano-sized membrane-enclosed vesicles of 30–150 nm
diameter originated as intraluminal vesicles within multivesicular bodies (MVB) by inward
membrane budding [52]. The endosomal sorting complex required for transport (ESCRT)
machinery plays an important role in exosome biogenesis. ESCRT consists of approximately
20 proteins that assemble into four different complexes: ESCRT-0, -I, -II, and -III [53].
ESCRT-0 recognizes and sequesters ubiquitylated proteins in the endosomal membrane;
ESCRT-I and -II are responsible for membrane budding and recruiting ESCR T-III to finally
drive vesicle scission [54]. The final step of exosome biogenesis is the dissociation and
recycling of the ESCRT machinery, which is carried out by the associated AAA ATPase
vacuolar protein sorting 34 (Vps4) complex. The posterior MVB transport towards the cell
membrane depends mainly on Rab-GTPases and SNARE proteins, although the precise
mechanism remains unclear [55,56]. A further fusion of multivesicular bodies and the cell
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membrane releases the intraluminal vesicles as exosomes [57]. Despite inhibiting some key
components of the ESCRT machinery, the formation of intraluminal vesicles within MVB
is not inhibited, indicating that exosome biogenesis can occur in an ESCRT-independent
pathway [58]. In this way, tetraspanins [59] and lipids, mainly ceramides [60], are essential
players due to the formation of microdomains that coalesce into larger domains for budding
membrane induction.

The composition of exosomes reflects their cellular origin; thus, the sorting of bioactive
molecules within the exosome (cargo) will depend on the cell type and cellular microenvi-
ronment [61,62]. Moreover, exosomes could bear combinations of proteins in their lipidic
bilayer, including tetraspanins, integrins, and cell surface receptors, enabling cell interaction
and cell uptaking [63,64]. Different studies support exosomes as mediators of intercellular
communication, because they reach biological fluids such as blood, cerebrospinal fluid, and
urine, among others, delivering bioactive lipids, ncRNA, and proteins, including growth
factors [61,65–67]. This biomolecule transference establishes a cell–cell communication
process, which could modify cell activity epigenetically in physiological and pathological
conditions [61,68].

Proteomic analysis of MSCs-derived exosomes has resulted in the identification of
more than 900 proteins, including filamin-A, brain-derived neurotrophic factor (BDNF),
vinculin, nerve growth factor (NGF), fibroblast growth factor (FGF), neuropilin-1, vascular
endothelial growth factor (VEGF), neuroplastin, glia-derived nexin, dihydropyrimidinase-
like 2 (DPYSL2), flotillin-1, ephrins, drebrin, neprilysin, teneurin-4, and stathmin [46,67,69].
These mentioned proteins induce neurogenesis and myelin formation, promote neurite
outgrowth and branching, stimulate axonal growth and regeneration, and provide neu-
roprotection to injured neurons [41,70]. Moreover, their broad cytokine repertoire can
efficiently inhibit the effector of M1-like inflammatory function and induce the generation
of anti-inflammatory M2-like phenotype in microglial cells, which in turn contributes to
ameliorating the cognitive alterations associated with pro-inflammatory statements [71,72].

A breakthrough in using exosomes as therapeutic agents was achieved when the
horizontal transfer of exosome microRNA to recipient cells with a subsequent biological
role was reported [73,74]. This class of small non-coding RNAs act as posttranscriptional
regulators of gene expression. In the nervous system, miRNA can regulate aspects such as
neurogenesis and attenuation of neuroinflammation as well as dendritic branching and
spine morphology, regulating the functional synapses [40,75,76].

In recent years, several lines of evidence have supported using exosomes (mainly
MSCs-derived exosomes to regenerate the nervous system) [63,77,78]. Exosomes appear
to be an efficient carrier system because of their ability to penetrate the BBB; furthermore,
they are less likely to cause immune rejection, possess higher biocompatibility, and have an
apparent negligible biological toxicity. After crossing the BBB, exosomes are not randomly
distributed but do so with a selective tendency [79], as Bonafede et al. demonstrated in an
ALS murine model where exosomes selectively reached a lesioned region of the brain. In
contrast, in healthy animals, exosome recruitment was done randomly across the brain [80].

Regarding CNS inflammatory disorders involving myelin damage and oligodendro-
cyte loss, including MS, the use of exosomes has been suggested as a promising alternative
disease-modifying therapy to increase post-injury remyelination [81,82]. Along this line, the
proteomic analysis of Schwann cells-derived exosomes identified 433 proteins, where only
12 proteins were closely associated with CNS repair, including processes such as axon regen-
eration. Those identified repair proteins are carboxypeptidase E (CPE), fatty acid-binding
protein (FABP5), fibronectin, flotillin-2, major vault protein (MVP), monocarboxylate trans-
porter 1 (MCT1), neuropilin-2 (NRP2), septin-7 (SEPT7), protein disulfide-isomerase A3
(PDIA3), and syntenin-1. Furthermore, an inhibitory process of inflammation was identi-
fied, where two proteins were identified, αB-crystallin and galectin-1 [83].

Casella et al. engineered the microglia cell line BV-2 to produce exosomes bearing
the endogenous “eat me” signal lactadherin (Mfg-e8) and to upregulate the exosome
loading with anti-inflammatory cytokine IL-4. The engineered exosomes modulated the
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neuroinflammation by the prolonged modulation of recipient phagocytes towards an
anti-inflammatory phenotype and significantly reduced the clinical symptoms of the ex-
perimental autoimmune encephalomyelitis (EAE) model [84]. Clark et al. evaluated the
myelin regeneration by administration of MSCs-derived exosomes in an EAE mouse model.
In this study, the motor function in EAE mice improved after MSCs and MSCs-derived
exosome administration; furthermore, a reduction of apoptotic oligodendrocytes and a
reduced myelin loss were reported after the treatment administration [85]. Subsequently,
Jafarinia et al. showed that MSCs-derived exosome administration ameliorates the EAE
score, probably by diminishing the proliferative potency of T cells and leukocyte infiltra-
tion [86]. Zhang et al. reported that intravenously administrated MSCs-derived exosomes
in an EAE mouse model significantly increased the population of newly generated and
mature oligodendrocytes. Moreover, MSCs-derived exosomes were shown to increase the
level of myelin basic protein (MBP), promote the M2 phenotype of microglia and its related
cytokines, and inhibit the TLR2/IRAK1/NFkB pathway, reducing the proinflammatory
state [87,88].

Li et al. suggested that M2 phenotype polarization is strongly promoted by shuttling
TNF stimulated gene-6 (TSG-6)-enriched exosomes, which inactivate the NFkB/NLRP3
signaling pathway. Here, the local injection of TSG-6-enriched exosomes resulted in ac-
celerated remyelination and peripheral nerve regeneration in a sciatic nerve injury rat
model [89]. Interestingly, Pusic et al. reported that a dendritic cell culture stimulated with
IFNγ promotes the secretion of miRNA-enriched exosomes. Notably, miR-219 was highly
enriched in stimulated exosomes and undetectable in unstimulated exosomes; in the same
way, miR-181a, miR-451, miR-532-5p, and miR-665 were especially highly enriched. The
miRNA-enriched exosomes improve remyelination and reduce oxidative stress in a hip-
pocampal lysolecithin-induced demyelination slice culture, while the nasal administration
of these exosomes increases the baseline myelination [81]. Similarly, Osorio-Querejeta et al.
produced miR-219a-5p-enriched EVs through the lentiviral transduction of HEK293T cells.
Enriched EVs showed enhanced BBB permeability levels and capacity to induce OPCs
differentiation when compared to liposomes or polymeric nanoparticles. Furthermore,
the in vivo therapeutic effect of enriched EVs was demonstrated in an EAE mouse model,
suggesting myelin regeneration [90].

Cell-free therapeutic approaches employing isolated exosomes bypass some limita-
tions of cell therapy considered in terms of long-lasting observation, e.g., tumorigenesis,
induction of microvascular thrombotic events, differentiation into undesirable tissue after
ectopic engraftment, and potential activation of the allogenic immune response [51,91–93].
Furthermore, exosomes have excellent biocompatibility, low toxicity, and low immunogenic-
ity, and importantly, they exert a robust therapeutic effect comparable to or even greater
than cells [94]. All this creates high expectations regarding the employment of exosomes as
a potential cell-free therapy for managing neurodegenerative diseases, including MS.

Despite the promising potential of cell-free therapy, it has several limitations. The stem
cell type and source have been related to the therapeutic effectiveness [95,96]. Excessive
manipulation of cells under large scale and special storage conditions are also factors that
might be considered, since they can have a negative impact on the proliferation capacity
and therapeutic use of cells [97,98]. Stem cells possess a dynamic expression profile that
is difficult to capture with the utility of exosomes from a single batch, which only has a
static composition. Exosomes cannot reflect all stages that stem cells experience when
administrated in a damaged tissue, since all cell interactions within the local microenviron-
ment influence the cell response to several stress signals. Therefore, these adjustments in
the paracrine secretion will be absent in a determined exosome batch [2]. Moreover, the
administration route has been related to the biodistribution of extracellular vesicles (EVs),
including exosomes, affecting the releasing rate on target tissues and thus its therapeutic
effects [99].

Another challenge is improving their homing capacity, since the exosome therapeutic
potency must be established in terms of exosome protein cargo or exosome number and
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size [100]. The preparation and concentration of exosomes in sufficient quantities for clinical
administration have shown high variability in the results of several studies and clinical
trials. The variation in key factors such as cell source, therapeutic dose, administration
route, and administration timing limits the therapeutic value of exosomes [101].

Different strategies, such as exosomes engineering and biomaterials, have been de-
veloped to overcome these limitations and increase the therapeutic potential of exosomes.
The reported results contribute to a better understanding of the exosome role in different
pathologies, including MS, and provide a way to accelerate their clinical use.

3.1. Engineered Exosomes

The functionalization of exosomes with different molecules such as antibodies or other
therapeutic components could significantly increase their homing capacity and therapeutic
effects [51,82]. In this way, different strategies for exosome functionalization focus on
exosome surface modification and the enrichment/encapsulation of therapeutic agents
(Figure 1) [102,103].
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Exosome surface modification involves the fusion of targeting ligands with exosome
transmembrane proteins such as Lamp2 and tetraspanins such as CD63, CD9, or CD81,
among others [102]. This fusion could enhance site-specific exosome delivery, e.g., CNS
targeting [102]. An approach for exosome surface modification is the genetic engineering
of exosome-producing cells. For instance, Chivero et al. engineered dendric-cell-derived
exosomes by mouse dendritic cells co-transfection with RVG-Lamp2b plasmid. The rabies
virus glycoprotein peptide (RGV) is a neuron-specific peptide. The engineered RVG-
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Lamp2b exosomes were detectable in the brain at 4 h post-intranasal administration [104].
Twenty-four hours after the intravenous administration of RVG-Lamp2b exosomes, their
brain localization was 3.8-fold higher than the control [105]. However, cell engineering
techniques could not be applied to isolated exosomes.

Consequently, novel approaches were developed for surface modification of isolated
exosomes. One of the most employed methods is based on click chemistry, wherein func-
tional ligands are covalently attached to the exosome membrane through a carbodiimide-
based (EDC/NHS) condensation reaction and conjugation with the azido groups [102].
Tian et al. conjugated the cyclo (RGDyK) peptide, which has a high binding affinity for
integrin αvβ3 expressed on reactive cerebral vascular endothelial cells after ischemia. Fur-
thermore, they loaded curcumin within cyclo (RGDyK) exosomes. The generated data
showed that intravenous administration of cyclo (RGDyK) exosomes + curcumin increased
exosome tropism dramatically in the brain-damaged region of the mouse MCAO/R model.
Furthermore, cyclo (RGDyK) exosomes + curcumin showed a better anti-inflammatory and
antiapoptotic activity than the unmodified exosomes and curcumin treatment alone [106].
Similarly, Jia et al. loaded exosomes with superparamagnetic iron oxide nanoparticles
(SPIONs) and curcumin and then conjugated them with neuropilin-1 targeted RGE peptide
by click chemistry to obtain glioma-targeting exosomes. The intravenous administration of
RGE-exosomes + SPIONs + curcumin in the orthotopic glioma xenograft model drove a
high concentration in the tumor area (striatum), while unmodified exosomes were mainly
distributed in the liver and spleen, reaching only a small proportion of the tumor area. In
addition, it was found that tumors were remarkably diminished after the RGE-exosomes +
SPIONs + curcumin administration [107].

Aptamer-based surface modification is another strategy to improve exosome targeting.
Shamili et al. coated the surface of MSC-derived exosomes with the myelin-specific DNA
aptamer (LJM-3064 aptamer), a molecule with high myelin affinity and potent effectivity
to induce the remyelination process. The obtained results showed that the bioconjugated
exosomes induced the proliferation of oligodendroglial cells, while the administration of
bioconjugated exosomes significantly improved the functional recovery in an EAE mouse
model. Interestingly, the administration of conjugated and non-conjugated exosomes gen-
erates changes in the immune cell profile of splenocytes. Specifically, conjugated exosomes
increased IL-4 and enhanced the Treg population, while non-conjugated exosomes sup-
pressed INF-γ and IL-17 production. This system produced a synergistic effect resulting in
an enhanced immunomodulatory function affecting the Th1/Th2 paradigm and reducing
the EAE severity [94].

Other non-covalent modification strategies to produce targeted exosomes include
methods such as functionalization through multivalent electrostatic interactions, which rely
on the cumulative effect of multicharge interactions of highly cationic substances, such as
cationic lipids, for example, lipofectamine [108]. The ligand–receptor interaction approach
is a highly specific method for targeted delivery, since a determined ligand will recognize
its specific receptor on cells. Most common strategies include transfection-based ligand
overexpression, as mentioned above [109]. The hydrophobic interaction method is often
challenging, because the exosome double-layer structure is harder than the parent cells.
However, the fusion between exosomes and already functionalized liposomes using the
freeze–thaw method is attractive for effective exosome targeting [102,108]. Anchoring the
CP05 peptide method enables the anchorage of targeting moieties, specifically in the second
extracellular loop of exosomal CD63 tetraspanin [102,110].

On the other hand, the enrichment and encapsulation of therapeutic agents have
been explored to improve the exosome therapeutic efficiency [103,111]. Cell precondition-
ing is a feasible method of engineering the cargo of exosomes, since the composition of
bioactive molecules within the cargo depends on the cell type and the cellular microenvi-
ronment [54,55]. In vitro cell preconditioning has been associated with the enrichment of
specific components in the exosome cargo according to the stimuli applied [112]. Specif-
ically, MSCs priming is considered an important process to improve their therapeutic
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activity and produce exosomes with higher potential [113]. For example, Harting et al.
described that MSCs cultured in pro-inflammatory conditions induced the production of
exosomes with higher anti-inflammatory capacity. Similarly, the MSCs cultured under
hypoxic conditions promoted a cargo enrichment with anti-inflammatory cytokines and
proteins involved in angiogenesis [65]. In addition, the hypoxic preconditioning of MSCs
led to an enrichment of exosomal miR-216a-5p and promoted functional behavioral re-
covery in a spinal cord injury mouse model. These miRNA-enriched exosomes shifted
the microglia from the M1 phenotype to the M2 phenotype, apparently by inhibiting
TLR4/NF-κB and upregulating the PI3K/AKT signaling pathway [114].

Cytokine-mediated inflammatory stimulation improves the paracrine efficiency of
MSCs, enhancing the anti-inflammatory response of exosomes [112]. Interestingly, priming
the MSCs culture with IFNγ promotes the exosome enrichment of miR-467f and miR-466q,
which exert an anti-inflammatory effect on M1-activated microglia by reducing the ac-
tivation of the p38 MAPK signaling pathway via inhibition of Map3k8 and Mk2 in an
ALS mouse model [115]. Riazifar et al. reported that the intravenous administration of
MSCs in IFNγ-exosomes reduced the CD4+ and CD8+ T-cell infiltration. Furthermore,
the population density of CD4 + CD25 + FOXP3+ regulatory T cells (Tregs) was increased
in the spinal cords of EAE mouse models. The MSCs priming with IFNγ promoted the
enrichment of the exosome with proteins such as macrophage inhibitory cytokine 1 (MIC-1),
galectin-1 (Gal-1), heat shock protein 70 (HSP70), and latent-transforming growth factor
β-binding protein (LTBP). The found proteins possess anti-inflammatory, immunomod-
ulatory, and/or neuroprotective properties, which contribute to the demyelination and
neuroinflammation reduction and the improved functional outcomes reported in the EAE
model [116]. However, due to the heterogeneity of cells, the appropriate intensity and time
of priming treatments must be further explored. In addition, cell engineering may limit
control over the specific cargo and the quantity packaged. Therefore, small molecules, pro-
teins, and nucleic acids that benefit CNS treatment and provide protection are preferentially
encapsulated directly in isolated exosomes [111].

Therapeutic agents can be encapsulated within exosomes by passive and active en-
capsulation, both with different loading efficiencies and with different stabilities of the
compounds in the exosome vesicles. The passive encapsulation methods are simple and
do not require the addition of reactive substances but require a simple incubation of the
parental cells or isolated exosomes with the therapeutic agents [117]. The loading efficiency
will depend on the hydrophobicity of the compound [103]. For example, Zhuang et al.
loaded curcumin and JSI124 (a STAT3 inhibitor) into exosomes by mixing these compounds
with the isolated exosomes in phosphate-buffered saline for 5 min at 22 ◦C. After intranasal
delivery, these curcumin-exosomes were taken up by the microglial cells and induced their
apoptosis, thus preventing LPS-induced brain inflammation and myelin oligodendrocyte
glycoprotein (MOG)-induced autoimmune responses in an EAE model [118]. Wang et al.
cultured macrophage RAW264.7 cells treated with curcumin (40 µg/mL) for 24 h, and the
exosomes were further isolated. The average encapsulation efficiency and loading capacity
of curcumin into exosomes were 84.8% and 15.1%. Surprisingly, while the solubility of
crude curcumin was only 1.8 µg/mL, the apparent solubility of exosome-encapsulated
curcumin dramatically increased to 18.5 µg/mL (10 fold). Due to the origin of the employed
macrophages, the curcumin-exosomes bearing the lymphocyte-function-associated antigen
(LFA-1) were target-delivered in the hippocampus after intraperitoneal injection. The deliv-
ered curcumin-exosomes exerted neuroprotection and attenuated the okadaic-acid-induced
cognitive decline in the AD mouse model by preventing the phosphorylation of Tau via the
AKT/GSK-3B signaling pathway [119].

Regarding the active exosome encapsulation strategies, the methods include fusion
between exosomes and several types of phospholipid-based liposomes, electroporation,
membrane permeabilizers, and the previously described click chemistry method for co-
valent conjugation [103]. The hybridization of exosomes with liposomes improves the
colloidal stability of exosomes, increasing their half-life in circulation and decreasing their
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immunogenicity. However, the membrane fusion efficiency varies among exosomes from
different cell sources according to the membrane lipid composition. Exosome hybridization
increases the resulting vesicles’ size independently of the hybridization method [117,120].
siRNAs have been loaded into exosomes using hybridization as well as electroporation,
which applies an electric field to a suspension containing the exosomes and the intended
cargo. Alvarez-Erviti et al. loaded RVG-targeted exosomes with exogenous siRNA by
electroporation to deliver GAPDH siRNA specifically to neurons, microglia, and oligoden-
drocytes in the brain, resulting in a specific gene knockdown [121].

Despite different strategies for exosome engineering, transfer to clinical applications
remains challenging. It is worth mentioning that functionalization conditions must be
strictly controlled to avoid exosome disruption and aggregation due to inappropriate tem-
perature, pressure, and osmotic stress [103]; furthermore, the targeting moiety introduction
could reduce the exosome multifunctionality [82,122]. Moreover, advanced purification
techniques for modified exosome isolation must be developed to remove unmodified exo-
somes, highlighting the importance of choosing the right isolation technique for optimal
yield [100,102]. The preparation and concentration of exosomes in sufficient quantities for
clinical administration are also problems, since there is high variability in the results of
several studies and clinical trials. The exosome therapeutic potency must be established
regarding exosome protein cargo or exosome number and size [100]. The variation in
key factors such as cell source, therapeutic dose, administration route, and administration
timing limits the therapeutic value of exosomes [101].

3.2. Exosomes and Biomaterials

According to their origin, biomaterials can be divided into natural and synthetic.
Despite their origin, biomaterials can share the characteristic of biocompatibility, i.e., the
response of the biological component upon contact should not present adverse effects,
for both the material and its degradation products. Biomaterials of natural origin tend
to exhibit good biocompatibility, biodegradability, and cell adhesion but may have some
disadvantages, such as poor mechanical properties or triggering an immune response in
the host. On the other hand, synthetic biomaterials have the advantage of being easier
to chemically modify (or engineer) and tend to produce a decreased immune response
in the host. However, synthetic biomaterials may present toxic substances depending on
their origin and manufacturing process [123,124]. Since both types of biomaterials have
advantages and disadvantages for biomedical applications, they are commonly used to
obtain fine-tuned products that suit specific applications.

Biomaterials have been used as therapeutic molecule carriers in applications directed
to the CNS to facilitate access through the BBB or pave the way for different administration
routes that evade the BBB and target the lesion site. Furthermore, biomaterials have been
used in tissue engineering and regenerative medicine, pre-loaded with stem cells or alone,
in attempts to restore the support naturally provided by the extracellular matrix (ECM)
and regenerate lost tissue [125].

Recently, different biomaterials have been designed to assist exosome therapy [97,126].
Particularly, hydrogels have garnered interest for this purpose due to their high capac-
ity to absorb water and their potential to mimic naive ECM structures [127]. In addi-
tion, hydrogels can be designed to achieve stimuli-responsive gelation, thus facilitating
their administration and allowing them to fill cavities [128]. In recent years, many stud-
ies have determined that hydrogel properties, such as stiffness, absorption capacity, or
biodegradability, can be modulated according to their composition and microarchitecture
design [129–131]. However, further studies are required to determine how these properties
influence exosome interactions with different target tissues.

Biomaterials have been integrated into exosome therapy in two ways: during cell
culture to stimulate or regulate exosome production; or during exosome administration to
achieve controlled and function-specific release (Figure 2). Most of these biomaterials have
been used as nanoparticles or scaffolds, wherein hydrogels are included among the latter.
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Recent reports have disclosed two main advantages of this combined therapy: the increase
in EVs’ half-life and the development of new tissue-specific regenerative strategies [132].
Thus, it has been proposed that the synergistic use of EVs and pre-engineered biomaterials
may lay the groundwork for a future predictable regeneration [133]. As far as it is known,
the integration of exosomes and biomaterials specifically for MS treatment has been little
studied to date. However, the results obtained from other pathological models represent
an advance in understanding the interaction of secretory cells with biomaterials and EVs-
carrying biomaterials with the target tissues. Therefore, in the following, we discuss the
work done under different pathologies that provides interesting results for a possible
transfer to the MS context.
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3.2.1. Biomaterials in EVs-Producing Cell Culture

Biomaterials have been used in cell culture to support cell adhesion and the subsequent
secretion of EVs. Beyond the biomaterials’ composition, their microarchitecture significantly
influenced the growth, phenotype, migration, and differentiation of cells, including neural
cells [134]. Therefore, biomaterials are expected to influence EVs secretion and cargo
composition. In this regard, it has been shown that using scaffolds for cell culture can
influence the secretory cell capacity [126,135]. Furthermore, the cytokine content of secreted
EVs can be influenced by the biomaterials used in cell culture. Rana et al. compared
the effect of EVs derived from MSCs cultured on a synthetic biomaterial composed of
hydroxyapatite and β-tricalcium phosphate (MBCP+™) or adhered to a plastic surface.
The results showed that EVs from the biomaterial-cultured cells contained fewer pro-
inflammatory cytokines. In that study, pre-conditioning of MSCs with inflammatory
cytokines was also evaluated, revealing increased anti-inflammatory cytokines (IL-10 and
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IL-5) in EVs from both pre-conditioned and non-preconditioned cells. Thus, the authors
attributed the anti-inflammatory cytokine increase to the effect of the biomaterial used for
MSCs culture. In addition, the authors found that treating M0 macrophages with EVs from
the pre-conditioned and biomaterial-cultured MSCs guided an anti-inflammatory (M2)
polarization [136]. Interestingly, it has been recently reported that EVs can transmit cell-
memory information from past mechanical microenvironments to guide cell differentiation
and propagation in the target tissue of regenerative therapies [137]. These findings open a
new window in understanding cell–biomaterial interactions and the communicative role
of EVs, which should be further studied and considered in the design of cell/exosome
therapies combined with biomaterials.

Moreover, biomaterials can be added to culture media to interact with cells in the
form of nanoparticles. Such is the case of the use of positively charged surface-modified
nanoparticles containing iron oxide and poly(lactic-co-glycolic acid) (PLGA) and encapsu-
lated by PLGA functionalized with polyethyleneimine (PEI). These nanoparticles stimulate
exosome production when added to the MSCs culture medium. In addition, the secreted
exosomes were shown to contain an increased amount of miRNAs related to the expression
of antioxidants and differentiation factors [138]. Furthermore, nanoparticles have been used
in stem cell culture to achieve their internalization into exosomes so that they can confer
new advantages such as labeling for better visualization and study of exosomes [139]. For
example, during their culture, adipose-derived stem cells (ASCs) have been labeled with
ultra-small SPIONs and then found in the exosomes secreted by the ASCs. The exosomes
labeled with the SPIONs were visible by magnetic resonance imaging [140]. Such labeling
could be of interest in monitoring exosome treatment in MS, since MRI is a technique used
to observe lesions caused by the disease. Iron oxide nanoparticles added to the culture
media of MSCs can be internalized in the secreted exosomes. The nanoparticle internaliza-
tion has been shown to favor a greater in vivo accumulation in the lesion area and increase
the effectiveness of cutaneous wound healing [141]. In addition, iron oxide nanoparticles
coated with polyethylene glycol (PEG) are effective for achieving exosome purification by
removing the protein from the medium and favoring its isolation after cell culture [142].

3.2.2. Biomaterials in EVs Administration

Biomaterials can also be employed as three-dimensional supports to retain exosomes
and control their release over a prolonged time, thus increasing the therapeutic effect [143].
For example, chitosan hydrogels have been shown to increase the stability of proteins
and microRNAs in exosomes and increase the in vivo retention time [144]. Further-
more, Kwak et al. prepared PEG hydrogels modified with tris(2-aminoethyl)amine and
N-succinimidyl glutarate in different ratios. M2 macrophage-derived exosomes were
pre-loaded into such hydrogels and administered in a skin wound model. The exosome–
hydrogel therapy promoted a local transition of macrophages from M1 to M2 in the injury
zone. Moreover, using different ratios of the hydrogel components led to changes in their
biodegradability, thus affecting the exosomes’ release time and making it adjustable accord-
ing to the stiffness and crosslinking degree of the biomaterials [145]. It has been shown
that the interaction between exosomes and biomaterials can also influence the effectiveness
of the treatment. Huang et al. functionalized MSCs-derived exosomes with fibronectin
and collagen peptides and attached them to an alginate photocrosslinkable hydrogel for its
evaluation on a calvarial defect model. In addition to finding four times more effectiveness
in hydrogels with functionalized exosomes compared to the non-functionalized ones, they
observed a 2-time enhancement when the functionalized exosomes were attached to the
hydrogel [146].

Hydrogels can release exosomes at the site of interest and, in turn, support cell repop-
ulation at the lesion site [147]. For example, hyaluronic acid hydrogels modified with an
adhesive peptide have been shown to achieve local release of exosomes and to fill the cavity
caused by spinal cord injury, enhancing the therapeutic effect and the consequent functional
recovery [148]. Furthermore, scaffolds used to release EVs have affected the surrounding
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cells. Man et al. designed thermo-responsive hydrogels of type I collagen and chitosan
and observed an effect on the release kinetics of osteoblast-derived EVs, dependent on the
proportions of both hydrogel components. Furthermore, when evaluating the therapeutic
effect of EVs on human bone marrow MSCs (hBMSCs), they saw that the composition
of the hydrogels also influenced the internalization of EVs, as well as the proliferation,
differentiation, and migration of hBMSCs [149]. Likewise, a methacryloyl gelatin hydrogel
was designed with biocompatible and well-defined mechanical properties for skin tissue re-
generation, and it was employed as a carrier for VH298-loaded epidermal stem-cell-derived
EVs. The hydrogel promotes wound healing mainly by increasing angiogenesis [150]. It
has also been suggested that chitosan hydrogels can enhance the ability of human placen-
tal MSCs-derived exosomes to protect the endothelium by promoting angiogenesis and
inhibiting the apoptotic pathway in hindlimb ischemia models [144]. Similarly, functional
recovery has been achieved in models of spinal cord damage by promoting angiogenesis
through the administration of human urinary stem-cell-derived exosomes preloaded in
Matrigel, further showing their ability to cross the BBB [151]. Angiogenesis is usually
ineffective at the progressive stage of MS due to vasoconstrictive mechanisms derived from
oxidative stress [152]. In this way, promoting angiogenesis in the lesion areas of chronic
MS through EVs-containing hydrogels could be a strategy to supplement trophic factors
and slow down the progressive and degenerative phases.

Although to a lesser extent, small nanoparticles have also been employed to assist
exosome release, especially in theragnostic applications [153]. For this purpose, different
methods have been employed to encapsulate small-sized nanoparticles in exosomes, and
in the same way, it has been previously described for the enrichment of exosomes. Among
these strategies are simple mixing, electroporation, sonication, and culturing of the secretory
cells in contact with the nanoparticles, the latter being the most successful [154,155]. On
the other hand, coating exosomes with nanoparticles has been shown to offer multiple
advantages over exosome therapy. For example, Wang et al. prepared biotin-functionalized
exosomes loaded with doxorubicin, coated with magnetic nanoparticles conjugated to
molecular beacons with microRNA-21. The obtained modified exosomes were visible
through infrared-responsive molecular imaging and were capable of gene silencing, drug
release, and selectively promoting tumor cell death [156]. Thus, using nanoparticles is an
option to confer multifunctions to exosomes and increase their therapeutic potential.

4. Perspectives

Collectively, these data confirm exosomes’ suitability for cell-free therapies. Exosome
engineering enhances their ability to selectively target the CNS with an enhanced regener-
ative and anti-inflammatory potential. Thus, engineered exosomes can be an integrative
aspect in designing therapeutic strategies for tissue repair, maintaining cellular homeostasis,
or impairing the disease progression.

Current works in exosome therapy focus on the subject matter of therapeutic effects.
In the analyzed literature, there are no reports of adverse effects in experimental therapies
with exosomes, but they will certainly not be innocuous. Therefore, it will be necessary to
carry out dose–response and toxicity studies for each exosome-based therapeutic strategy.

Alongside safety considerations, the quality control of standardized procedures re-
garding the exosome-producing cell culture is critical to minimize variations between
batches. Particular attention should be paid to the employed techniques for cell isolation,
cell expansion, and even the culture conditioning for a specific exosome cargo enrichment,
as well as the administration formula preparation. Furthermore, the scalability of exosome
isolation, storage, and administration also should be considered.

Given that previous studies have shown that it is possible to promote cell polarization
through the design of biomaterials used for the culture of EVs-secreting stem cells, it could
be of interest to evaluate this strategy in the context of MS. In this way, a new therapeutic
strategy could be proposed to regulate the inflammatory components coming from both
the systemic and local immune response, which play a crucial role in the development of
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the disease. Biomaterial-assisted release of exosomes could also be used to promote the
repopulation of myelinating cells within the injured zone. In this way, MSCs could be the
most suitable candidates for producing EVs. In addition to being the most studied cells for
exosome secretion, the MSCs secretome has been shown to have multiple protective effects
in MS models [157]. Specifically, in demyelinating and EAE models, it has been shown
that using MSC-derived exosomes can increase the polarization of microglia to the M2
(anti-inflammatory) phenotype [87]. However, it could also be of interest to study exosomes
from OPCs, as these cells are the main cells involved in the production of myelinating
oligodendrocytes and are related to white matter homeostasis [158].

Regarding the biomaterials to be used, hydrogels have shown great potential both
for the culture of exosome-secreting cells and for exosome release. However, different
compositions will have to be tested, taking into consideration the characteristics of the
lesioned tissue in the MS and its pathophysiological state. For example, a relationship has
been observed between the mechanical properties of hydrogels and the differentiation of
neural precursor cells (NPCs). By using collagen, hyaluronic acid, and laminin to provide
mechanical and chemical properties similar to developing neural tissue, the differentiation
of NPCs was directed toward oligodendrocytes [159]. Therefore, it could be of interest to
employ a hydrogel with similar properties for the culture of exosome-secreting cells and
assess whether they can transmit the memory of that mechanical environment and favor
differentiation towards myelinating oligodendrocytes in the injury zone of MS models.
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