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Abstract:
Intervertebral disc degeneration is a well-known cause of disability, the result of which includes neck and back pain with

associated mobility limitations. The purpose of this article is to provide an overview of the known molecular mechanisms

through which intervertebral disc degeneration occurs as a result of complex interactions of exogenous and endogenous

stressors. This review will focus on some of the identified molecular changes leading to the deterioration of the extracellular

matrix of both the annulus fibrosus and nucleus pulposus. In addition, we will provide a summation of our current knowl-

edge supporting the role of associated DNA and intracellular damage, cellular senescence’s catabolic effects, oxidative

stress, and the cell’s inappropriate response to damage in contributing to intervertebral disc degeneration. Our current under-

standing of the molecular mechanisms through which intervertebral disc degeneration occurs provides us with abundant in-

sight into how physical and chemical changes exacerbate the degenerative process of the entire spine. Furthermore, we will

describe some of the related molecular targets and therapies that may contribute to intervertebral repair and regeneration.
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Introduction

Over the past century, life expectancy has continued to in-

crease, with an estimated 0.5 billion people worldwide aged

65 or older, and is projected to reach 1.5 billion people by

20501). It is well documented that low back and neck pain

increase with age, and are the 1st and 4th leading causes of

disability, respectively2-4). Back pain is one of the most com-

mon orthopaedic conditions, and it accounts for 149 million

missed worked days annually with an estimated loss of $90

billion in the United States, secondary to related disability5).

Specifically, intervertebral disc degeneration (IDD) plays a

substantial role in the generation of back pain, involving

more than 50% of all cases6-8). In the elderly, decreased mo-

bility is a confirmed predictor of loss of independence and

increase in mortality. This makes the preservation and un-

derstanding the degeneration of healthy joints, especially in-

tervertebral discs (IVDs), vital in our aging population9-11).

IDD refers specifically to the functional as well as the

structural failure of the disc related to its cellular pathogene-

sis and extracellular matrix (ECM) modifications12). Causes

of disc degeneration include aging, injury, genetics, and en-

vironmental factors such as smoking, or a combination13-19).

IDD is not exclusive to the older population, although the

aged population and cases with degenerated disc appear to

share similar changes18-22). The IVD is one of the first tissues

to undergo degeneration in adults, with an average onset in

the second decade of life and is known to be influenced by

a combination of genetic, biological, aging, and physical

chemical changes20,21,23). The exact pathophysiology of degen-

eration has not yet been completely delineated, but this re-

view will focus on some of the known cellular changes and

molecular pathways leading to IDD.

Characteristics of IVD

IVD are situated between two cartilaginous end plates of

adjacent vertebra of the spine. They help in constructing a

polyaxial cartilaginous joint that allows for flexibility, while

also providing support24,25). The IVD is made of two major

components: an annulus fibrosus (AF) and a nucleus pulpo-

sus (NP). The AF is composed of highly organized rings

known as lamella, rich in collagen type I that surround the

NP. These collagen fibers of the AF arranged in alternating
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angles of approximately 30-60 degrees serve to restrain the

NP’s circumferential stress during bending and twisting,

while preventing lateral displacement and collapse of the

NP24,26). The NP that is centrally located, is composed of ap-

proximately 80% water caused by the osmotic gradient of

proteoglycans, primarily aggrecan, which consists of highly

anionic glycosaminoglycan side chains of chondroitin and

keratin sulfate. The NP also contains a loose and randomly

arranged framework of sparse collagen type II and elastin fi-

bers, which in combination with the proteoglycan, serves as

a primary shock absorber defusing compressive stresses into

the end plates and the annulus fibrosus24,27). In addition, the

cartilage end plates, composed primarily of cells with a

morphology similar to that of chondrocytes that produce a

hyaline matrix, serve as an interface between the adjacent

vertebral body and IVD28). As discs are predominantly avas-

cular, the cartilaginous end plates are particularly important

for nutrient and metabolite delivery to the disc by diffusion

through its rich blood supply. This tenuous perfusion and

low cellularity makes the disc susceptible to injury, in addi-

tion to the limited repair and accumulation of dysfunctional

tissue29,30).

Degenerative changes lead to an altered spinal mechanical

function with loss of elasticity and an increased stiffness31).

Maintaining stability in the multiaxial motion of the spine is

a complex interaction between all components of the spine

working together counteracting compressive and tensile

stress32-39). Degenerative changes of the spine that exacerbate

the IDD process include facet cartilage erosion, weakening

of supportive ligaments such as posterior and anterior spinal

ligaments, and physiological muscle atrophy such as fatty

infiltration40-43). Cells isolated from annular-puncture induced

degenerative discs have shown unfavorable altered responses

to mechanical loading and exaggerated response to inflam-

matory stimulus44). Studies in rats have indicated an in-

creased IDD when they are imposed to an upright stance,

which presumably alters the disc loading45). Other analyses

have also made associations with long-term loading leading

to loss of spinal mobility and decrease in disc height46-49).

This loss of anatomical structure is the end result of

damage-induced apoptosis, cellular senescence, and pa-

thologic alterations to metabolism with the subsequent loss

of standard cellular function and ECM structural support50-53).

It is known that the ECM of the NP and AF are vital to

the biomechanical function and physiological state of the

IVD54,55). The ECM of the NP contains only approximately

1% cells, based on its total volume. These cells produce

structural matrix proteins, cytokines, growth factors, and

proteases. All these products serve to maintain the balance

between ECM production and degradation, while preserving

biomechanical function54,55). Progressive proteoglycan loss

with coinciding changes of low oxygen tension, free radical

formation, changes in pH, and increased activity of aberrant

proteolytic enzymes, leads to loss of disc height and com-

pressive resistance. These changes result in a progressive

disruption of the spinal motion leading to spinal instability

and mechanical stress, compounding the degenerative proc-

ess56,57).

Pathology of IDD

IDD has been defined by the loss of biologic structural

support and function through the accumulation of degener-

ated molecules leading to inappropriate cellular reactions

that exacerbate the pathogenesis58). These changes lead to a

fibrous disc with dehydration of the NP, loss of disc height,

and accumulation of granular debris. In addition, there is ne-

ovascularization in the peripheral AF and an increase in the

number and size of fissures20,59,60). The cartilaginous end

plates also undergo ossification and thinning with subse-

quent microfractures, bone sclerosis, and reduction in the

blood supply. The reduction in perfusion followed by a de-

crease in nutrient supply and accumulation of cellular waste,

all lead to an increase in the acidic environment that can

negatively affect cell function61-65). The molecular mecha-

nisms contributing to IDD that have been elaborated below

result in cellular dysfunction through the accumulation of

damaged proteins, altered intercellular communication, de-

regulated nutrient sensing, mitochondrial dysfunction, DNA

damage, and interruption of tissue regenerative capacity with

loss of progenitor cells (Fig. 1)66-70).

Degeneration of ECM in the NP

Typical ECM molecules in NP are proteoglycan aggre-

gates, consisting of core protein, link protein, sulfated gly-

cosaminoglycan (S-GAG), and hyaluronan, all encased

within a collagenous fiber network. This ECM provides

higher osmotic pressure to create swelling pressure capable

of withstanding compressive loading stresses71). As discs de-

generate and simultaneously dehydrate, the majority of the

matrix evolves with decreased amount of GAG, aggrecan

and elastin, and increased amounts of collagen and collagen

crosslinking, fragmented aggrecan, and advanced glycation

end productions (AGEs)73). This decreased amount of GAG

chain lengths and link protein levels, while hyaluronan lev-

els increase, are all thought to be a result of proteolytic and

glycolytic damage71-73). Versican is another hyaluronan-

binding protein that undergoes deterioration with the degen-

eration of discs. These non-aggregating proteoglycans ap-

pear to have a reduced functional ability compared to intact

aggregates based on their size, charge density, spatial rigid-

ity, and matrix interactions71-76). Syndecan-4 is a transmem-

brane heparan sulfate proteoglycan that also plays a signifi-

cant role in IDD through intracellular signaling77-79). Specifi-

cally, dysregulated activities of syndecan-4 mediate matrix

and aggrecan degradation by a disintegrin and metalloprote-

inase with thrombospondin motifs 5 (ADAMTS-5) function

and matrix metalloproteinases (MMPs) expression e.g.,

MMP377-79). The small leucine-rich repeat family of proteo-

glycans (SLRPs) typically play a significant role in struc-

tural support of the ECM. But with degeneration, SLRPs ap-
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Figure　1.　Factors Contributing to Intervertebral Disc Degeneration.

Demonstration of the multifactorial contributions to Intervertebral Disc Degeneration (IDD) including al-

terations of spine mechanics, Nucleus Pulposus (NP) & Annulus Fibrosus (AF) degeneration, DNA dam-

age, Cellular Senescence and Oxidative Stress & Deregulated signaling. Extracellular Matrix (ECM), 

Stress-induced Premature Senescence (SIPS), Matrix Metalloproteinases (MMPs), Advanced Glycation 

End Productions (AGEs), and Reactive Oxygen Species (ROS).

pear to undergo proteolytic damage leading to a loss of their

GAG content, negatively affecting the structural support of

the ECM71). Specifically, biglycan and decorin, dermatan sul-

fate proteoglycans, interact with collagen type IV and type

I/II respectively71). Others include disc collagen fibril associ-

ated SLRPs, feratin sulfate-containing fibromodulin and

lumicans, which decrease and increase with age respectively,

are thought to have an effect on disc matrix structure71,80). As

mentioned above, discs contain a rich collagen network con-

taining 80% of Type I and II, and 10-20% of type IV71). This

collagen structure also undergoes proteolytic damage from

dysregulated collagenase activity, resulting in weakened me-

chanical strength and the formation of non-enzymatic

crosslinks between basic amino acids of collagen and reduc-

ing sugars81,82). As elaborated below, this proteolytic damage

results in increased oxidative stress through AGEs, which in-

crease throughout the disc with degeneration impairing col-

lagen fibril formation83,84). To further support this concept,

oxidative stress has been shown to decrease disc elasticity

and alter the formation of secondary and tertiary structure of

collagen molecules in mice models31,83-85). This increases their

susceptibility to cleavage by MMPs, resulting in a deteriora-

tion of the biomechanical strength and structural integrity31).

Degeneration of ECM in the AF

Although the exact mechanism is not completely deline-

ated, it is assumed that mechanical load, oxidative stress, ge-

netics, inflammation, and DNA damage also contribute to a

rupture of the AF through apoptosis and altered integrity

with herniation of the NP86,87). Homeostasis in ECM, through

regulation of catabolic and anabolic functions, have been

shown to play an essential role in maintaining the integrity

of the AF structure88). Specifically, with disc degeneration,

this homeostasis is disrupted with excessive matrix catabolic

activity89,90). Two apoptotic pathways in mammalian cells, the

mitochondrial pathway and Fas/FasLigand pathway have

both been shown to be involved in AF cell apoptosis regula-

tion91-93). Islet amyloid polypeptide (IAPP), identical in com-

position to amyloid protein, participates in the regulation of

glucose metabolism, reactive oxygen species, apoptosis, and

inflammation94-98). It has been shown that the expression of

IAPP, the calcitonin receptor, and receptor activity modify-

ing protein decrease in AF cells with IDD99). This decrease

in IAPP induces an increase in reactive oxygen species and

intracellular calcium concentration along with a decrease in

MMPs, all leading to cellular death99). Human samples,

mouse models, and AF culture experiments have demon-

strated that mechanical overload-induced IDD is mediated

through the mitochondrial apoptotic pathway in AF cells92).

In addition, abnormal loading on intervertebral disc resulted

in a thickening and stiffening of collagen fibrils of the AF at

the microscale and alteration of the collagen fibrils at the

nanoscale. These changes likely lead to a change in the me-
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Figure　2.　Stress-Induced Premature Senescence Catabolic Effects.

Illustrating the stepwise formation and subsequent catabolic effects of stress-induced premature senescence 

(SIPS).

chanical and physiological homeostasis100).

DNA Damage

Proteins and other macromolecules can be degraded and

replaced; however, this is not the case with DNA66). DNA re-

quires repair mechanisms, and despite these rigorous mecha-

nisms, cells still accumulate damaged DNA over time. It has

been shown that inherited defects in genome maintenance

mechanisms can lead to a variety of diseases with acceler-

ated degeneration67). For example, DNA repair-deficient Ercc

1/D mice exhibit early onset of key IDD features, including

loss of matrix proteoglycan, reduction in disc height, and in-

creased cellular senescence57,69). DNA damage as a cause of

IDD is further supported by exposure to genotoxic stress in

humans and mice, including ionizing radiation and tobacco

smoking that accelerate disc degeneration101-104).

Hyperosmolality has also been shown to induce DNA

damage, through activation of the ATM/p53/p21WAF1 pathway

leading to the hypophosphorylation of the pRb protein and

cell cycle arrest in the G1 phase of the cell cycle105). An in-

crease in osmolality has been shown to lead to chromatin

changes and DNA damage106). Although it is still unclear

what level of hyperosmolality in NP is needed to induce

DNA damage, cells of the NP are exposed to hyperosmo-

lality levels up to 500 mOsm/kg H2O in vivo compared to <

300 mOsm/kg H2O in the majority of other tissues105).

Nutritional stress is another factor that can affect disc tis-

sue leading to degeneration and cellular damage. Because

discs are mostly avascular, the nutritional environment re-

sides narrowly above the cellular requirements in the NP

with low oxygen and glucose107-109). In addition, the disc

maintains an acidic environment with high concentrations of

lactate110). It has been shown that low O2 and low pH condi-

tions can cause DNA damage and reduce proteoglycan and

collagen synthesis111). This extreme environment puts the

disc at risk to any additional stresses112,113).

Cellular Senescence

Cellular senescence, an important mechanism for the lim-

iting of proliferation of potential cancer cells, has been de-

scribed by cessation of cell proliferation due to the critical

shortening of telomere length following successive replica-

tive cell cycles114,115). Another type of cell senescence, stress-

induced premature senescence (SIPS), results from accumu-

lation of genomic and mitochondrial DNA damage. In addi-

tion, SIPS cells also acquire a senescence associated secre-

tory phenotype leading to high amounts of secreted inflam-

matory cytokines and matrix proteinases causing a catabolic

effect on neighboring cells and on the ECM, promoting de-

generation (Fig. 2)116-120). This pathologic disc matrix process

is further supported by the observed amount of senescent

cells which have been measured by an increased expression

of senescent markers including senescence-associated b-

galactosidase, p16INK4A, and decreased telomere length. In ad-

dition, p16INK4A has been shown to have a positive correlation

with the expression of matrix metalloproteases e.g., MMP-

13 and ADAMTs-5121-125). Further supporting DNA impair-

ment can lead to disc cellular senescence is the observation

of elevated cellular senescence in the disc of DNA repair-

deficient Erccl_/D genotoxin exposed mice14,101,102). Also, further

supporting SIPS as a potential cause of disc degeneration

are in vitro cell culture studies using H2O2 to simulate oxida-

tive stress leading to DNA damage with a transformed, cata-

bolic phenotype126-128). This leads to increased matrix degra-

dation with high levels of MMPs and pro-inflammatory cy-

tokines, with IL-1 as a predominant cytokine in the patho-

genesis of IDD126-128).
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Figure　3.　Pathways Contributing to Intervertebral Disc Degeneration.

Demonstrating two pathways - inflammation and oxidation - that contribute to intervertebral disc 

degeneration. Reactive Oxygen Species (ROS), Advanced Glycation End Productions (AGEs).

Oxidative Stress and Deregulated Signaling

Oxidative inflammation is thought to be one of the main

causes of molecular damage through exogenous and endoge-

nous stressors (Fig. 3)103,104). The advanced glycation end pro-

ductions (AGEs) including pentosidine and carboxymethl-

lysine, further support oxidative damage as a source of mo-

lecular damage80,129). In the example of pentosidine, which

cross links collagen molecules, there is evidence to suggest

that it may play a role in increased collagen stiffness and

fragility affecting the biomechanics80,82,129,130). Also, oxidative

post-translational modifications, i.e. protein carboxylation,

have also shown an increase in protein fragmentation and

aggregation leading to increased disc stiffness in a mice

model21). Although disc cells reside in relative low oxygen

tension environments, reactive oxygen species (ROS) are

still generated through oxidative phosphorylation131). As disc

degeneration and AF develop fissures with associated ne-

ovascularization, this leads to an increase in oxygen tension

on otherwise hypoxic cells, further supporting the oxidative

stress on the disc environment131).

ROS is detrimental to the structural and functional ho-

meostasis of the disc by causing the damage of lipids, DNA,

and proteins132). Hydrogen peroxide, identified in human NP

tissue, along with peroxisomes detected in AF cells in vitro,

further support discs cells as ROS generators133,134). With mi-

tochondrion dysfunction as a known source of excessive

ROS production, the role of mitochondrion-dependent ROS

has been described in various disc cells including human

and rat NP and AF cells135-139). And more specifically, exces-

sive ROS production has been reported in degenerative discs

of rats140). Several studies have shown hydrogen peroxide to

down regulate the expression of collagen type II and aggre-

can in both human and rat disc cells.126,141-145) In addition, pro-

inflammatory cytokines leading to ROS overproduction have

been shown to suppress matrix synthesis and increase the

expression of matrix degradation proteases in human and rat

disc cells126,137,141,142,145,146). ROS is also known to form positive

feedback loops that enhance ROS production in disc

cells126,136,141,145-150).

Inappropriate and deregulated signaling (e.g. NF-κB and

MAPK pathway) in addition to abnormal variations in cell

fate (e.g., cellular senescence), dysregulated nutrient sensing,

and mitochondrial dysfunction has also been reported in de-

teriorating tissues including IDD70). Elevated levels of the

pro-inflammatory cytokine TNF-α, matrix proteoglycan de-

gradative products, MMPs-including MMP-3, ADAMTS-5,

have also been reported in degenerative disc suggesting an

imbalance of matrix homeostasis151-154). Other phenotypic and

functional changes that likely result from irregular responses

to damage include depletion of disc matric proteoglycan, tis-

sue dehydration, and altered disc load distribution. These

distorted conditions lead to elevated necrosis, apoptosis, and

senescence112,121,157,158).

Potential sources of oxidative stress and DNA damage in-

clude inflammation and high glucose induced stress, as in

diabetes159). NF-kB signaling is known to play a critical role

in a cell’s response to inflammation and damage, and an in-

crease in its activity has been connected to IDD with accu-

mulated oxidative stress129,139,159,160). Pharmacologic and genetic



Spine Surg Relat Res 2019; 3(1): 1-11 dx.doi.org/10.22603/ssrr.2017-0095

6

Figure　4.　Activation of MAPKs Pathway.

Illustrating one of the roles that inflammation and MAPK pathway play in contributing to interver-

tebral disc degeneration (IDD), and a possible method of hindering IDD by preventing the activa-

tion of the MAPK pathway.

systemic inhibition of NF-kB activity has been shown to re-

duce associated IDD in a mouse model141). Symptomatic

discs have been shown to have higher levels of pro-

inflammatory cytokines, TNF-α, IL1β, IL-6, and IL-8,

which are considered be associated with the NF-kB path-

way 127,128,156,162,163 ) . Mitogen-Activated Protein Kinases

(MAPKs), a family of signal transduction pathways, allow

cells to respond to extracellular inputs, including inflamma-

tory cytokines and environmental stress164,165). Specifically,

the expression of p38 MAPK, a subfamily of MAPK, has

been described in senescent AF cells166). Many components

of the catabolic process (ex. MMPs, ADAMTSs, COX-2,

PEGE2, iNOS, etc.) are dually regulated by MAPK and NF-

kB, showing the overlap between the two signaling path-

ways155). As mentioned above, pro-inflammatory cytokines

(IL-1β and TNF-α) activate MAPK pathways leading to

catabolic molecules such as ADAMTs-4, MMP-3, and

syndecan-4146,167-169). This relationship may represent a tool to

ease disc degeneration by blocking MAPK activation either

with synesthetic or natural compounds such as glucosamine

(Fig. 4)146,170). Another characteristic feature of disc degenera-

tion is the formation of cell proliferation clusters in dam-

aged areas, which is thought to be partly due to the overex-

pression of growth factor and receptors171,172). Indicating an-

other role of MAPK in disc denegation is the fact that

growth factors such as PDGF, IGF-1, and bFGF stimulate

cell proliferation through extracellular signal-related kinases,

another subfamily of MAPKs173,174).

Conclusion

The distinctive disc function that maintains stability and

motion of a mechanically loaded structure in nutrient-poor,

acidic, and hypoxic environment, offers an extraordinary op-

portunity to discover novel disc degeneration mechanisms.

As noted above, disc degeneration is a systemic process that

does not occur in isolation and is influenced by the degen-

eration of adjacent spinal structures and systemic factors.

Therefore, degeneration research of the whole spine is an

imperative for the future direction of spine degeneration and

regeneration research. And more specifically, therapeutic in-

terventions will need to target the early phases of disc and

spine degeneration prior to functional failure. Several recent

studies have strengthened our understanding of intervertebral

repair and regeneration. The in vivo performance of an acel-

lular disc-like angle ply structure that mimics the native in-

tervertebral disc was studied in a rat tail model, and it was

noteworthy that native cells were able to infiltrate the angle

ply structure while promoting tissue formation and restoring

some biomechanical behaviors175). Mesenchymal stem cell in-

jections, another way to induce regeneration, have been

shown to increase the amounts of GAG accumulation when

injected early into injured rat intervertebral discs176). Inor-

ganic polysphates have been shown to promote proteoglycan

accumulation in NP cells, even under hypoxic conditions177).

In addition, bone morphogenetic protein 2 (BMP-2) and

BMP-7 have been shown to stimulate the NP to produce ag-

grecan and collagen II in vitro and in organ culture mod-

els178). And as mentioned above, NF-kB inhibition results in

the largest reduction of IL-1β, a pro-inflammatory catabolic

cytokine179). With disc degeneration being a significant risk

factor for associated pain and disability, the prevalence will

continue to rise with our growing and aging population.

This should help stimulate further research to develop safe

and effective treatments for intervertebral degeneration and

pathology.
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