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3-Carotene inhibits rat liver chromosomal aberrations
and DNA chain break after a single injection of
diethyinitrosamine
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Summary B-Carotene (BC) has recently been found to possess potent anti-tumour activity in chemically induced rat liver carcinogenesis. In
the present study, attempts have been made to understand the basic cytogenetic and molecular mechanism of the anti-tumour effect of BC
by monitoring its effect on rat liver chromosomal aberrations (CAs) and DNA chain breaks during the early preneoplastic stage of
diethyinitrosamine (DEN)-induced hepatocarcinogenesis in male rats. DNA chain breaks, however, can be detected with great sensitivity by
exposing crude cell lysates to alkaline solutions and monitoring the rate of strand unwinding so that one strand break per chromosome can
easily be detected. Supplementary BC, in basal diet (120 mg kg~'), was given to rats 15 days before carcinogenic threat with DEN. Under
these experimental conditions, BC was found to afford a unique protection against DEN-induced CAs 96 h after DEN injection. Long-term
treatment with BC also triggered a protective effect on induction of CAs 15, 30 or 45 days after DEN treatment, which was maximal on
structural aberrations followed by numerical and physiological types. BC treatment for 15 days before DEN injection was found to offer a
significant (P < 0.001) protection in the generation of single-strand breaks compared with DEN control. Thus, BC ranks as a potential

chemopreventive agent for the future so far as chemical rat liver carcinogenesis is concerned.
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A large number of epidemiological studies evaluating the relation-
ship between the consumption of carotene-rich fruits and vegeta-
bles and cancer incidence at several sites have demonstrated
strong inverse associations (Van Poppel, 1993; Gerster, 1996).
Studies of B-carotene (BC) in vivo and in cell cultures have
demonstrated a protective effect against malignant transformation
(Gerster, 1995). In experiments using normal cells initiated by a
carcinogen, progression was prevented, and in experiments using
cancer cells stimulated by further carcinogens, proliferation was
inhibited (Krinsky, 1993a; Gerster, 1995). Furthermore, interven-
tion studies in experimental animals have demonstrated with a
high degree of consistency that BC delays and slows down tumour
growth that is induced and promoted by a variety of carcinogens at
various stages of carcinogenesis (Rousseau et al, 1992; Krinsky,
1993b; Gerster, 1993). The prencoplastic lesions induced by
diethylnitrosamine (DEN) in the resistant hepatocyte model in rats
have been reported to be reduced to a significant level by BC
(Moreno et al, 1991). Tsuda et al (1994) have reported that BC
prevents 2-amino-3-methylimidazo [4,5-f] quinoline-induced rat
hepatocarcinogenesis in the initiation phase by significantly
decreasing preneoplastic glutathione S-transferase placental form-
positive foci. Recently, we have reported from our laboratory that
BC prevents the neoplastic transformation in the liver induced by
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chronic 2-acetylaminofluorene (2-AAF) by altering the level of
hepatic drug metabolism (Sarkar et al, 1994a). Further, during 3’-
methyl-4-dimethylaminoazobenzene (3’-Met-DAB) hepatocar-
cinogenesis, we have also shown that BC may be more effective in
preventing the process at the level of hepatic antioxidant defence
mechanism (Sarkar et al, 1995b). Moreover, we have documented
that DEN-induced hepatic lipid peroxidation, red blood cell
membrane protein damage and elevated superoxide dismutase
activity are inhibited by dietary exposure to BC during initiation of
hepatocarcinogenesis (Sarkar et al, 1995a).

DNA is generally considered to be the most critical cellular target
when considering the lethal carcinogenic and mutagenic effects of
drugs, radiation and environmental chemicals (Birnboim and
Jevcak, 1981). These agents may damage DNA by altering bases or
disrupting the sugar—phosphate backbone. Although base damage
may have serious consequences for a cell, low levels of base damage
are difficult to measure by physical or chemical means (Paterson,
1978). In contrast, DNA strand breaks can be detected with great
sensitivity by methods that make use of the observation that the role
of unwinding of the two DNA strands in alkali is related to the cova-
lent length of the strands (Ahnstrom and Erixon, 1973; Kohn and
Ewig, 1973; Rydberg, 1975; Kohn et al, 1976; Sheriden and Huang,
1977). As little as one break per chromosome [equivalent to approx-
imately 0.04 Gy (1 Gy = 100 rads) of %Co Yy-irradiation] can give a
detectable increase in the rate of unwinding (Rydberg, 1980).
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Earlier methods for detecting DNA unwinding in alkali have
required physical separation of single- from double-stranded DNA
using a hydroxyapatite column, specific nuclease digestion and
precipitation or filter binding (Ahnstrom and Erixon, 1973; Kohn
and Ewig, 1973; Rydberg, 1975). In addition, radiolabelling of
cells was required for detection of the small amounts of DNA
involved. In cases where radiolabelling was not feasible, or was to
be avoided, sensitive fluorimetric methods were substituted to
permit detection and quantitation of DNA after column or filter
separation (Gutin et al, 1977; Bradley et al, 1978; Kanter and
Schwartz, 1979; Erickson, et al, 1980). We now describe the use of
a fluorescent dye for monitoring DNA unwinding in a different
way. In our method, the dye is used as a direct probe of isolated
DNA from rat liver, obviating the need for physical separation of
single- from double-stranded DNA; the final procedure is conse-
quently simpler and more rapid than were earlier methods.

In this communication, we report for the first time that BC can
prevent the neoplastic transformation of the liver of rat treated with
a single necrogenic dose of DEN by inhibiting hepatic chromo-
somal aberrations (CAs) and DNA chain breaks to a significant
extent. Further, we now report a new procedure, namely fluori-
metric analysis of DNA unwinding (FADU), which is much simpler
to perform than earlier methods, directly after isolation and purifi-
cation of hepatic DNA. Details of the procedure are described and
an example of its use for detecting initial DNA damage by a necro-
genic dose of DEN and its alteration by BC treatment is presented.

MATERIALS AND METHODS
Animals and diet

Male Sprague-Dawley rats obtained from the Indian Institute of
Chemical Biology (Calcutta, India) and weighing 80-100 g at the
beginning of the experiment were used. The animals were kept in
metal cages (five rats per cage) at a constant temperature 22 + 1°C,
relative humidity 50-60% with a 12:12 h controlled dark-light
rhythm. The animals were provided with water and food (Lipton,
India) ad libitum. All animals were acclimatized to the facility for
1 week before the commencement of the study.

Treatment of animals

The rats were randomly divided into different experimental
groups with five in each. Initiation of hepatocarcinogenesis was
performed by a single intraperitoneal (i.p.) injection of DEN at a
dose of 200 mg kg! body weight in 0.9% sodium chloride solu-
tion, according to the regimen described previously (Bishayee and
Chatterjee, 1995). Control rats received an equivalent volume of
sodium chloride vehicle solution. At 18-20 h after sodium chloride
or DEN injection, rats were subjected to two-thirds partial hepatec-
tomy (PH) under ether anaesthesia. BC in basal diet was used at the
dose of 120 mg kg! throughout the experiment, with the treatment
starting 15 days before the initiation with DEN. In accordance with
our previous reports (Sarkar et al, 1994a; 1995a,b), treatment with
BC according to this regimen exerts the maximum protective effect
in rat liver carcinogenesis induced by several hepatocarcinogens.
Altogether, four groups of rats were taken for experimentation.
Group A rats were the vehicle controls (received sodium chloride
solution), group B animals were the DEN controls, group C
animals received BC in the basal diet 15 days before DEN treat-
ment while Group D animals were BC controls.
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Chromosome preparation

Pretreatment was performed by injecting colchicine in 0.9% sodium
chloride at 2 mg kg! body weight i.p. 3 h before killing. Hepatocytes
were isolated by the procedure of Horiuchi et al (1984), which
involved incubation of finely minced rat liver slices (about 1 mm?)
with 0.05% collagenase (type IV) solution for 30 min. After this, the
supernatant was carefully removed and 10 ml of Hanks’ solution
(Ca?* and Mg?* free) was added to the tissue. The hepatocyte suspen-
sion was obtained by gently pipetting the tissue up and down and
then allowing it to stand for 5Smin. The supernatant was then
subjected to centrifugation at 3200 g for 5 min. Pellets of isolated
hepatocytes were resuspended in 0.075 M potassium chloride and
kept at 37°C for 25 min. The potassium chloride solution was then
replaced by the fixative, i.e. methanol-glacial acetic acid (3:1),
which was changed three times. After the third fixation, chromosome
slides were prepared by spreading fixed cells over chilled (in 50%
methanol) and grease-free slides and put through a flame. The slides
were kept overnight under air and stained with Giemsa (3% solution,
pH 5.9) for 30 min for scoring chromosomal anomalies.

Scoring of CAs data

The coded slides for examination were scored blind. Metaphase cells
with one or more types of CAs were scored from at least 50 well-
spread metaphase plates per rat (i.e. 250 metaphase plates per
group), and the frequency of CAs was expressed as the percentage of
total aberrant metaphase plates. The aberrations were classified into
three major groups according to our previously published criteria
(Sarkar et al, 1994b). Group I, i.e. structural aberrations, included
gaps, breaks, deletions, fragments, centric fusions, rings and translo-
cations (i.e. the direct effect on chromosomes). Group II aberrations,
i.e. numerical aberrations, were represented by polyploidy and aneu-
ploidy (i.e. the direct effect on spindle apparatus). Group III, i.e.
physiological aberrations, consisted of stickiness, pyknosis, C-
mitotic effect, erosions and pulverizations (i.e. lethal effects).

Isolation of DNA

DNA was isolated from the frozen hepatectomized rat liver by a
modification of the published procedure (Gupta, 1984), with enzy-
matic RNA digestion before proteinase K treatment of the tissue
homogenate. This modification eliminated one extraction and one
precipitation step of the published procedure, resulting in a
substantially reduced extraction time. Briefly, frozen tissue (5 g)
was suspended in 3.0 ml of 1% sodium dodecyl sulphate, 1 mm
EDTA, 10 mM Tris-HCI (pH 7.4) and homogenized in a Teflon-
coated homogenizer for 30 s. The homogenate was incubated at
37°C with ribonuclease A at a concentration of 200 pg ml-! for 1
h, followed by treatment overnight with proteinase K (500 ug
ml!) at 55°C. The solution was extracted successively with one
volume each of phenol, 1:1 mixture of phenol-sevag (chloro-
form—isoamyl alcohol, 24:1, v/v) and sevag, as described else-
where (Gupta, 1984). DNA in the aqueous phase was then
precipitated by the addition of one-tenth volume of 5M sodium
chloride and two volumes of cold ethanol collected by centrifuga-
tion at 13 000 g for 5 min, washed twice with 3 ml of 70% ethanol
and dissolved in 0.5 ml of TE buffer (20 mM Tris, | mm EDTA, pH
8.0). DNA concentration was estimated spectrophotometrically
(Randerath et al, 1981; Reddy et al, 1984) and then the solution
was stored at —20°C.
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Assay of DNA unwinding

The principle of the DNA unwinding is as follows. Morgan and
Pullyblank (1974) have reported that the fluorescent dye ethidium
bromide (EtBr) binds selectively to double-stranded DNA in the
presence of single-stranded DNA when short duplex regions in
single-stranded DNA molecules are destabilized by alkali treatment.

DNA was isolated from all the groups (i.e. A, B, C and D) three
times from each control and experimental animals. Each isolated
DNA solution is divided equally among three sets of tubes. The
contribution to fluorescence by components other than double-
stranded DNA (including free dye) is estimated from a blank
sample (B) in which the DNA solution is first sonicated highly and
then treated with alkali, under conditions that cause complete
unwinding of low molecular weight double-stranded DNA. A
second sample is used for estimating total fluorescence (T), i.e.
fluorescence due to the presence of double-stranded DNA plus
contaminants. The difference (T-B) provides an estimate of the
amount of double-stranded DNA in the DNA pool. A third sample
(P) is exposed to alkaline conditions, sufficient to permit partial
unwinding of the DNA, the degree of unwinding being related to
the size of the DNA. The fluorescence of the sample minus the
fluorescence of the blank (P-B) provides an estimate of the
amount of double-stranded DNA remaining. The percentage of D
is given by the equation:

Percent D = (P-B) + (T-B) x 100

Estimation of single-strand breaks

Estimation of the number of single-strand breaks per DNA frag-
ment was made by using the following method. It is assumed that
the distribution of single-strand breaks in the DNA population
follows a simple Poisson’s law. Under these circumstances, it is
possible to make an approximate estimate of the average number
of single-strand breaks (n) per DNA unit from the simple equation
(Basak, 1996):

e = DIS+D

where S is the percentage DNA that remains single-stranded after
alkali treatments and D is the percentage remaining as duplex
DNA. D/S+D represents the fraction (f) of molecules without
strand breaks. The values of n corresponding to different DNA
solutions isolated from different groups (groups A, B, C and D)
were then estimated.

Shearing of DNA

DNA was sheared by passing the DNA solution (20-25 times)
through a 24-gauge needle using a hypodermic syringe.

Alkali treatment and neutralization

The optical density (OD) of the DNA solution was adjusted to 2.0
‘at 260 nm. For alkali treatment (denaturation), 2.0 ml of DNA
solution in TE buffer (20 mM Tris, 1 mM EDTA, pH 8.0) was
mixed with an appropriate aliquot (about 2.4 ml) of alkali solution
(0.1 N sodium hydroxide, 0.001 M EDTA) so that the pH of the
mixture becomes 12.8. After about 10 min (determined by trial
experiments), the pH of the mixture was brought down to about
9.0 by addition of an approximate aliquot (about 1.3 ml) of an acid
solution (0.025 M Tris, 0.225 N hydrochloric acid).
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FADU

DNA was isolated from the livers of the different groups
mentioned earlier. To check the purity of the DNA solution, the
ratio of absorbance at A, /A, and A, /A . were determined.
This DNA solution was distributed into 12 test tubes, in each time
period (experiments were repeated four times) each tube contained
2.0 ml of the DNA solution of OD equal to 2.0 at 260 nm. The
tubes were designated as T, P or B in each group. The DNA solu-
tion in tube B was sheared initially as described earlier. To the P
and B tubes, alkali solutions were first added, mixed and then tubes
were incubated at 15°C for 10 min. Denaturation was stopped by
chilling to 0°C and addition of acid solution, as described earlier.

The T tubes differ from P tubes in that the alkali and acid solu-
tions, i.e. denaturing and neutralizing solution, were mixed
together before addition of DNA solution. An aliquot (0.2 pul) of
EtBr solution in 0.003 M sodium hydroxide containing 96 ug ml-!
EtBr was added to each tube and the fluorescence was read at
room temperature in a Waters spectrofluorimeter (excitation at
525 nm and emission at 591 nm).

The extent of DNA unwinding after a given time of exposure to
alkali is calculated from the fluorescent values of T, P and B
samples. The percentage of D (double-stranded DNA) is given by
(P-B) + (T-B) x 100.

Statistical analysis

Data were analysed statistically for differences between the
means using Student’s ¢-test and values of P < 0.05 were taken to
imply statistical significance. Data were also subjected to the two-
way analysis of variance test (ANOVA) among different time
intervals.
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Figure 1 Influence of BC on total aberrations in rat liver cells 96 h after a
single i.p. injection of DEN. *P < 0.001 compared with group A. *P < 0.01
compared with group B

British Journal of Cancer (1997) 76(7), 855-861



858 A Sarkar et al

Table 1 Influence of dietary BC on frequency distribution of CAs in rat liver cells treated with DEN
Time Group/ Structural CAs Numerical CAs  Physiological CAs Total aberrations Protection
(days) treatment®
Individual type Exchange type (aneuploidy, (stickiness,
(chromatid breaks, (centric fusions, polyploidy) pulverizations,
fragments and gaps translocations, rings) erosions)
No. % No. %  No. %  No. %  No. % %

A 1 0.40 0 000 O 0.00 1 0.40 2 0.8 +0.48° -

B 48 19.20 50 20.00 40 16.00 80 32.00 218 87.28+4.57¢ -
15 C 30 12.00 36 1440 30 12.00 60 2400 154 61.64+2.91¢ 29.30

D 0 0.00 1 040 1 040 O 0.00 2 0801048 -

A 0 0.00 1 040 O 000 2 0.80 3 1.2+0.48 -

B 55 22.00 50 20.00 42 16.80 50 20.00 197 78.80+2.39° -
30 C 32 1280 25 10.00 20 8.00 3t 1240 108 43.26 +3.98° 45.10

D 1 0.40 1 040 O 000 O 0.00 2 0.80+0.48 -

A 1 0.40 0 000 O 000 1 0.40 4 1.60 £ 0.40 -

B 65 26.00 50 20.00 50 20.00 55 22.00 205 82.00+242¢ -
45 C 25 10.00 20 8.00 22 880 25 10.00 92 36.80+2.05° 55.10

D 1 0.40 0 000 2 080 1 0.40 4 1.60+0.97 -

2DEN (200 mg kg-') was injected i.p. and chromosome specimens (50 metaphase plates per rat, i.e. 250 plates per group) were prepared 15, 30 or 45 days
after DEN injection. BC was supplemented in the basal diet 15 days before DEN treatment and continued for 15, 30 or 45 days post treatment. ®Values indicate
means = s.e. of five animals; °P < 0.001 significant difference from group A; 9P < 0.01 and P < 0.001 significant difference from group B. Per cent protection is

expressed against group B.

Table 2 Calculated F-values for ANOVA (fixed-effect model) with multiple
observations (five) per cell between DEN and BC with DEN-treated rats and
among four time-points (i.e. 96 h, 15, 30 or 45 days) for CAs

Source of variation df CAs Table value (at 0.01)
Between levels of time 3 15.74 4.46
Between levels of treatment 1 202.71 7.50
Interaction (time x treatment) 3 7.60 4.46

df, degrees of freedom.

RESULTS

Effect of BC on DEN-induced CAs studied at different
time-points after DEN treatment

Short-term experiment

A single i.p. injection of DEN at 200 mg kg-! body weight induced
a considerable number (P < 0.001) of CAs in rat liver cells in group
B 96 h after the treatment as compared with control group, i.e.
group A (Figure 1). In the majority of cases, DEN-induced CAs
consisted of mainly the structural aberrations, i.e. gaps and breaks.
No numerical or physiological aberrations were found after 96 h of
DEN injection, although in some plates extreme stickiness was
observed, but this was erratic in occurrence (data not shown).
Dietary supplementation with BC that started 15 days before DEN
injection and continued until sacrifice (group C), considerably
suppressed the incidence (P < 0.01) of total CAs compared with
the DEN control group, i.e. group B (Figure 1). Rats fed BC alone
with PH (group D) did not show any change in total CAs value
compared with their control counterparts (Figure 1).
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Figure 2 Standardization of FADU experiment with various artificially mixed
single- and native double-stranded DNA populations in different ratios
showing linearity of response of fluorescence level with increasing level of
DSDs. UST DNA (@), unsheared salmon testis DNA; SST DNA (O), sheared
salmon testis DNA; URL DNA (A), unsheared rat liver DNA; SRL DNA (),
sheared rat liver DNA

Long-term experiment

A single i.p. injection of DEN (in group B) increased the
percentage of aberrant metaphase cells observed in rat liver 15, 30
or 45 days after the injection (Table 1). The DEN-induced total
percentage of CAs was found to be maximum 15 days after DEN
treatment and then decreased slightly. Most of the abnormalities
induced by DEN indicated direct damaging effect on chromo-
somes, i.e. structural aberrations followed by physiological and
numerical types. A maximum total percentage of structural aberra-
tions (individual plus exchange type) was observed 45 days after
DEN injection. Daily supplementation of the basal diet with BC
started 15 days before DEN injection and continued for different
time-periods (in group C) considerably suppressed the incidence
of DEN-induced CAs in rat liver cells (Table 1). The suppressive
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Table 3 Effect of dietary BC on the number of single-strand breaks per DNA
fragment in rat liver 24 h after a single i.p. injection of DEN

Number of single
strand breaks per DNA fragment

Group Inhibition (%)

0.07 £ 0.012 -
1.19+£0.22° -
0.48 + 0.06° 59.66
0.08 +0.01 -

OO0 >

aValues are means  s.e. of 12 experiments; °P < 0.01 compared with group
A; °P < 0.02 compared with group B.

120

Percentage

Group

Figure 3 Effect of BC on the generation of DNA chain breaks in the
presence or absence of DEN treatment. DSD (M), double-stranded DNA
and SSD (&), single-stranded DNA. +P < 0.001 compared with group A.
*P < 0.001 compared with Group B

effect of BC was found to be dependent upon the total length of its
continuous supplementation. A maximum beneficial effect of BC
against DEN-induced CAs was achieved when it was continued
until 45 days after the carcinogenic insult, i.e. for a total period of
60 days. BC-mediated protection of CAs was predominantly
reflected in its ability to reduce the structural aberrations, irrespec-
tive of the duration of BC treatment. However, maximum protec-
tion against structural aberrations by BC was evident when the
animals were killed 45 days after DEN treatment. Control rats that
received only BC (group D) for different time-periods at the same
dose as indicated for experimental groups showed no significant
increase in CAs in their liver cells compared with that of normal
counterparts (group A) (Table 1).

As illustrated in Table 2, two-way ANOVA showed significant
differences in CAs at the 1% level between the DEN and BC-
treated DEN group during the four time-points studied here, i.e.
96 h, 15, 30 and 45 days.
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Standardization of FADU

The standardization experiments were performed first with a stan-
dard DNA, namely salmon testis. This was compared with the
isolated and purified rat liver DNA. A portion of both the DNAs
were subjected to alkali-induced DNA unwinding as described
earlier and were marked as single-stranded DNA (SSD), whereas
the remaining portions of the DNA were kept as native double-
stranded DNA (DSD). These two DNA solutions were artificially
mixed in different ratios with each other, as depicted in Figure 2.
These experiments were also performed with both physically
sheared and unsheared DNAs. Both standard and isolated DNAs
showed a steady and linear response in the fluorescence level with
the rise in the concentration of DSDs. This experiment for standard
DNA was repeated four times whereas that of isolated DNA was
done in quadruplicate.

Effect of BC on DEN-induced hepatic DNA chain break

A single i.p. injection of DEN in group B resulted in a significant
rise in hepatic DNA single-strand break after 24 h compared with
normal controls, i.e. group A (Figure 3). Whereas the native double-
stranded DNA of group B animals was only three-fold (P < 0.001)
less than in normal control animals (i.e. group A) animals, the aber-
rant single-stranded regions in group B animals were more than ten-
fold (P < 0.001) higher than in the group A controls (Figure 3). This
dictates the direct DNA-damaging potential of the hepatocarcinogen
DEN. In contrast, a statistically significant (P < 0.001) decrease in
the total single-stranded DNA generation was observed in the BC-
treated group 24 h after DEN injection (Figure 3). Moreover, the
native double-stranded DNA in group C animals was almost two-
fold higher than in group B animals (Figure 3). Table 3 shows the
number of single-strand breaks/DNA 24 h after DEN injection in the
presence or absence of BC supplementation. There was a significant
(P < 0.01) increase in the number after DEN treatment alone
compared with control counterparts. On the other hand, hepatic
DNA in the BC-supplemented DEN group showed 59.66% fewer
single-strand breaks/DNA compared with DEN controls (group B).
Supplementation of the basal diet with BC alone for 15 days (group
D) did not have any DNA-damaging effect, as revealed by
the insignificant difference in the generation of single-strand
breaks/DNA compared with normal controls, i.e. group A (Table 3).

DISCUSSION

The participation of CAs in tumour initiation and promotion is well
documented and is suggested by the association of specific chromo-
somal rearrangements with particular cancers (Gilbert, 1983).

CAs are known to be important somatic mutations and are
clearly involved in the origin as well as progression and diversifi-
cation of certain types of cancers (Nowell, 1976; Land et al, 1983),
but it is difficult to characterize aberrations crucial for initiation
and early stages of tumour development. However, in view of the
acknowledged importance of CAs as a hallmark of stage of
progression in multistage carcinogenesis, we attempted to gain an
insight into the critical CAs involved in the early stages of hepatic
neoplasia accompanied by DNA chain breaks induced by the
potent hepatocarcinogen DEN and its possible alterations by BC -
a well-established anti-tumour micronutrient.

Induction of pro-oxidant status causes lipid peroxidation
because the polyunsaturated fatty acid side chains of membrane
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lipids are particularly sensitive to oxidation. Lipid hydroperoxides
and their degradation products may act as clastogenic factors (low
molecular weight components that break chromosomes at the
same or remote tissues). These lipid hydroperoxides and active
oxygen species mostly act as secondary agents that produce
secondary DNA damage in reactions with cellular molecules other
than DNA and are thus potent inducers of CAs (Cerutti, 1985).

Further, a study of the early stages of hepatocarcinogenesis
became possible with the use of cell lines that were derived from
rat liver after the exposure of rats to a carcinogen for a limited time
period (Kerler and Rabes, 1988). A minimal alteration in chromo-
somal pattern was found to correlate with an earlier preneoplastic
stage, as evidenced by chromosomal analysis of DEN-induced
tumorigenic and non-tumorigenic rat liver cell lines (Holecek et al,
1989). In our present study, a variable increase in CAs in rat liver
cells at various time intervals was observed during the early
preneoplastic stage of DEN-induced hepatocarcinogenesis. Our
results with respect to CAs are in agreement with those previously
observed during preneoplasia in rat liver cells using the same
hepatocarcinogen (Grover and Fisher, 1971; Hitachi et al, 1974).

Another striking observation of the present study was the BC-
mediated suppression of structural as well as numerical aberra-
tions. It has been well established that in the majority of malignant
tumours, the neoplastic cells have undergone chromosomal alter-
ations that are viable in extent but are often highly complex,
usually indicating structural and numerical aberrations. Again, a
high rate of chromosome breakage, which represents structural
aberrations, has been aetiologically associated with the initiation
of the carcinogenic process. Thus, if the breakage lesions are
found to be non-random and if the breakage loci happen to be
those that are virtually linked to tumorigenesis, then the proba-
bility of tumorigenesis would increase drastically in the target
tissue (Dave et al, 1994). In the light of above, the role of BC in
suppressing the structural and numerical aberrations as observed
here may reflect the ability of BC to counteract the initiation of rat
liver carcinogenesis. This finding corroborates our earlier observa-
tion that the anti-carcinogenic potential of BC is maximally
observed during the initiation phase of DEN-induced hepato-
carcinogenesis in rats (Sarkar et al, 1995a).

Carcinogen-induced DNA damage, DNA repair and sister chro-
matid exchange (SCE) are significant events during the initiation
stage of carcinogenesis (Popescu et al, 1984). Very little informa-
tion is available regarding BC inhibition of experimental carcino-
genesis at the chromosomal level. In one study, Manoharan and
Banerjee (1985) reported that in the mammary epithelial cell trans-
formation model in organ culture, the presence of BC during 24 h
treatment (initiation stage) of the glands with the carcinogens, e.g.
DEN, dimethylbenz(a)anthracene and methyl nitrosourea, caused
a highly significant reduction of SCE induced by the same
carcinogens.

At present the intricate mechanism of this anticlastogenic
response of BC is unknown. It is well known that DNA strand
breaks responsible for chromosomal alterations are generated from
DNA-base lesions induced by most chemical mutagens. These
DNA-base lesions are generally repaired by the excision-repair
system (Friedberg et al, 1979). One hypothesis is that the in vivo
anticlastogenic effect of BC, as observed here, may be due to the
promotion of excision-repair activity. The substantial decrement
of the single-strand breaks can explain one possible mechanism of
the anticlastogenic potential of BC. Again, it has also been estab-
lished that DNA double-strand breaks (DDBs) are generated from
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mutagen-induced DNA lesions in the S-phase of cell cycle. It is
considered that DDBs are repaired by post-replicational repair in
the G, phase and that unrepaired DDBs result in breakage-type
CAs (Kihlman et al, 1982). In this context, the suppression of
breakage-type aberrations by BC may be due to a modification of
the capability of the post-replicational repair of DDBs.

Regardless of the mechanism, the results of this study provide
strong evidence that the antioxidant BC triggers a unique protec-
tive effect against the induction of CAs and DNA chain breaks by
a potent hepatocarcinogen, DEN. The biological and molecular
response of the dietary micronutrient BC observed here may have
value as a chemopreventive agent in the war on human cancer.
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