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Summary

Leaf litter decomposition is a major carbon input to
soil, making it a target for increasing soil carbon stor-
age through microbiome engineering. We expand
upon previous findings to show with multiple leaf lit-
ter types that microbial composition can drive varia-
tion in carbon flow from litter decomposition and
specific microbial community features are associated
with synonymous patterns of carbon flow among lit-
ter types. Although plant litter type selects for differ-
ent decomposer communities, within a litter type,
microbial composition drives variation in the quantity
of dissolved organic carbon (DOC) measured at the
end of the decomposition period. Bacterial richness
was negatively correlated with DOC quantity,
supporting our hypothesis that across multiple litter
types there are common microbial traits linked to car-
bon flow patterns. Variation in DOC abundance
(i.e. high versus low DOC) driven by microbial com-
position is tentatively due to differences in bacterial

metabolism of labile compounds, rather than catabo-
lism of non-labile substrates such as lignin. The tem-
poral asynchrony of metabolic processes across
litter types may be a substantial impediment to dis-
covering more microbial features common to synon-
ymous patterns of carbon flow among litters. Overall,
our findings support the concept that carbon flow
may be programmed by manipulating microbial com-
munity composition.

Introduction

Soil has an enormous potential to store organic carbon
(Schmidt et al., 2011). Consequently, management strat-
egies to increase soil carbon storage are of keen interest
as a means to reduce atmospheric CO2 pollution
(Batjes, 1999; Prescott, 2010; Paustian et al., 2019).
Because plant litter decomposition releases large quanti-
ties of carbon to the atmosphere and soil (Cotrufo
et al., 2015), understanding the factors that control car-
bon flow from plant litter is a priority. Conventional factors
affecting the rate and fate of carbon flow from litter
decomposition include climate and litter chemistry
(Aerts, 1997). More recently, microbial composition was
identified as a key factor based on observed variation in
litter decomposition rates even when conventional vari-
ables were constant (Strickland et al., 2009; Cleveland
et al., 2014; Bradford et al., 2016). The failure of abiotic
factors to explain large variation (e.g. up to 70-fold) in lit-
ter decomposition in natural ecosystems (Bradford
et al., 2014; Bradford et al., 2017) emphasizes the poten-
tial impact of microbial composition as a controlling fac-
tor. Since microbially derived products from plant litter
decomposition are found to be a major component of per-
sistent soil organic carbon (Grandy and Neff, 2008;
Prescott, 2010), deciphering the microbial community
features that can affect soil carbon should enable new
management strategies. Manipulating microbial commu-
nity features on litter at the soil surface in order to influ-
ence below-ground soil organic carbon accumulation is
of particular interest because microbial communities in
the litter layer are easily accessible for land management
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spondence. E-mail dunbar@lanl.gov; Tel. 505 667-8806.

© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits
use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or
adaptations are made.

Environmental Microbiology (2021) 23(11), 6676–6693 doi:10.1111/1462-2920.15705

https://orcid.org/0000-0001-5601-2420
mailto:dunbar@lanl.gov
http://creativecommons.org/licenses/by-nc-nd/4.0/


Several microbial features have been proposed to
affect litter carbon flow and influence soil carbon storage.
For example, the dominance of brown versus white-rot
fungi is of interest owing to an observed correlation of
these groups with soil carbon abundance in coniferous
forests (Bai et al., 2017), possibly linked to their differ-
ences in melanin production (Siletti et al., 2017). Simi-
larly, the ratio of fungi to bacteria has correlated with soil
carbon abundance in some ecosystems (Waring
et al., 2013; Malik et al., 2016). The ratio of oligotrophic
to copiotrophic bacteria (Wieder et al., 2015) or special-
ists to generalists (Lopez-Mondejar et al., 2018) may
affect the quantity of litter carbon retained in microbial
biomass owing to differences among these guilds in car-
bon use efficiency, at least when carbon supplies are in
excess (Saifuddin et al., 2019). Microbial species rich-
ness is an emergent community property that has been
examined as a factor (Nielsen et al., 2011; Louis
et al., 2016) and is of particular interest because it is
easily measured, well documented and amenable to
manipulation.

Several recent microcosm studies have shown a
strong link between microbial taxon richness and litter
decomposition dynamics (CO2 efflux and/or litter mass
loss) (Juarez et al., 2013; Maron et al., 2018; Wagg
et al., 2019). These studies reduced richness up to five
orders of magnitude by extreme dilution or by size frac-
tionation of microbial communities prior to inoculation into
microcosms (Juarez et al., 2013, Maron et al., 2018,
Wagg et al., 2019). Using an alternative approach that
exploits naturally occurring variation in soil microbial com-
munity composition, we found a strong correlation
between bacterial richness and the quantity and quality
of dissolved organic carbon (DOC) from pine
litter decomposition (Albright et al., 2020a; Albright
et al., 2020b). The link between microbial richness and
DOC abundance illuminates a means by which features
of surface litter decomposer communities may affect
organic matter abundance in the deep subsurface. DOC
is a critical link between ephemeral carbon at the soil sur-
face and persistence in the deep subsurface (e.g. 1 m
belowground). Changes in the quantity or quality of DOC
transported to the deep subsurface can alter the
binding of organic carbon to mineral surfaces (Kaiser
and Kalbitz, 2012; Newcomb et al., 2017), which is key
to carbon stabilization at the millennial-scale
(Schöning and Kögel-Knabner, 2006; Rumpel and Kögel-
Knabner, 2010).

To further explore the relationship between microbial
richness and litter carbon flow mentioned above in
Albright et al. (2020a) and Albright et al. (2020b), we
tested the relationship with additional litter types inocu-
lated with microbial communities from 100 different soils.
Litter chemistry strongly affects both microbial community

and DOC composition (Cleveland et al., 2004; Don and
Kalbitz, 2005; Strickland et al., 2009; Bray et al., 2012;
Wickings et al., 2012). Consequently, the relationship
between microbial richness and DOC abundance discov-
ered in one litter type (e.g. pine) may not be evident in
other litter types due to inherent differences in litter
chemistry.

Using our prior pine litter decomposition study as a
baseline (Albright et al., 2020a; Albright et al., 2020b), we
applied the same approach with oak litter (Quercus gam-
belii) and a grass litter mix (one to one mix of Hilaria
jamesii and Stipa hymenoides) that is common in the
southwestern United States. A random subset of 100 soils
out of the 206 soils from the pine study (Albright
et al., 2020b) were used to inoculate oak and grass lit-
ters. We measured carbon flow as cumulative CO2 pro-
duction throughout the 44-day experiment and DOC
abundance at the end of the experiment. In addition to
examining microbial richness using 16S and 28S rRNA
amplicon sequencing, we asked if synonymous patterns
of carbon flow (represented by the high versus low DOC
abundance groups) among litter types shared a common
metabolic signature. Metabolic signatures were represen-
ted as SEED. Subsystem functions documented in
metatranscriptomes of six litter decomposer communities
from each DOC group from the pine, oak and grass litter
experiments. We hypothesized that (i) plant litter type
selects for different decomposer communities, but within
a litter type, microbial richness varies with DOC abun-
dance, and (ii) synonymous carbon flow patterns among
litter types share common metabolic features.

Materials and methods

Initial soil collection for microbial inoculum

Soil samples were collected from 208 locations through-
out the southwestern United States between February
and April 2015 as described previously (Albright
et al., 2020a) (Supplemental Table 1). Samples were typ-
ically collected at locations approximately 80 km apart, at
least 15 m from roadways, from the top 3 cm of the soil
surface after removal of surface litter. Samples were col-
lected in sterile 50-ml screw-cap tubes and immediately
stored on ice. The location of each sample was recorded
by GPS and photographed to facilitate description of the
major ecosystem types from which samples were
obtained (Supplemental Table 1).

Microcosm construction and CO2 sampling

As described in Albright et al. (2020a), microcosms were
constructed using 125 ml serum bottles, each containing
approximately 5 g of sand and an initial dose of 0.02 g of
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dried leaf litter that was milled in a Wiley Mill (Thomas
Scientific, Swedesboro, NJ, USA). Litters used were
either pine (Pinus ponderosa), oak (Quercus gambelii),
or a grass mix (one to one mix of Hilaria jamesii and
Stipa hymenoides). Oak and pine litters were collected in
Los Alamos, NM and Hilaria jamesii and Stipa
hymenoides litter were collected in Canyonlands,
UT. The microcosms were sterilized by autoclaving three
times for 1 h, with at least an 8-h resting interval between
each autoclave cycle. Microbial community inoculum was
extracted from each soil sample with the pine study using
206 soils, while the grass and oak study used a randomly
selected subset of 100 soils each (n = 206 for pine, n =

100 for oak, n = 100 for grass) (Supplemental Table 1).
The microbial inoculum was extracted by suspending 1 g
of soil in 9 ml of phosphate-buffered saline (PBS), then
generating a 1000-fold dilution in PBS amended with
NH4NO3 at 4.8 mg ml�1 on the day of microcosm inocu-
lation. The nitrogen addition was consistent with applica-
tion rates used in field studies investigating the impacts
of anthropogenic N deposition (Mueller et al., 2015). The
pine experiment used three microcosms replicates per
soil sample (n = 618 total) while the oak and grass
experiments used two microcosms per soil sample (n =

200 oak, n = 200 grass). Each microcosm received
1.3 ml of inoculum, pipetted directly onto 0.02 g of litter.
Negative control microcosms, used to confirm the effi-
cacy of sterilization, received the same quantities of litter,
PBS and NH4NO3, but no microbial communities. The
microcosms were incubated in two phases. In the first
phase, sealed microcosms were incubated at 25 �C in
the dark for 14 days to allow physiological equilibration of
the diverse inocula on the leaf litter. To prevent oxygen
depletion and excess CO2 accumulation, the headspace
of each serum bottle was evacuated using a vacuum
pump and replaced with sterile-filtered air on days 3 and
7. On day 14, the second phase was started by adding a
further 0.1 g of litter sterilized by three rounds of
autoclaving to each microcosm and sealing the micro-
cosms with Teflon-lined crimp caps. The microcosms
were incubated at 25 �C in the dark for a further 30 days.
During this time, CO2 was measured by gas chromatog-
raphy using an Agilent Technologies 490 Micro GC
(Santa Clara, CA, USA) on days 2, 5, 9, 16, 23 and 30.
After each measurement, the headspace air was evacu-
ated with a vacuum pump and replaced with sterile-
filtered air. Cumulative CO2 was calculated by taking the
sum of the CO2 quantities recorded at each measure-
ment point.

Dissolved organic carbon and litter community sampling

After the 44-day (total) incubation, microcosms were
destructively sampled to measure DOC and community

composition as described in detail previously (Albright
et al., 2020a). The DOC extracts were analysed for
organic carbon using a Shimadzu TOC-LCSH Carbon
Analyser (Shimadzu Scientific Instruments, Columbia,
MD, USA) employing a combustion catalytic oxidation
method and non-dispersive infrared detector. Following
DOC sampling, material (sand and litter) from each
microcosm was frozen at �80 �C for DNA extraction.

Bacterial and fungal community taxonomic profiling

Since the goal of this study is to identify the direct impact
of microbial community composition on carbon flow, we
selected samples within each litter type from the
extremes of the DOC spectrum. The mean DOC quantity
for each set of microbial community replicates was calcu-
lated and the replicate microcosms with the highest and
lowest mean DOC quantities, representing the two tails
of the DOC distribution (Fig. 1B), were selected for DNA
extraction and sequencing. For pine, n = 192 from each
tail (64 soils � 3 replicates), for grass and oak, n = 50
from each tail (25 soils � 2 replicates). DNA extractions
were performed using a DNeasy PowerSoil 96-well plate
DNA extraction kit (Qiagen, Hilden, Germany). The stan-
dard protocol was used with the following two exceptions:
(i) 0.3 g of material was used per extraction; (ii) bead
beating was conducted using a SPEX Certiprep 2000
Geno/Grinder (SPEX SamplePrep, Metuchen, NJ, USA)
for 3 min at 1900 strokes min. DNA samples were quanti-
fied with an Invitrogen Quant-iT™ ds DNA Assay Kit
(Thermo Fisher Scientific, Eugene, OR, USA) on a Bio-
Tek Synergy HI Hybrid Reader (BioTek Instruments,
Winooski, VT, USA). PCR templates were prepared by
diluting an aliquot of each DNA stock in sterile water to
1 ng μl�1. The bacterial (and archaeal) 16S rRNA gene
(V3–V4 region) was amplified using primers 515f-R806
(Bates et al., 2010). Hereafter, archaeal sequences were
analysed with bacterial sequences. The fungal 28S rRNA
gene (D2 hypervariable region) was amplified using the
LR22R primer (Mueller et al., 2016) and the reverse LR3
primer (Vilgalys and Hester, 1990). Preparation for
Illumina high-throughput sequencing was undertaken
using a two-step approach, similar to that performed by
Mueller et al. (2015), with Phusion Hot Start II High Fidel-
ity DNA polymerase (Thermo Fisher Scientific, Vilnius,
Lithuania). In the first PCR, unique 6 bp barcodes were
inserted into the forward and reverse primer in a combi-
natorial approach over 22 cycles with an annealing tem-
perature of 60 �C (Gloor et al., 2010). The second PCR
added Illumina-specific sequences over 10 cycles with
an annealing temperature of 65 �C (Illumina, San Diego,
CA, USA). Amplicons were cleaned using a Mo Bio Ultra-
Clean PCR clean-up kit (Carlsbad, CA, USA), quantified
using the same procedure as for the extracted DNA, and
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then pooled at a concentration of 10 ng each. The pooled
samples were further cleaned and concentrated using
the Mo Bio UltraClean PCR clean-up kit. All clean ups
were undertaken as per the manufacturer’s instructions
with the following modifications: binding buffer amount
was reduced from 5� to 3� sample volume, and final
elutions were performed in 50 μl Elution Buffer. A bio-
analyzer was used to assess DNA quality, concentration
was verified using qPCR, and paired-end 300 bp reads
were obtained using an Illumina MiSeq sequencer at Los
Alamos National Laboratory.

Bacterial and fungal sequences were processed follow-
ing the UPARSE pipeline in usearch v11 (Edgar, 2013).
Paired ends were merged with a 90% minimum similarity,
truncating tails at the first base pair quality below 30, and
a minimum merge length of 150 bp. Primers were
stripped using fastx_truncate. Sequences were quality fil-
tered with a maximum expected error of 1.0 and globally
trimming fungal reads at 250 base pairs and bacterial
reads at 240 base pairs. After dereplication, singletons
were removed. OTUs were picked using cluster_otus for
both fungal and bacterial sequences, which simulta-
neously identifies and removes chimeric sequences.
OTU tables were generated using 97% similarity. Bacte-
rial and fungal OTUs were classified using the Ribosomal
Database Project classifier (Wang et al., 2007). The
OTUs that were not classified as bacteria or fungi with
100% confidence were removed from the dataset. Bacte-
rial OTUs also had to have a phylum classification confi-
dence level of at least 80% to remain in the dataset, as
per Wang et al. (2007), which has become a convention

for the V3–V4 region. For pine, following quality control
and classification, 9 579 215 sequences from 345 micro-
cosms were obtained for bacteria and 12 986 765
sequences from 377 microcosms were obtained for fungi.
These are sorted into 2913 OTUs for bacteria
(an average of 281 per microcosm, SE = 8) and 829
OTUs for fungi (an average of 45 per microcosm,
SE = 1). For oak, 3 208 923 sequences from 99 micro-
cosms were obtained for bacteria and 5 508 105
sequences from 100 microcosms were obtained for fungi.
These are sorted into 2491 OTUs for bacteria
(an average of 359 per microcosm, SE = 12) and 489
OTUs for fungi (an average of 45 per microcosm,
SE = 1.5). For grass, 1 047 697 sequences from
99 microcosms were obtained for bacteria and 1 954 949
sequences from 100 microcosms were obtained for fungi.
These are sorted into 2214 OTUs for bacteria
(an average of 230 per microcosm, SE = 11) and for 296
OTUs for fungi (an average of 18 per microcosm,
SE = 0.75). Uneven sample sizes between bacteria and
fungi for various litter types were due to quality control
during processing. Sequences were only retained if they
passed a filter with a maximum expected error of 1 and
were at least 240 bp long for bacteria, and 250 bp for
fungi, and for further statistical tests, samples had to con-
tain at least 1000 reads, thus, in some cases a sample
met this threshold for fungi but not bacteria and vice
versa.

All analyses were completed in R v 4.0.2 (R Core
Team, 2020). The ‘phyloseq’ package was used to rarefy
samples with replacement to 1000 and determine

Fig. 1. Ecosystem functioning varied by
litter type. Distribution of CO2 (A) and
DOC (B) across samples and litter
types (grass = green, oak = orange,
pine = blue).
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bacterial and fungal richness, as well as to complete
NMDS analyses on relativized data using Bray–Curtis
dissimilarity matrices and three axes (number of axes
was determined using stress plots created in ‘vegan’ v
2.5-6 (Oksanen et al., 2019). Beta dispersion of DOC
groups and litter type were completed in ‘vegan’ v 2.5-6
(Oksanen et al., 2019) using the group centroid and post
hoc Tukey’s honest significant difference was performed
in ‘stats’ (R Core Team, 2020). Variance in DOC abun-
dance explained by microbial community composition
was completed in vegan v2.5-6 using adonis. Richness
correlation analyses with DOC abundance were done
using ‘ggpubr’ v 0.4.0 (Kassambara, 2020) and the
stat_cor command with method set to Pearson.

Machine learning

The Random Forest Indicator species analysis Neural
Network (RFINN) platform (Thompson et al., 2019) was
used to identify subsets of genera that were found to be
important features for prediction of either CO2 or DOC.
The data were pre-processed with genera abundances
computed as the average abundance of all OTUs within
each genus. Additionally, only genera that were present
among all three litter types were considered for feature
selection because our goal was to identify a common
microbial feature across the litter types. RFINN applies
an ensemble of machine learning and standard statistical
methods to identify a small consensus set of taxa whose
relative abundances are robustly and significantly linked
with a target variable. Feature selection using RFINN
was applied separately to pine, oak and grass datasets
to identify bacterial and fungal genera that were highly
predictive of DOC or CO2 in those data sets. For each
feature selected by RFINN, the direction of the correlation
with DOC or CO2 was determined by indicator species
analysis and the neural network. In all cases, the direc-
tion of the correlation determined by the NN and indicator
species analysis agreed. For each litter type, the data set
was partitioned into 15 folds of training and testing sets,
which resulted in 15 iterations of feature selection results.
The final set of selected features included all genera pre-
sent in at least one of the 15 sets. This comprehensive
analysis resulted in 12 sets of selected genera, one for
each of the three litter types using either bacterial or fun-
gal OTUs to predict either DOC or CO2.
A logistic regression model implemented using Scikit-

Learn in Python (Pedregosa et al., 2011) was used to
predict DOC levels (high or low) using total biomass, bac-
terial richness and fungal richness as model features. To
determine prediction performance on held-out data, k-fold
cross-validation was used to determine out-of-fold predic-
tions over 10-folds of the data set. The out-of-fold sets
did not contain replicates of samples present in the

corresponding training set. The area under the receiver
operating characteristic curve was used to evaluate rela-
tive prediction performance and a Z-test of two propor-
tions was used to determine prediction significance by
comparing the proportion of correct predictions to the
most frequently occurring class. The Wald test was
used to evaluate feature significance using a final
logistic regression model fit to the entire data set using
the statsmodels module in Python (Seabold and
Perktold, 2010).

Metatranscriptome sequencing and analysis

RNA was extracted from a subset of high (n = 6) and low
(n = 6) microcosm samples from each plant litter (n = 3)
for a total of 36 samples representing the most extreme
members of each DOC distribution. Extractions were per-
formed as described previously (Albright et al., 2020b).
Briefly, RNA/DNA was coextracted from 1 g of sample
(a mixture of sand and litter) as detailed in Hesse
et al. (2015) followed by RNA clean-up with Ambion
Turbo DNase kit (Ambion, Austin, TX, USA) and purifica-
tion with the Qiagen RNeasy Mini kit. rRNA was removed
using a combination of the Illumina RiboZero H/M/R and
Bacteria kits. Libraries were prepared using an Illumina
ScriptSeq v2 library preparation kit. Library validation was
performed with a Qubit dsDNA HS assay, BioAnalyzer
DNA high-sensitivity assay (Agilent Technologies) and
library quantification kit (Roche, Basel, Switzerland).
Libraries were run on a NextSeq 500 system (high-output
v2 kit for 300-cycle sequencing).

Metatranscriptomes were processed and annotated
on MG-RAST following the default pipeline
(Meyer et al., 2008; Keegan et al., 2016). For the
metatranscriptomes, an average of 1.45 million
sequences per sample passed quality control. Of these
sequences, 20.5 � 12.6% were known predicted pro-
teins, 27.8 � 10.0% unknown predicted proteins and
51.7 � 20.8% ribosomal genes. From the MG-RAST
server, RefSeq (O’Leary et al., 2016) and Subsystems
(Kanehisa et al., 2016) data were downloaded for analy-
sis of taxonomy and function assignments respectively
(default parameters, E-value <10�5, identity >60%). Only
reads annotated as bacteria, virus, fungi, or archaea
were analysed. Taxonomic and functional annotations for
each sample were analysed in two different ways to
determine differences between low and high DOC com-
munities. For within plant litter types, samples were rare-
fied and log-transformed. Pine samples were rarefied to
98 500 and 18 800, oak samples were rarefied to 224
000 and 64 500 and grass samples were rarefied to 164
500 and 20 700 for taxonomic and functional annotations
respectively. The non-parametric Kruskal–Wallis H test
was then used in R v3.6.0 (R Core Team, 2019) to
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determine significant differences between low and high
DOC groups. Diversity metrics were determined using
rarefied, log-transformed data with significant differences
between low and high DOC groups determined by
Pearson’s product–moment correlation values in the
‘stats’ package (R Core Team, 2019). To determine high
and low DOC traits regardless of litter type, we used the
DESeq2 package in R with the design = �DOC + Litter
(Love et al., 2014). Bray–Curtis and Jaccard dissimilarity
matrices were computed using DESeq2 normalized
counts and a permutational multivariate analysis of vari-
ance was run to look for correspondence between taxo-
nomic and functional gene expression and DOC group.
To quantify the relative variability within each DOC group
(i.e. high and low), we measured the average distance to
the centroid within each DOC group using a test
for homogeneity of dispersion [vegan v 2.4-3 package,
R (Oksanen et al., 2017)]. Plots were made in
R using ‘ggplot2’ (v. 3.3.2) and ‘ggpubr’ (v. 0.4.0) pack-
ages (Wickham, 2016; R Core Team, 2019;
Kassambara, 2020).

Litter chemistry

All plant litter chemical analyses were performed by the
Colorado State University Soil, Water, and Plant Testing
Laboratory (Fort Collins, CO; www.soiltestinglab.
colostate.edu). Milled plant litter (pine, oak and grass)
was analysed for pH, EC, organic matter, NO3-N, P, K,
Zn, Cu, Fe and Mn. The protocol for each laboratory
analysis was as follows: Litter pH was measured with a
glass electrode and EC was determined with an EC
meter in a suspension of litter to water ratio of 1:1. Litter
organic matter was determined using the Walkley–Black
procedure by digesting soil with 1 N K2Cr2O7 and H2SO4,
adding distilled water, filtering through Whatman 1 paper
into a Spect 20 tube, and reading on Spectronic 20 at
610 nm adjusted to 100% transmittance with the blank
(Walkely and Black, 1934; Walkely, 1947). For the deter-
mination of NO3-N, P, K, Cu, Fe, Mn and Zn, litter was
extracted with AB-DTPA solution and the extracted ali-
quot was stored in clean plastic bottles (Soltanpour and
Workman, 1979). For estimation of NO3-N, absorbance
of light in the extract was read at 540-nm wavelength on
a spectrophotometer (Kamphake et al., 1967). The con-
centration of P was measured at 880-nm wavelength
using a spectrophotometer. The potassium in soil extract
was determined directly with a flame photometer or by an
atomic absorption using a potassium hollow cathode
lamp. Micro-nutrients Zn, Cu, Fe and Mn were deter-
mined directly from AB-DTPA extract by atomic absorp-
tion. Total carbon and nitrogen were quantified on a
LECO TruSpec CN analyser (LECO Corporation,
St. Joseph, MI, USA).

Data availability

Amplicon sequence data have been deposited in the
NCBI Sequence Read Archive (SRP151768).
Metatranscriptomes are publicly available on MG-RAST
under project IDs mgp90738, mgp90741 and mgp90765.
All code and data files for logistic regression modelling
and machine learning analyses are available at https://
github.com/MunskyGroup/Kroeger_et_al_2021. All other
data including OTU tables are available upon request.

Results

CO2 production and DOC abundance varied by
litter type

Initial litter type affected CO2 production and DOC abun-
dance, as expected. At the end of the experiment, pine
had a significantly higher cumulative CO2 concentration
compared to oak (p < 0.001) and grass (p < 0.001) litter
types (Supplemental Fig. 1). All litters had significantly
different DOC abundances (p < 0.001) with pine having
the highest mean (7.75 mg g�1 litter) followed by oak
(5.71) and grass (3.76) (Fig. 1, Supplemental Fig. 2).
Each litter type exhibited a significant negative correlation
between DOC abundance and CO2 production (pine:
R2 = 0.16, p < 0.001, oak: R2 = 0.15, p < 0.001, grass:
R2 = 0.024, p = 0.028) (Supplemental Fig. 3). The initial
C:N ratio in the litter types was very similar for pine and
oak (59.53 and 54.23 respectively) but much higher in
the grass (92.06). Additionally, grass litter had a higher
pH (5.9) than both pine (3.9) and oak (3.9). Oak and
grass litter had similar levels of phosphorus and zinc (oak
P = 243 ppm, grass P = 223 ppm, oak Zn = 11.6 ppm,
grass Zn = 11.4 ppm). Grass had the highest abundance
of iron (22.3 ppm), copper (78.2 ppm) and potassium
(2855 ppm), while oak had the greatest amount of man-
ganese (151 ppm), and pine had the greatest abundance
of zinc (16.4 ppm) and phosphorus (380 ppm).

Total microbial community composition explained
significant variance in DOC groups

Microbial community composition determined by
amplicon sequencing explained 4% and 2% (bacteria:
p < 0.001, fungi: p < 0.001) of the variance in DOC group
(Fig. 2A and C). Across litter types, we found microbial
composition explained 6% and 5.5% variance (bacteria:
p < 0.001, fungi: p < 0.001) for bacteria and fungi
(Fig. 2B and D). When community composition was con-
strained by DOC and litter type, it explained 11% and
10% (bacteria: p < 0.001, fungi: p < 0.001) of the vari-
ance for bacteria and fungi respectively. Overall, we
observed significantly greater dispersion among high
compared to low DOC communities (p < 0.001) for both
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bacteria and fungi. Between litter communities, pine had
significantly less bacterial dispersion than either oak
(fungi: p = 0.051, bacteria: p < 0.001) or grass (fungi:
p = 0.059, bacteria: p < 0.001).

Total microbial community features predict DOC
abundance

Bacterial richness was negatively correlated with DOC
abundance across all litter types (p < 0.01; grass: R2 =

0.23, oak: R2 = 0.26, pine: R2 = 0.36) (Fig. 3A). Fungal
richness was also negatively correlated with DOC abun-
dance for oak litter (R2 = 0.28, p = 2.6e-08) but not
grass (R2 = 0.0012, p = 0.74) or pine litter (R2 = 0.004,
p = 0.22), (Fig. 3B). Additionally, logistic regression
models predicted DOC abundance significantly better
than chance for each litter type using total biomass, bac-
terial richness and fungal richness as community features

(grass: p = 2.67e-02, oak: p = 4.33e-06, pine: p =

1.65e-4) (Supplemental Figs 4–6).
Out of over 500 bacterial and fungal amplicon profiles,

RFINN identified only a single bacterial genus, Microvirga,
and one fungal genus, Plectosphaerella, that was univer-
sal to all three litter types to predict DOC abundance. No
fungal genera were common across all litter types to pre-
dict CO2 abundance; however, the bacteria genus Rhizo-
bium was found to predict CO2 abundance in pine, oak
and grass (Fig. 4; Supplemental Table 2).

Active microbial community explained significant
variance across litter types and DOC groups

Litter type explained more of the variance in community
composition (R2 = 0.1249, p = 0.001) than DOC alone
(R2 = 0.0673, p = 0.003), but DOC constrained by litter type
explained the most variance (R2 = 0.3109, p = 0.0001)

Fig. 2. Variation in bacterial (A, B) and fungal (C, D) community composition based on DOC group (low, high) and litter type (grass, oak, pine).
The plot shows the first two axes of a 3D scaling plot (stress: A and B = 0.198; C and D = 0.204) visualizing Bray–Curtis dissimilarities among
communities. The p-values for adonis tests were calculated as implemented in vegan.
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(Fig. 5A) like the amplicon data. However, we did not
observe a significant difference in dispersion between litter
types (p = 0.142) or DOC group (p = 0.124) like we did in
the amplicon data. The functional composition also signifi-
cantly differed between litter type (R2 = 0.158, p = 0.001)
and DOC group (R2 = 0.0658, p = 0.006) with DOC con-
strained by litter type again explaining the most variance
(R2 = 0.2823, p = 0.0001) (Fig. 5B).Dispersion was signifi-
cantly greater in high DOC (p = 0.003) communities than
low DOC for functional composition.

Active community richness only decreased with DOC
abundance in pine litter

In contrast to amplicon sequence data of more than
500 samples, when metatranscriptome data from each lit-
ter type were analysed individually (12 samples each),
the only significant correlation between taxonomic diver-
sity and DOC abundance occurred with pine litter sam-
ples (R2 = �0.781, p = 0.003; Supplemental Table 3).
Similarly, the mean taxonomic richness was significantly
different between DOC groups (high versus low) only for

Fig. 3. Linear regression of bacterial (A) and fungal (B) genera richness with DOC abundance by litter type (grass, oak, pine). Pearson’s correla-
tion R2 and p-values are reported for each.
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the 12 pine samples (p = 0.002) (Fig. 6C), in contrast to
amplicon sequence data. There was no significant differ-
ence in functional richness within any litter type (Fig. 6D).
However, when samples from all litter types (36 total)

were analysed together, taxonomic and functional

richness inversely correlated with DOC abundance,
which was driven exclusively by the pine samples, as
seen in the amplicon diversity analyses of more than
500 samples (taxonomic: R2 = �0.421, p = 0.011; func-
tional: R2 = �0.344, p = 0.040; Supplemental Table 3).

Fig. 4. Overlap across litter types (pine, oak, grass) of bacterial (A and B) and fungal (C and D) genera driving carbon flow (DOC or CO2 abun-
dance), down-selected by the RFINN machine learning software.

Fig. 5. Variation in microbial community composition at the genus level (A) and functional subsystem level 3 (B) using DESeq2 normalized
counts. Bray–Curtis dissimilarities were visualized by non-metric dimensional scaling.
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When DOC groups were compared (high versus low),
there was no significant difference in taxonomic richness
(p = 0.12) between groups (Fig. 6A). Functional richness,
on the other hand, was significantly different between
DOC groups (p = 0.016) (Fig. 6B).

Active microbial community composition changes
across litter types and DOC groups

Proteobacteria and Actinobacteria were the dominant
active bacterial phyla and Ascomycota was the
dominant active fungi in all litter types and both DOC
groups (Supplemental Fig. 7). When each plant litter was
analysed separately, we found that no phyla significantly
changed abundance in grass litter between high and low

DOC groups. In contrast, the abundance of 15 and
9 phyla changed in pine and oak litter respectively
(Supplemental Table 4), and three of those phyla over-
lapped: Dictyglomi (pine: p = 0.015, oak: p = 0.013),
Verrucomicrobia (pine: p = 0.025, oak: p = 0.010) and
Chytridiomycota (pine: p = 0.020, oak: p = 0.025). For
oak, the relative abundance of Verrucomicrobia and
Chytridiomycota increased in low DOC while Dictyglomi
increased in high DOC. However, in pine all three phyla
increased in the low DOC group. At the genus level,
154, 147 and 26 genera significantly changed abundance
between high and low DOC for pine, oak and grass
respectively. Of these genera, 19 significantly increased
in the low DOC group for both oak and pine litter and five
in the high DOC group for both oak and grass litter.
Although six genera were shared between grass and

Fig. 6. Taxonomic richness at the genus level (A) and functional richness (B) when all samples are analysed together for low and high DOC
groups. The taxonomic richness at the genus level (C) and functional richness (D) when each litter type is analysed separately for low and high
DOC groups. When litter types were analysed together, samples were rarefied 18 800 annotations per sample for functional diversity and 98 500
annotations for taxonomic diversity. When litter types were analysed separately, pine litter was rarefied to 18 800 and 98 500, oak litter was rare-
fied to 64 600 and 224 000, and grass litter was rarefied to 20 700 and 164 000 for functional and taxonomic diversity respectively. Grass mix
litter = green, Oak litter = orange, Pine litter = blue.
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pine litter, none of these genera significantly increased
abundance in the same DOC group between the two litter
types (Supplemental Table 5).
Next, to better understand how community composition

and abundance of taxa changed between the low and high
DOC groups regardless of litter type, we analysed all of the
samples together using DESeq2. Thirty-nine phyla (bacteria,
archaea, fungi and viruses) were analysed and out of those,
10 were found to be differentially expressed (padj < 0.05)
between low and high DOC (Supplemental Table 6; Fig. 7).
At the genus level, 136 genera were differentially expressed
with 39 associating with low DOC and 97 associating with
high DOC (Supplemental Table 7). The majority of genera
that were differentially expressed were bacteria: 82.1% and
82.5% of the differentially expressed genera in low or high
DOC respectively. Some genera that had significant differen-
tial expression regardless of litter type were also found to be
significant when litter types were analysed individually includ-
ing Opitutus, Lentisphaera, Methylacidiphilum, Asticcaulis
and Methylotenera in the low DOC group and Collinsella,
Synechococcus, Lactobacillus, Rothia and Deinococcus in
the high DOC group (Supplemental Table 7).

Minimal metabolic overlap occurred across litter types

No functional gene groups were found to overlap across
all litter types in the same DOC group. At subsystem

level 2, we found that translation and biotin subsystems
had increased gene expression in low DOC communities
for both grass and pine. Two other functional annotations
overlapped between grass and pine, coenzyme M bio-
synthesis and alanine, serine, and glycine subsystems,
but they did not increase expression in the same DOC
group (pine: low DOC, grass: high DOC). Oak and grass
shared five subsystem level 2 categories that had higher
expression within the same DOC group: putative
isoquinoline-1-oxidoreductase with low DOC and catabo-
lism of an unknown compound, isoprenoid cell wall bio-
synthesis, Gram-positive cell wall components and plant
hormones with high DOC (Supplemental Table 8). Oak
and pine shared seven subsystem categories, five of
which increased expression within the same DOC group
including phages and prophages that increased in high
DOC samples while osmotic stress and fermentation
increased expression in the low DOC communities
(Supplemental Fig. 8).

More specific functional overlap was observed
between oak and grass in subsystem level 3. For these
two litters, a consistent response occurred with 12 sub-
system categories with a p-value <0.05 and an additional
16 with a p-value <0.1 (Supplemental Table 9). Mannose
metabolism, alginate biosynthesis, synthesis of osmo-
regulated periplasmic glucans, phospholipid and fatty
acid biosynthesis, and terminal cytochrome O ubiquinol

Fig. 7. Heatmap of DESeq2 normalized abundances of phyla with differential activity between low and high DOC communities. The litter type
and DOC group for each sample are coloured in the first two rows. DOC: high = gold, low = turquoise. Litter: grass = green, oak = orange,
pine = dark blue. The dendrogram represents hierarchical clustering of samples with the default settings in the pheatmap package (v 1.0.12).
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oxidase were some of the level 3 subsystem categories
with higher expression in the low DOC group while sialic
acid metabolism, NADPH quinone oxidoreductase, gluco-
side transport system and L-fucose utilization had higher
expression in the high DOC group (Supplemental
Table 9). For pine and grass, there was less functional
overlap with only two categories with a p-value <0.05
and 10 additional with a p-value <0.1. Protection from
reactive oxygen species increased expression in the high
DOC group for both pine (p = 0.01) and grass (p =

0.02). Additionally, both pine and grass had increased
expression of sulfatases, zinc resistance, purine utiliza-
tion and peptidoglycan biosynthesis genes
(Supplemental Table 9). Oak and pine shared six func-
tional categories with p < 0.05 and an additional 19 with
a p < 0.1. Of note were low DOC communities in both lit-
ter types having increased expression of genes involved
in fatty acid biosynthesis, benzoate catabolism, biotin bio-
synthesis, acetyl-CoA fermentation to butyrate, and ace-
tone, butanol, ethanol synthesis (Supplemental Table 9).
Auxin biosynthesis was the only shared subsystem level
3 category that increased expression in the high DOC
group for oak and pine.

Omitting litter type as a factor with DESeq2, 34 out of
1113 functions at subsystem level 3 were differentially
expressed. In high DOC communities there was an
increase in the expression of 22 functional categories
including prophages (padj = 0.0010), cytochrome biogen-
esis (padj = 0.0041), protection from reactive oxygen spe-
cies (padj = 0.0060), mannitol utilization (padj = 0.0060),
DNA repair (padj = 0.0075), L-fucose utilization (padj =

0.0236), sialic acid metabolism (padj = 0.0236), rRNA
modification in bacteria (padj = 0.0236), iron–sulfur clus-
ter assembly (padj = 0.0269), phosphate uptake (padj =

0.0278), siderophore assembly (padj = 0.0336) and the
alpha-amylase locus (padj = 0.0361) (Supplemental
Table 10). Fewer functional categories increased expres-
sion in the low DOC group (12 total with padj < 0.05). The
few functions with significantly increased expression
were related to the electron transport chain (padj =

0.0269), benzoate catabolism (padj = 0.0278), Vir-like
Type 4 secretion system (padj = 0.0278), transcription
(padj = 0.0288), oligosaccharide biosynthesis (padj =

0.0319), taurine utilization (padj = 0.0367), Ton and Tol
transport systems (padj = 0.0387), glucan synthesis
(padj = 0.0387), alginate biosynthesis and metabolism
(padj = 0.0387) and fatty acid biosynthesis (padj =

0.0387) (Supplemental Table 9). At the gene level, addi-
tional functions were differentially expressed in high DOC
communities including catalase (padj = 0.0012), cysteine
synthase (padj = 0.0353), bacterial proteasome (padj =

0.0372), nitrate/nitrite response regulator (padj =

0.03417) and ATP-dependent Clp protease proteolytic
subunit (padj = 0.03949) (Supplemental Table 11).

Discussion

In this study we showed that microbial community com-
position can drive large variation in carbon flow during
short-term litter decomposition of different litter types, and
we took a first step toward identifying common physiolog-
ical markers. Consistent with a large body of prior
research, litter type selected different decomposer com-
munities in our study. But within a litter type, community
composition still varied with DOC group (high or low
DOC) (Figs 2 and 5). Both amplicon and meta-
transcriptome data supported this conclusion: more of the
variance in community composition was explained by
DOC constrained by litter type than by either variable
alone. The only two prior studies that examined how
microbial composition affects carbon flow (measured as
CO2) across multiple plant litters also found that the
greatest variance in community composition was
explained when both carbon flow and litter type were
taken into account (Strickland et al., 2009; Cleveland
et al., 2014). We extended prior work by demonstrating
that community composition not only alters respiration
during litter decomposition but also DOC abundance.
Compared to previous studies (Strickland et al., 2009,
Cleveland et al., 2014), we observed over 10-fold more
variation in respiration within each litter type that was
driven by microbial inoculum. Additionally, there
was greater than 300% variation in DOC abundance
within each litter type driven by microbial inoculum. This
microbial control of DOC abundance is important
because the DOC pool can be transported into deeper
mineral layers where stabilization over long timescales
can occur (Kaiser and Kalbitz, 2012). Overall, these find-
ings support the hypothesis that microbial communities
control carbon flow across litter types. With further inves-
tigation into the mechanisms behind this microbially
driven carbon flow during litter decomposition, soil and lit-
ter microbiomes can potentially be engineered to
increase soil carbon sequestration to mitigate climate
change.

To improve earth system models, recent research has
sought to identify broad microbial community features
that impact carbon cycling (Krause et al., 2014; Graham
et al., 2016; Kallenbach et al., 2019; Malik et al., 2020).
Similarly, we sought common features driving DOC abun-
dance across pine, oak and grass litter types. A combina-
tion of biomass, bacterial richness and fungal richness
strongly predicted DOC abundance from the pine litter
(Albright et al., 2020a). The combination of these features
also predicted DOC abundance for oak and grass litters
significantly better than chance (Supplemental Figs 1–3).
With amplicon sequence data, we again found a negative
correlation between bacterial richness and DOC abun-
dance (Fig. 3A) as previously observed with pine litter
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(Albright et al., 2020a), but the active community
(i.e. metatranscriptome sequencing data) did not show a
consistent pattern (Fig. 6C). The small metatranscriptome
sample size (12 per litter type) compared to amplicon
data (�100 each) may explain the discrepancy. But a
more likely factor is that metatranscriptome sequencing
targets the active microbiome (Franzosa et al., 2015),
where richness patterns may be more obscure because
they are more dynamic.
Digging deeper into the common microbial community

features associating with high and low DOC groups
across litter types, we found some overlap both in spe-
cific microbial taxa and functional gene categories across
all litter substrates, but it was rather minimal for such a
diverse system (Supplemental Tables 1, 4, 7, 8). This
lack of a strong overlap across all litter substrates could
be due to the initial differences in litter chemistry between
grass, oak and pine such as C:N ratio that affects litter
decomposition rates (Osono et al., 2013). Alternatively,
due to the single timepoint assessed, we are likely not
seeing the complete physiological picture making it chal-
lenging to assess the overlap across litter substrates.
Nonetheless, it is well established that substrate
(i.e. plant litter type) influences decomposition rates and
microbial community composition (Taylor et al., 1991;
Kunito and Nagaoka, 2009; Freschet et al., 2012;
Rahman et al., 2013; Zhang and Wang, 2015).
The eco-physiological phenomenon that accounts for

high versus low DOC abundance remains unclear. Based
on the negative correlation between microbial richness
and DOC abundance, we previously hypothesized that
high DOC communities potentially lacked microbial taxa
necessary for litter decomposition and thus were
experiencing a lag in decomposition. However, many
lines of evidence suggest that this is not the case. First,
we observed an upregulation of Actinobacteria in high
DOC microbial communities (Fig. 7; Supplemental
Table 5), which are known to play a prominent role in lit-
ter decomposition and have been described as late-stage
generalists in litter decomposition (Kirby, 2005; Snajdr
et al., 2011; Schneider et al., 2012; Buresova
et al., 2019). Second, in the high DOC group, enzymes
that create reactive oxygen species were upregulated
and protection mechanisms against reactive oxygen spe-
cies were upregulated (Supplemental Tables 8 and 9).
Reactive oxygen species are created by microbial
enzymes such as superoxide dismutase and catalase
(Janusz et al., 2017; Bissaro et al., 2018), which had
increased expression in the high DOC group
(Supplemental Table 10). Higher activity of these
enzymes creates more ROS in the environment, inducing
greater expression of ROS protection mechanisms as we
observed. These coupled observations may indicate
greater lignin degradation in the high DOC group – a

phenomenon expected for later stages of decomposition,
not the early phase. Third, the high DOC communities
have active taxa that are known to degrade a complex
suite of carbon compounds ranging from lignin to simple
sugars, which suggests a food web not lacking functional
abilities (Kageyama et al., 1999; Liu et al., 2013;
Ramanan et al., 2014; Asadu et al., 2018). Lastly, both
high and low DOC microbial communities appear to be
capable of metabolizing less labile plant compounds such
as cellulose since most of the enzymes responsible for
these processes are not significantly different between
groups and both communities have taxa known to utilize
these substrates. For example, in the low DOC communi-
ties, Optitutus spp. increased abundance in the oak and
pine and are known to anaerobically metabolize cellulose
(Dai et al., 2016; Wilhelm et al., 2017; Lacerda-Junior
et al., 2019). In high DOC communities, Rothia spp.
increased abundance in oak and grass and are known to
degrade cellulose and lignin (Asadu et al., 2018).

Based on the preceding evidence, we developed an
alternative hypothesis that the microbial communities
from high and low DOC groups differ in their carbon flow
outcomes (DOC/CO2 abundance) because of differences
in their metabolism of labile carbon compounds driven
primarily by bacteria. We observed that high and low
DOC groups have distinct differences in labile carbon
compound metabolism (Supplemental Tables 8 and 9).
Support for this alternative hypothesis is evident from sig-
nificant differences in the abundance of labile carbon
metabolism pathways like sugar and aromatic compound
metabolism genes. For example, mannose and benzoate
metabolism genes increased abundance in the low DOC
group while sialic acid, mannitol, L-fucose metabolism
increased in the high DOC group (Supplemental Tables 8
and 9). A conceptual model was previously proposed that
microbial decomposition products such as proteins,
lipids, amino sugars and carbohydrates contribute more
to persistent soil carbon than complex plant compounds
like lignin (Grandy and Neff, 2008). Previous research by
our group discovered that during short-term pine litter
decomposition, proteins, lipids and amino sugars are
associated with the high DOC group (unpublished data).
Additionally, in the short-term pine litter decomposition
experiment, we found that the DOC produced from the
high DOC microbial communities had significantly higher
mineral binding capacity compared to low DOC commu-
nities, which would support longer soil residence times
(Albright et al., 2020a). Our finding that labile carbon
metabolism differentiates the low and high DOC groups
during litter decomposition, the high DOC group in pine
litter decomposition has a higher mineral binding capac-
ity, along with the above conceptual model provides sup-
port that microbial community composition may be a key
control point to increase soil carbon storage.
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Overall, we identified common microbial community
features across all litter types using amplicon sequencing
data that predicted carbon flow outcomes including bac-
terial richness, Microvirga, Plectosphaerella and Rhizo-
bium abundances. However, using metatranscriptome
analysis of the active microbial community, we were
unable to find universal microbial features across all litter
types that explained disparate DOC groups. Finally, our
new evidence suggests that decomposition of labile
rather than non-labile compounds may be key in micro-
bially driven differences in carbon flow. Further under-
standing the basis of this observation may be a starting
point for improving soil carbon management. Future stud-
ies should expand on these results by investigating the
temporal dynamics of microbial communities and carbon
flow during litter decomposition. Additionally, in-depth
characterization of how the DOC is produced by different
microbial communities (high versus low DOC groups)
should be conducted to understand the long-term soil
carbon storage potential from manipulating microbial
communities.
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Supporting Information

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Supplemental Fig. 1. Distribution of cumulative CO2 (mg
g�1 litter) in each plant litter type. The global Kruskal-Wallis
H test p-value comparing all litter types and each individual
comparison are reported.
Supplemental Fig. 2. Distribution of cumulative DOC (mg
g�1 litter) in each plant litter type. The global Kruskal-Wallis
H test p-value comparing all litter types and each individual
comparison are reported.
Supplemental Fig. 3. Linear regressions of cumulative CO2

and DOC (mg g�1 litter) in (A) pine, (B) oak, and (C) grass
mix. Pearson’s correlation R, r2 and p-values are reported
for each.
Supplemental Fig. 4. Receiver operating characteristic
(ROC) curve of out-of-fold predictions of pine litter DOC
using a logistic regression model with total biomass, bacte-
rial richness, and fungal richness as model features. The
area under the ROC curve was 0.89, which reflects the
model’s ability to distinguish high DOC samples from low
DOC samples. The proportion of correctly classified held-out
samples was significantly greater than the proportion of the
most frequently occurring class (p = 1.03x10�10, Z-test of
two proportions).
Supplemental Fig. 5. Receiver operating characteristic
(ROC) curve of out-of-fold predictions of oak litter DOC using
a logistic regression model with total biomass, bacterial rich-
ness, and fungal richness as model features. The area under
the ROC curve was 0.90, which reflects the model’s ability to
distinguish high DOC samples from low DOC samples. The
proportion of correctly classified held-out samples was signif-
icantly greater than the proportion of the most frequently
occurring class (p = 1.58x10�5, Z-test of two proportions).
Supplemental Fig. 6. Receiver operating characteristic
(ROC) curve of out-of-fold predictions of grass litter DOC
using a logistic regression model with total biomass, bacte-
rial richness, and fungal richness as model features. The
area under the ROC curve was 0.83, which reflects the
model’s ability to distinguish high DOC samples from low
DOC samples. The proportion of correctly classified held-out
samples was significantly greater than the proportion of the
most frequently occurring class (p = 9.49x10�6, Z-test of two
proportions).
Supplemental Fig. 7. Relative abundance of bacterial and
fungal phyla in each litter type from the low DOC group
(A) and high DOC group (B).
Supplemental Fig. 8. Heatmap of subsystem level 2 func-
tional groups that significantly changed abundance between
low and high DOC groups based on a Kruskal-Wallis H test
using rarefied log-transformed abundances. The asterisk
shows whether it was significantly higher in high or low DOC
group.
Supplemental Table 1. Metadata on the soils used as inoc-
ulum in the microcosms for pine, oak, and grass mix. Study
indicates which microcosm experiment it was used as an
inoculum. Study date provides the time the soil was col-
lected. Litter details what plant litter was used in the micro-
cosms. Soil ID is the internal ID used for the soil collection.

Soil Ecosystem details the ecosystem from which the soil
was collected. Lat and Long provide the GPS coordinates
for the collection. Alt = the elevation of the location where
the soil was collected.
Supplemental Table 2. RFINN output of the significant (p <
0.05) bacterial and fungal genera predicting DOC group and
CO2 group from amplicon sequencing data within litter types
and across multiple litters. The genera highlighted in yellow
are found across all litter types with the same phenotype
(high or low). Genera highlighted in green are found in 2 out
of 3 litter types with the same phenotype (high or low). Gen-
era highlighted in blue are found in 2 out of 3 litter types, but
in different phenotypes (high or low).
Supplemental Table 3. Pearson’s product–moment correla-
tion values between diversity (functional and taxonomic) and
DOC abundance for all samples. When litter types were
analysed together, samples were rarefied 18,800 annota-
tions per sample for functional diversity and 98,500 annota-
tions for taxonomic diversity. When litter types were
analysed separately, pine litter was rarefied to 18,800 and
98,500, oak litter was rarefied to 64,600 and 224,000, and
grass litter was rarefied to 20,700 and 164,000 for functional
and taxonomic diversity respectively. Diversity metrics used
to analyse the samples include Shannon-Weaver index,
Simpson index, inverse Simpson index, richness, Pielou’s
evenness, and the Chao1 richness estimator.
Supplemental Table 4. The abundance of phyla that signifi-
cantly changed between low and high DOC communities
within each litter type (pine, oak, and grass) based on a
Kruskal-Wallis H test of rarefied log-transformed abun-
dances. Only annotations classified in MG-RAST by RefSeq
as Bacteria, Fungi, Viruses, or Archaea were included in
these analyses. No phyla significantly (p-value <0.05) chan-
ged between low and high DOC for grass and therefore is
not reported here.
Supplemental Table 5. Genera from oak, pine, and grass
found to be significant in more than one litter type based on
the Kruskal-Wallis H Test using rarefied log-transformed
abundances. The statistic and p-value from the Kruskal-
Wallis H Test are reported along with the average abun-
dance in low and high DOC groups. The cells in green high-
light the higher value for each genus within each litter.
Supplemental Table 6. Phyla with significant differential
expression based on DESeq2 analysis between low and
high DOC when all litter types (pine, oak, and grass) were
analysed together. The baseMean is the normalized counts
of all samples to account for sequencing depth.
Log2FoldChange is the difference between low and high
DOC normalized counts with >0 associating with low DOC
and < 0 associating with high DOC. lfcSE is the standard
error for log2 fold change. Stat is the Wald statistic that
divides the log2 fold change by its standard error which is
used to calculate the p-value. Padj is the multi-test correct p-
value using the Benjamin-Hochberg correction. DOC cate-
gory reports whether the phylum associated with high or
low DOC.
Supplemental Table 7. Genera determined to be differen-
tially expressed between low and high DOC communities
when all litter types (pine, oak, and grass) were analysed
together using DESeq2 The baseMean is the normalized
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counts of all samples to account for sequencing depth.
Log2FoldChange is the difference between low and high
DOC normalized counts with >0 associating with low DOC
and < 0 associating with high DOC. lfcSE is the standard
error for log2 fold change. Stat is the Wald statistic that
divides the log2 fold change by its standard error which is
used to calculate the p-value. Padj is the multi-test correct p-
value using the Benjamin-Hochberg correction. DOC cate-
gory reports whether the phylum associated with high or low
DOC. The phylum, class, order, and family are reported for
each genus under the appropriate header.
Supplemental Table 8. Subsystem level 2 functional genes
from oak, pine, and grass found to be significant in more
than one litter type based on the Kruskal-Wallis H Test using
rarefied log-transformed abundances. The statistic and p-
value from the Kruskal-Wallis H Test are reported along with
the average abundance in low and high DOC groups. The
cells in green highlight the higher value for each genus
within each litter.
Supplemental Table 9. Subsystem level 3 from oak, pine,
and grass found to be significant (p < 0.1) in more than one
litter type based on the Kruskal-Wallis H Test using rarefied
log-transformed abundances. The statistic and p-value from
the Kruskal-Wallis H Test are reported along with the aver-
age abundance in low and high DOC groups. The cells in
green highlight the higher value for each genus within each
litter.

Supplemental Table 10. Level 3 Subsystem functions
determined to be differentially expressed between low and
high DOC communities when all litter types (pine, oak, and
grass) were analysed together using DESeq2 The
baseMean is the normalized counts of all samples to
account for sequencing depth. Log2FoldChange is the differ-
ence between low and high DOC normalized counts with >0
associating with low DOC and < 0 associating with high
DOC. lfcSE is the standard error for log2 fold change. Stat is
the Wald statistic that divides the log2 fold change by its
standard error which is used to calculate the p-value. Padj is
the multi-test correct p-value using the Benjamin-Hochberg
correction. DOC category reports whether the functional
group increased abundance in high or low DOC.
Supplemental Table 11. Subsystem functions determined to
be differentially expressed between low and high DOC commu-
nities when all litter types (pine, oak, and grass) were analysed
together using DESeq2 The baseMean is the normalized
counts of all samples to account for sequencing depth.
Log2FoldChange is the difference between low and high DOC
normalized counts with >0 associating with low DOC and < 0
associating with high DOC. lfcSE is the standard error for log2
fold change. Stat is the Wald statistic that divides the log2 fold
change by its standard error which is used to calculate the
p-value. Padj is the multi-test correct p-value using the
Benjamin-Hochberg correction. DOC category reports whether
the functional group increased abundance in high or low DOC.
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