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Abstract: Phytosterols, which are present in a variety of foods, exhibit various physiological functions
and do not have any side effects. Here, we attempted to identify functional role of campesterol in
regulation of oxidative stress by leading to cell death of ovarian cancer. We investigated the effects
of campesterol on cancer cell aggregation using a three-dimensional (3D) culture of human ovarian
cancer cells. The effects of campesterol on apoptosis, protein expression, proliferation, the cell cycle,
and the migration of these cells were determined to unravel the underlying mechanism. We also
investigated whether campesterol regulates mitochondrial function, the generation of reactive oxygen
species (ROS), and calcium concentrations. Our results show that campesterol activates cell death
signals and cell death in human ovarian cancer cells. Excessive calcium levels and ROS production
were induced by campesterol in the two selected ovarian cancer cell lines. Moreover, campesterol
suppressed cell proliferation, cell cycle progression, and cell aggregation in ovarian cancer cells.
Campesterol also enhanced the anticancer effects of conventional anticancer agents. The present
study shows that campesterol can be used as a novel anticancer drug for human ovarian cancer.

Keywords: campesterol; ovarian cancer; cell death; ROS; mitochondria dysfunction

1. Introduction

Phytosterols are steroids produced by plants. They are similar to cholesterol and include
stanols and phytosteroids. Phytosterols have been reported to inhibit low density lipoprotein
cholesterol and protect against cardiovascular disease in several studies [1]. Foods and
dietary supplements containing phytosterols have been consumed by humans for decades.
Phytosterol-containing functional foods have been monitored in the EU market since 2000,
and little is known about its side effects [2]. Depending on their structure, phytosterols are
involved in specific physiological reactions. They are the precursors of plant hormones and
brassinosteroids and regulate the growth and development of plants [3–5]. Moreover, they
affect intracellular signal transduction through the formation of specific lipid microdomains
(lipid rafts) in the membrane [6,7]. In addition, diets high in phytosterols have been reported
to reduce the risk of developing ovarian cancer [8]. Campesterol is a phytosterol that is
found in a variety of vegetables, fruits, nuts, and seeds and is abundant in canola and
corn oil [9]. Hence, campesterol is one of the most common phytosterols, along with β-
sitosterol and stigmasterol. It is competitively absorbed with cholesterol through the human
intestine owing to its structural similarity with cholesterol. Campesterol can regulate carrier
proteins, intestinal cells, and lipid metabolism, including the synthesis and esterification of
cholesterol and assembly of lipoproteins [10]. The anticancer effects of campesterol have
been reported frequently in recent years. Campesterol inhibits the growth of leukemia,
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hepatocarcinoma [11] and prostate cancer cells [12,13]. In several studies, the consumption of
campesterol (10 mg/day) was shown to reduce the risk of cancer by 13%. It was suggested that
the risk of cancer could be gradually reduced in inverse proportion to the level of campesterol
intake [14]. However, there are no reports that campesterol suppresses human ovarian cancer.

Among the ovarian cancer, epithelial ovarian cancer is most frequent (90%) type, and it
histologically distinguished as serous (52%), endometrioid (10%), clear cell (6%), mucinous
(6%), or undistinguished subtypes [15]. The incidence and mortality of ovarian cancer
have continued to decline. The mortality caused by ovarian cancer has decreased by more
than 30% in recent decades as a result of improved treatment [16]. Nevertheless, survival
within five years after diagnosis is less than half for high-grade serous carcinoma because
of rapid metastasis, difficulties in early diagnosis, and the high rate of recurrence [16].
Given that preserving functional mitochondria is a key feature of drug-resistant ovarian
cancer cells, phytochemicals targeting mitochondria have the potential to increase the
therapeutic response in ovarian cancer [17]. In addition, inducing ER stress is an effective
way to enhance the sensitivity of existing drugs against ovarian cancer, as it induces the
apoptosis of ovarian cancer cells [18].

We aimed to identify anticancer compounds from natural materials that do not have
side effects. Although the anticancer effects of campesterol have been reported in several
cancer types, little is known about its effect on organelles, such as mitochondria and ER,
as well as the underlying mechanism by which it induces apoptosis. Moreover, there is no
information on the functional role of campesterol, especially in ovarian cancer cells. In the
present study, we found that campesterol induced apoptosis in two ovarian cancer cell (serous
carcinoma and clear cell carcinoma) lines. It also regulated intracellular mechanisms for cell
survival, including mitochondrial function and homeostasis of the ER. Moreover, campesterol
promoted the expression of cell death factors and inhibited the growth of cells by inhibiting
the expression of proteins related to cell growth. The production of ROS and levels of calcium
were also dramatically increased by campesterol in both the cell lines. These results provide
mechanistic insights into the anticancer effects of campesterol on human ovarian cancer.

2. Materials and Methods
2.1. Reagents

Campesterol (cat no: CFN92204) was purchased from ChemFaces (Wuhan, China). It
was dissolved in dimethyl sulfoxide (DMSO) before the treatment of cells.

2.2. Cell Culture

Ovarian cancer cells (ES2; ovarian clear cell carcinoma cells and OV90; papillary serous
adenocarcinoma cells) were purchased from American Type Culture Collection (ATCC;
Manassas, VA, USA). Cells from both cell lines were incubated in McCoy’s 5A medium
containing 10% fetal bovine albumin (FBS). The cells were grown in a carbon dioxide cell
culture incubator (37 ◦C, 5% CO2). All the cells were incubated in medium lacking FBS for
24 h before treatment to assess the effects of campesterol.

2.3. 3D Cell Culture

The cells were cultured by hanging them on the cover of a culture dish (3 × 103 cells/drop).
Treatment with the vehicle or campesterol (125 µM) was performed for 72 h. The forma-
tion of cancer was assessed by visualization under a DM3000 microscope (Leica, Wetzlar,
Germany). The aggregated cancer cell area was estimated using ImageJ software. The 3D
structure density of aggregated cancer cells was calculated using the ReViSP software. The
experiment was performed in triplicate.

2.4. Apoptosis Assay

Cells from both cell lines were grown and FBS starved in monolayer culture condition
for 24 h. The cells were then treated with campesterol (0, 25, 62.5, and 125 µM) for 48 h and
then rinsed twice with PBS to remove the treatment solution. Subsequently, the cells were
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trypsinized and collected by centrifugation. The collected cells were incubated with FITC
Annexin V (BD Biosciences, Franklin Lakes, NJ, USA) and propidium iodide (PI) for 15 min.
Fluorescence was observed using a flow cytometer (BD Bioscience). For all experiments,
the results were estimated in comparison with those obtained for cells treated with the
vehicle control. The experiment was performed in triplicate.

2.5. Western Blot Analysis

Cells from both cell lines were incubated with campesterol (0, 25, 62.5, and 125 µM) for
24 h. Western blot analysis was performed, as described previously [19]. The experiment
was performed in triplicate.

2.6. JC-1 Staining

The cells were treated with campesterol (0, 25, 62.5, and 125 µM) in monolayer culture
condition for 48 h and subsequently rinsed twice to remove the treatment solution before
they were harvested. The detached cells were collected by centrifugation and rinsed twice
with PBS. They were then stained with JC-1 (Sigma-Aldrich, St. Louis, MO, USA) for
20 min at 37 ◦C, rinsed twice with JC-1 buffer, and analyzed using a flow cytometer (BD
Bioscience). The experiment was performed in triplicate.

2.7. ROS Production

The cells were grown and FBS starved in monolayer culture condition for 24 h. They
were detached by trypsinization and collected by centrifugation; subsequently, the cells
were washed twice with PBS. The collected cells were treated with 2′,7′- dichlorofluorescein
diacetate (DCFH-DA) (Sigma, 10 µM) for 30 min, rinsed twice with PBS, and incubated
with campesterol (0, 25, 62.5, and 125 µM) for 1 h. ROS was detected using a flow cytometer
(BD Bioscience). The experiment was performed in triplicate.

2.8. Evaluation of Cytosolic Calcium Levels

The cells were grown and FBS starved in monolayer culture condition for 24 h. They
were treated with campesterol (0, 25, 62.5, and 125 µM) for 48 hours and then rinsed twice
with PBS to remove the treatment solution before they were harvested. The detached
cells were collected by centrifugation, rinsed twice with PBS, and stained with fluo-4
acetoxymethyl ester (AM; 3 µM) (Invitrogen, Waltham, MA, USA) for 20 min at 37 ◦C. The
cells were again washed twice with PBS; subsequently, fluorescence from the fluo-4 dye was
detected using a flow cytometer (BD Bioscience). The results of all the experiments were
compared with those of the control group. The experiment was performed in triplicate.

2.9. Evaluation of Mitochondrial Calcium Levels

The cells were grown and FBS starved in monolayer culture condition for 24 h. They
were treated with campesterol (0, 25, 62.5, and 125 µM) for 48 h and then rinsed twice with
PBS to remove the treatment solution. Subsequently, the cells were trypsinized, collected
by centrifugation, and washed twice with PBS. They were then stained with rhod-2 dye for
20 min at 37 ◦C and rinsed twice with PBS; subsequently, fluorescence from rhod-2 was
determined using a flow cytometer (BD Bioscience). The results of all the experiments were
compared with those of the control group. The experiment was performed in triplicate.

2.10. Cell Proliferation

Cell proliferation was investigated in monolayer culture condition by ELISA using a
BrdU Kit (Roche, Basel, Switzerland). The cells were grown and FBS starved for 24 h. They
were treated with different concentrations of campesterol in a 96-well plate for 48 h. The
cells were stained with BrdU for 2 h, and the presence of BrdU was probed by incubation
with anti-BrdU-POD for 1 h 30 min. The cells were washed thrice with PBS, and color was
developed via the addition of a chromogenic substrate, which was read on a microplate
reader (Bio-Tek, Winooski, VA, USA). The experiment was performed in triplicate.
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2.11. Cell Cycle

Cells were treated with campesterol in monolayer culture condition for 48 h and then
rinsed twice to remove the treatment solution. They were trypsinized and collected by
centrifugation and then treated with RNase A and PI for 30 min. Fluorescence from PI was
determined using a flow cytometer (BD Bioscience). The results of all the experiments were
compared with those of the vehicle-treated group. The experiment was performed in triplicate.

2.12. Migration

The cells were grown on Transwell inserts and treated with campesterol or vehicle
for 12 h. They were subsequently fixed with methanol and stained with hematoxylin.
The membrane was rinsed and covered with mounting medium. The migration of cells
was analyzed by visualization under a DM3000 microscope (Leica). The experiment was
performed in triplicate.

2.13. Quantitative Real Time PCR

The expression levels of the selected genes were determined by quantitative RT-PCR
using SYBR green dye, as described previously [20]. The experiment was performed
in triplicate.

2.14. Statistical Analysis

All quantitative data were subjected to least squares ANOVA using the General Linear
Model procedures of the Statistical Analysis System (SAS Institute Inc., Cary, NC, USA).
Western blot data were corrected for differences in sample loading using total protein data
as a covariate. All tests of significance were performed using the appropriate error terms
according to the expectation of the mean squares for error. A p-value less than or equal to
0.05 was considered significant. Data are presented as least-square means (LSMs) with SEs
(*** = p < 0.001, ** = p < 0.01, and * = p < 0.05).

3. Results
3.1. Activation of Cell Death and Restriction of Cell Aggregation by Campesterol in Human
Ovarian Cancer Cells

We tested the effects of campesterol on a 3D ovarian cancer model. The hanging ovarian
cancer cells (3 × 103 cells/drop) were treated with the vehicle or campesterol (125 µM). The
aggregated cancer cell area was estimated using ImageJ software. The 3D structure was
calculated using the ReViSP software. Campesterol suppressed the aggregation of human
ovarian cancer cells. The area of the aggregated ovarian cancer cells was increased to 123%
and 135%, respectively, for each cell line ES2 and OV90 compared to that in the vehicle-
treated controls (100%). However, the density of the ovarian cancer cells was reduced to
50% and 30%, respectively, for both the cell lines compared to that in the vehicle-treated
group (100%) (Figure 1A,B). These data show that the aggregation of the ovarian cancer cells
was suppressed by campesterol treatment. Next, we investigated the apoptosis induced
by campesterol (0, 25, 62.5, and 125 µM) in the ovarian cancer cells using annexin V and
propidium iodide (PI) staining (upper right quadrant in Figure 1C,D). In the ES2 cells, the
percentage of cells in the late apoptosis phase was increased to 2.6%, 5.4%, and 13.7% upon
treatment with 25, 62.5, and 125 µM of campesterol, respectively, compared with that in
the vehicle-treated control (2.1%) (Figure 1C). In the OV90 cells, the cell population in the
upper right quadrant was increased to 3.9%, 5.9%, and 10.3% upon treatment with 25, 62.5,
and 125 µM of campesterol, respectively, compared with that in the vehicle-treated control
(2.4%) (Figure 1D). The results of western blot analysis showed that campesterol activated
the expression of proapoptotic proteins in both cell lines. Treatment with campesterol (0, 25,
62.5, and 125 µM) stimulated the cleavage of caspase 3 and caspase 9 in both cell lines in a
dose-dependent manner. It also induced the expression of cytochrome C, BAK, and BAX in
both cell lines (Figure 1E). In contrast, the expression of alpha tubulin (TUBA) remained
unchanged upon treatment with campesterol in both cell lines. In addition, campesterol
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increased the autophagy related protein expression such as BECN1, phosphorylated (p)-
ULK1, ATG5, and LC3B compared with those of TUBA in both cell lines (Figure 1F).
However, LY294002, an inhibitor of several proteins required for autophagy, suppressed the
activation of autophagy signals in ES2 and OV90 cells (Figure 1G).
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Figure 1. Inhibition of cancer cell aggregation and activation of cell death by campesterol in human ovarian cancer cell lines.
(A,B) Comparison of aggregation in the control and campesterol-treated cells. (C,D) A cell apoptosis assay was conducted
to investigate the induction of apoptosis in the cells treated with campesterol. The quadrants in the dot plot show the cells
in the different phases of apoptosis. The graph shows the changes in the percentages of cells in the late apoptosis phase.
(E,F) Western blot analysis showing the activation of the proapoptotic proteins and autophagy proteins upon treatment
with campesterol (0, 25, 62.5, and 125 µM). (G) Western blot analysis of proteins from ES2 and OV90 cells treated with
Campesterol, LY294002, or co-treated with both. The data represent three independent experiments. The asterisks indicate
significant differences between the treated cells and control cells (*** p < 0.001, ** p < 0.01, and * p < 0.05).
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3.2. Alterations in the Mitochondrial Membrane Potential (MMP) and ROS Levels by Campesterol

All campesterol (0, 25, 62.5, and 125 µM) treatment altered the mitochondrial function
in the ES2 and OV90 cells in monolayer culture condition. In the ES2 cells, the loss of
MMP, quantified as the proportion of JC-1 monomers, was increased to 2.2%, 3.1%, and
8.2% upon treatment with 25, 62.5, and 125 µM of campesterol, respectively, compared with
that in the control (1.5%) (Figure 2A). Similarly, in the OV90 cells, the proportion of JC-1
monomers was increased to 1.7%, 3.2%, and 4.6% upon treatment with 25, 62.5, and 125 µM
of campesterol, respectively, compared to that in the control (1.0%) (Figure 2B). ROS was
investigated in ovarian cancer cells with treatment of campesterol (0, 25, 62.5, and 125 µM) for
1 h using DCFH-DA, 10µM staining. In the ES2 cells, the generation of ROS, quantified by
dichlorofluorescein (DCF) fluorescence intensity, was increased to 3.1%, 5.0%, and 7.2% upon
treatment with 25, 62.5, and 125 µM of campesterol, respectively, compared with that in the
control (2.9%) (Figure 2C), whereas in the OV90 cells, it was increased to 4.3%, 5.8%, and 7.1%
upon treatment with 25, 62.5, and 125 µM of campesterol, respectively, compared with that in
the control (3.6%) (Figure 2D). Flow cytometry analysis was conducted after cotreatment with
campesterol and N-acetylcysteine (NAC; 1 mM). Campesterol increased ROS levels in ES2
cells (15.6%) and OV90 cells (12.7%). However, NAC mitigated the increase in ROS levels in
ES2 cells (8.0%) and OV90 cells (7.0%) (Figure 2E,F).
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three independent experiments. The asterisks indicate significant differences between the treated cells and control cells
(** p < 0.01, and * p < 0.05)
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3.3. Upregulation of the Cellular and Mitochondrial Calcium Concentrations by Campesterol

To determine the changes in the levels of calcium, we treated the cells with 0, 25,
62.5, and 125 µM of campesterol in monolayer culture condition. Thereafter, the calcium
levels in the cytosol and mitochondria were determined using fluo-4-AM and rhod-2
fluorescence, respectively. In the ES2 cells, the cellular calcium levels, quantified by fluo-4
fluorescence intensity, were increased to 5.4%, 8.4%, and 12.4% upon treatment with 25,
62.5, and 125 µM of campesterol, respectively, compared with that in the control (4.6%)
(Figure 3A), whereas they were increased to 4.6%, 10.7%, and 13.3%, respectively, compared
with that in the control (4.1%) in the OV90 cells (Figure 3B). The levels of calcium in the
mitochondria, quantified by rhod-2 fluorescence intensity, increased to 4.8%, 6.3%, and
10.1% in the ES2 cells (Figure 3C) upon treatment with 25, 62.5, and 125 µM of campesterol,
respectively, compared with that in the control (4.2%) and to 3.5%, 5.5%, and 7.8% in
the OV90 cells (Figure 3D) upon treatment with 25, 62.5, and 125 µM of campesterol,
respectively, compared with that in the control (3.0%).
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Figure 3. Concentrations of calcium in the cytosol and mitochondria of cells treated with campesterol. (A,B) Cytosolic levels
of calcium were determined using fluo-4 fluorescence. The histogram represents the alterations in the intracellular calcium
levels upon treatment of the cells with campesterol (0, 25, 62.5, and 125 µM). The graphs show the changes in the intracellular
calcium levels upon treatment of the cells with campesterol compared to that in the control. (C,D) Rhod-2 fluorescence was
measured to determine the changes in the concentrations of calcium in the mitochondria. The histogram represents the
changes in the mitochondrial calcium concentrations upon treatment of the cells with campesterol. The graphs show the
alterations in the concentrations of calcium in the mitochondria upon treatment of the cells with campesterol compared
with that in the control. The data represent three independent experiments. The asterisks indicate significant differences
between the treated cells and control cells (*** p < 0.001, ** p < 0.01, and * p < 0.05).

3.4. Activation of ER Stress and the ER–Mitochondrial Axis by Campesterol in the ES2 and
OV90 Cells

Ovarian cancer cells were treated with campesterol (0, 25, 62.5, and 125 µM) for 24 h.
Western blot analysis revealed the changes in ER stress and the ER–mitochondrial axis. The
accumulation of UPR proteins, including p-PERK, p-eIF2α, IRE1α, GADD153, ATF6α, and
GRP78, was induced by campesterol (0, 25, 62.5, and 125 µM) treatment compared with that
of TUBA in both cell lines (Figure 4A). Additionally, the expression of ER–mitochondria
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axis proteins, including VDAC, IP3R1, IP3R2, VAPB, FAM82A2, and GRP75 were increased
upon campesterol treatment compared with those of TUBA in both cell lines (Figure 4B).
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the ES2 cells was inhibited by up to 39.0% at 125 µM of campesterol (EC50 = 245.13 µM) 
(Figure 5A). The cell proliferation of the OV90 cells was reduced by up to 46.0% at 125 µM 
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Figure 4. Activation of the ER-stress sensor and the ER–mitochondrial axis signals by campesterol in the ovarian cancer
cells. (A) Western blot analysis of ER-stress proteins in the cells treated with campesterol (0, 25, 62.5, and 125 µM). (B)
Western blot analysis of the ER–mitochondrial axis proteins in the cells treated with campesterol (0, 25, 62.5, and 125 µM).
TUBA was used as a control. The graph represents the relative fold changes in the levels of proteins induced by campesterol
treatment compared with that in the control (100%). The data represent three independent experiments. The asterisks
indicate significant differences between the treated cells and control cells (*** p < 0.001, ** p < 0.01, and * p < 0.05).

3.5. Inhibition of Cell Proliferation and the Cell Cycle by Campesterol

Cell proliferation was observed using a BrdU ELISA Kit. Treatment of campesterol
(0, 25, 62.5, and 125 µM) suppressed proliferation in both cell lines. The proliferation of
the ES2 cells was inhibited by up to 39.0% at 125 µM of campesterol (EC50 = 245.13 µM)
(Figure 5A). The cell proliferation of the OV90 cells was reduced by up to 46.0% at 125 µM
of campesterol (EC50 = 147.13 µM) (Figure 5B). In terms of cell cycle progression, ovarian
cancer cells were treated with campesterol (0, 25, 62.5, and 125 µM) for 48 h and staining
with RNase A and PI. The sub-G1 phase was increased by up to 18.8% at 125 µM of
campesterol compared with that in the control (0.6%) in the ES2 cells (Figure 5C). Whereas,
in the OV90 cells, it was increased by up to 13.3% at 125 µM of campesterol compared with
that in the control cells (0.5%) (Figure 5D).
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Figure 5. Inhibition of cell growth by campesterol in the ovarian cancer cell lines. (A,B) The cell proliferation assay in the
campesterol (0, 25, 62.5, and 125 µM)-treated cells. The graphs show the percentage of cell growth compared with that of
the control cells (100%). (C,D) The histogram presents the cell cycle of the campesterol (0, 25, 62.5, and 125 µM)-treated cells.
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treated cells and control cells (*** p < 0.001, ** p < 0.01, and * p < 0.05).
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3.6. Regulation of Signaling by Campesterol in the Ovarian Cancer Cells

For investigate intracellular signal transduction, ovarian cancer cells were treated with
campesterol (0, 25, 62.5, and 125 µM) for 48 h. The cell proliferation-related intracellular
signal pathways were identified using western blot analysis. The phosphorylation of AKT,
P70S6K, and S6 was decreased by campesterol 0, 25, 62.5, and 125 µM treatment compared
to the levels of the respective total protein in both cell lines (Figure 6A). Additionally, the
phosphorylation of ERK1/2, JNK, and p38 was inhibited in a dose-dependent manner by
campesterol (0, 25, 62.5, and 125 µM) compared to the levels of the respective total protein
in both cell lines (Figure 6B). Next, we determined the signal correlation in greater detail
using signal cascade inhibitors, including a PI3K inhibitor (LY294002; 20 µM), ERK1/2
inhibitor (U0126; 20 µM), JNK inhibitor (SP600125; 20 µM), and P38 inhibitor (SB203580;
20µM). The cells were treated with each inhibitor before the campesterol treatment. The
phosphorylation of AKT was almost blocked by LY294002 and SB203580 in the ES2 and
OV90 cells, respectively. The phosphorylation of P70S6K was inhibited by LY294002 in
the ES2 cells and OV90 cells. The phosphorylation of S6 was decreased by LY294002 in
the ES2 cells and inhibited by LY294002 and SP600125 in the OV90 cells (Figure 6C). The
phosphorylation of ERK1/2 was inhibited by U0126 in both cell lines. The phosphorylation
of JNK was completely blocked by LY294002, U0126, and SP600125 in the ES2 cells. p-JNK
was repressed by U0126 in the OV90 cells. The phosphorylation of P38 was completely
blocked by SB203580 in the ES2 cells and inhibited by LY294002 and SB203580 in the OV90
cells (Figure 6D). In addition, campesterol treatment resulted in a reduction of proliferating
cell nuclear antigen (PCNA) levels. In addition, the combination of campesterol and each
pharmacological inhibitor suppressed PCNA compared to the vehicle-treated control in
both cell lines. Campesterol-induced the expression of several proapoptotic protein, which
in some cases was prevented by cotreatment with the anti-apoptotic inhibitors. BAX protein
levels were decreased by LY294002, U0126, and SB203580 treatment in ES2 cells, and by
all inhibitors in OV90 cells. BAK protein levels were diminished by SB203580 in ES2 cells
and by all inhibitors in OV90 cells. Cleaved caspase 3 levels were decreased by LY294002
and SB203580 in ES2 cells and slightly increased by LY294002 and SB203580 in OV90 cells.
Cleaved caspase 9 and cytochrome c were decreased by all the inhibitors in both cell lines.
For the western blot analysis, the proapoptotic protein levels were compared to those of
TUBA (Figure 6E).

3.7. Reductions in the Migration and Expression of Angiogenic Genes in the Ovarian Cancer Cells
Treated with Campesterol

The cells were treated with campesterol (125 µM) and stained with hematoxylin. The
migration of the ovarian cancer cells was decreased to 84.7% in the ES2 cells and 69.3% in
the OV90 cells upon treatment with campesterol compared with that in the control cells
(Figure 7A,B). Moreover, the expression levels of the genes that play key roles in migration
and angiogenesis, including vascular endothelial growth factor A (VEGFA), VEGFB, matrix
metalloproteinase-2 (MMP2), MMP9, MMP14, and plasminogen activator, urokinase (PLAU)
were decreased upon campesterol treatment in both cell lines (Figure 7C,D).
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Figure 6. Changes in the cell growth-related and proapoptotic signals upon treatment of the cells with campesterol. (A,B)
Western blots showing the changes in the PI3K/MAPK signals upon campesterol treatment in both cell lines. (C,D) Western
blots showing the alterations in the PI3K/MAPK signals upon cotreatment of LY294002, U0126, SP600125 and SB203580
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(*** p < 0.001, ** p < 0.01, and * p < 0.05).



Antioxidants 2021, 10, 379 12 of 17

Antioxidants 2021, 10, 379 13 of 18 
 

and angiogenesis, including vascular endothelial growth factor A (VEGFA), VEGFB, matrix 
metalloproteinase-2 (MMP2), MMP9, MMP14, and plasminogen activator, urokinase (PLAU) 
were decreased upon campesterol treatment in both cell lines (Figure 7C,D). 

 
Figure 7. Campesterol inhibits cell migration and angiogenic gene expression. (A,B) The migration of cells was investi-
gated using Transwell inserts. For each cell line, five non-overlapping locations were visualized. (C,D) The expression of 
genes involved in angiogenesis was determined by quantitative RT-PCR. Scale bar represents 100 µm. The data represent 
three independent experiments. The asterisks indicate significant differences between the treated cells and control cells 
(*** p < 0.001, ** p < 0.01, and * p < 0.05). 

3.8. Enhancements in the Anticancer Effects of Existing Drugs by Campesterol 
Cell proliferation assays were performed to determine whether campesterol has syn-

ergistic effects with existing anticancer drugs. The cells were incubated with campesterol 
(125 µM) alone or were co-treated with campesterol and cisplatin (20 µM) or paclitaxel (20 
µM). Cell proliferation were compared with vehicle-treated control group (100%). Cam-
pesterol (125 µM) decreased the cell proliferation to half in both cell lines. Moreover, the 
combination treatment of campesterol and cisplatin or paclitaxel inhibited cell prolifera-
tion more than the treatment alone. Campesterol enhanced the inhibition of cell growth 
by cisplatin and paclitaxel in both ovarian cancer cell lines (Figure 8A,B). 

 
Figure 8. Reduced cell proliferation upon cotreatment with campesterol and existing drugs in ovarian cancer cell lines. (A,B) 
The proliferation of cells treated with campesterol and existing drugs was determined in relation to that of the control cells 
(100%). Statistical significance was also shown between the group treated with campesterol alone and the group treated with 
the conventional drug plus campesterol. The data represent three independent experiments. The asterisks indicate significant 
differences between the treated cells and control cells (*** p < 0.001, ** p < 0.01, and * p < 0.05). ‘a’ and ‘b’ indicate significant 
differences as compared to cisplatin and paclitaxel, respectively. 

Figure 7. Campesterol inhibits cell migration and angiogenic gene expression. (A,B) The migration of cells was investigated
using Transwell inserts. For each cell line, five non-overlapping locations were visualized. (C,D) The expression of
genes involved in angiogenesis was determined by quantitative RT-PCR. Scale bar represents 100 µm. The data represent
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3.8. Enhancements in the Anticancer Effects of Existing Drugs by Campesterol

Cell proliferation assays were performed to determine whether campesterol has syn-
ergistic effects with existing anticancer drugs. The cells were incubated with campesterol
(125 µM) alone or were co-treated with campesterol and cisplatin (20 µM) or paclitaxel
(20 µM). Cell proliferation were compared with vehicle-treated control group (100%).
Campesterol (125 µM) decreased the cell proliferation to half in both cell lines. Moreover,
the combination treatment of campesterol and cisplatin or paclitaxel inhibited cell prolifer-
ation more than the treatment alone. Campesterol enhanced the inhibition of cell growth
by cisplatin and paclitaxel in both ovarian cancer cell lines (Figure 8A,B).
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Figure 8. Reduced cell proliferation upon cotreatment with campesterol and existing drugs in ovarian cancer cell lines.
(A,B) The proliferation of cells treated with campesterol and existing drugs was determined in relation to that of the control
cells (100%). Statistical significance was also shown between the group treated with campesterol alone and the group treated
with the conventional drug plus campesterol. The data represent three independent experiments. The asterisks indicate
significant differences between the treated cells and control cells (*** p < 0.001, ** p < 0.01, and * p < 0.05). ‘a’ and ‘b’ indicate
significant differences as compared to cisplatin and paclitaxel, respectively.



Antioxidants 2021, 10, 379 13 of 17

4. Discussion

A case-control study revealed that diets high in phytosterols are associated with a
reduced risk of ovarian cancer [8]. A posterior meta-analysis revealed that only campesterol
was inversely related to cancer risk [14]. Campesterol induces the apoptosis of cells
and inhibits cell proliferation in histiocytic lymphoma (U937 cells), liver cancer (HepG2
cells) [11], prostate cancer (PC-3 cells) [13], and breast cancer (MDA-MB-231 cells) [21]. It
was also reported to repress basic fibroblast growth factor (bFGF)-induced angiogenesis
through the regulation of cell proliferation and differentiation [7]. Campesterol inhibited
cell proliferation through the inhibition of the liver X receptor, which is important for
cell proliferation in prostate and breast cancers [12]. In addition, campesterol caused
DNA damage, the activation of caspase, and cell cycle arrest at the G1 and G2/M phases
in T lymphocytes (Jurkat cells), lymphoma cells (Jeko-1 cells), and glioma cells (LN22
cells) [22]. Similarly, in our study, campesterol induced late apoptosis and suppressed cell
growth in both the selected ovarian cancer cell lines. In addition, campesterol increased the
proportion of cells in the G1 phase of the cell cycle. These results indicate that campesterol
induces apoptosis in human ovarian cancer cells.

Campesterol induced cell apoptosis through the mitochondrial pathway; it decreases
the expression of BCL-2 and BCL-xL and increased the expression of BAX, BAD, BAK,
and activating caspase 3 and caspase 9 in human lung adenocarcinoma (A549) cells [23].
Campesterol was reported to reduce the growth of liver cancer (SSMC-7721) cells by
inducing cell cycle arrest, apoptosis, ROS generation, the loss of MMP, a decrease in
Bcl-2 expression, and the activation of caspase 3 and caspase 9 [24]. In ovarian cancer,
campesterol also activated cell death signals, such as cleaved caspase 3, cleaved caspase 9,
cytochrome c, BAX, and BAK. In addition, the function of mitochondrial membranes was
reduced upon treatment of cells with campesterol. The depolarization of mitochondrial
potential and the secretion of proapoptotic signals causes programed cell death [25]. Early
stage of programmed cell death is caused by disruption of mitochondria function, which
includes changes in the membrane potential, a central feature of mitochondrial health, and
alterations to the oxidation–reduction potential of the mitochondria. The MMP is essential
in Ca2+ uptake and storage, ROS generation and detoxification and, most importantly, the
synthesis of ATP by oxidative phosphorylation [26]. Therefore, the membrane’s depolar-
ization is a good indicator of mitochondrial dysfunction [27]. Autophagy is a homeostatic
cellular process that removes damaged organelles during cellular stress responses [28]. Au-
tophagy is generally not only activated in nutritional deficiencies, but is also involved in a
number of physiological processes including development, differentiation, neurodegenera-
tive diseases, infections and cancer [29]. Autophagy marker light chain 3B (LC3B) is critical
for autophagy and undergo post-translational modifications during autophagy [30–32].
The LC3-I/LC3-II ratio increases through lipidation by an ubiquitin-like system involving
Atg7 and Atg3 that allows the establishment of autophagic vesicles during autophagy [33].
Also, autophagy is regulated by phosphorylation of the Unc-51-like kinases ULK1 and
ULK2 [34]. ULK activates BECN1, which forms autophagy-inducible BECN1 protein com-
plexes [35,36]. The activated ULK and BECN1 complexes initiates autophagosome through
activation of downstream autophagy components [37,38]. The ubiquitin-like conjugation
system involved in autophagy requires the binding of the ubiquitin-like protein Atg5 [39].
In addition, autophagy-related gene are reported as tumor suppressor including BECN1
and Atg5 [40]. In our results, these autophagy markers were significantly increased by
campesterol in both cell lines. ROS play a pivotal role in cell survival, but accumulation
of ROS beyond the survival threshold leads to cell death [41]. Excessive ROS production
and consequent increase in intracellular calcium concentration activates apoptosis signals,
along with the destruction of mitochondria [42,43]. Therefore, an increase in ROS and
calcium concentration inside the cells and the mitochondria induced by campesterol is
speculated to induce the death of ovarian cancer cells.

The ER is an important organelle that is involved in the production and maturation
of protein in cells. Imbalance of ER homeostasis causes ER stress and unfolded protein



Antioxidants 2021, 10, 379 14 of 17

response (UPR). When UPR fails to restore organelle homeostasis and continues to accu-
mulate, it triggers the cell apoptosis pathway. Evidence has reported that ER stress can
play a role in the anticancer activity of various plant-derived natural compounds such as
curcumin, resveratrol, green tea polyphenols, tocotrienols, and garcinia derivatives [44,45].
Cellular metabolism is closely regulated by various organelles. The ER–mitochondria axis
influence energy metabolism through their structure and function being dynamically reg-
ulated by nutritional and environmental signals [46,47]. However, the over-expression of
ER–mitochondria signaling cause autophagic stimulus [48]. In particular, ABT-737, a non-
selective Bcl-2/Bcl-XL inhibitor can actually affect the ER–mitochondrial contact site, thereby
enhancing the response to cisplatin in ovarian cancer cells [49–51]. Campesterol has been
shown to cause ER stress through the activation of the UPR and the ER–mitochondria axis in
ovarian cancer cells. In addition, campesterol inhibited cell growth-related intracellular sig-
naling, including the PI3K/MAPK cascades that are related in ER stress, in human ovarian
cancer cells. Suppressing the cellular signal pathways that are mainly used by cancer cells is
a useful anticancer strategy [52]. Moreover, the intraperitoneal injection of campesterol de-
creased the growth of tumor nodules and increased the survival rate of breast cancer-bearing
mice [53]. MAPK signaling proteins including extra cellular signal-regulated kinase (ERK),
Jun kinase (JNK/SAPK) and p38 MAPK regulates cell cycle engine and cell proliferation
related proteins [54]. PI3K-AKT signaling is also important for proteins controlling cellular
proliferation by regulating cyclins, cyclin-dependent kinases, and cyclin-dependent kinase
inhibitors in cancer cells [55]. In the present study, campesterol decreased the activity of
PI3K/MAPK signaling transduction pathway. Moreover, we confirmed that campesterol
actually affects the PI3K/MAPK pathway and that there is a signal correlation between the
two pathways that campesterol affects. PCNA is an essential protein that contributes to
several cellular processes, such as cell survival, energy metabolism, DNA replication and
repair, chromatin organization, and transcription. Therefore, targeting PCNA is a promising
strategy for suppressing cancer cell proliferation [56]. Our study shows that campesterol
decreases the expression of PCNA in ovarian cancer cells, suggesting the potential benefits
of using of campesterol as a drug against ovarian cancer.

The migration of cancer cells to surrounding tissues and blood vessels causes metas-
tasis [57]. Therefore, inhibiting the migration of cancer cells is a good anticancer strategy.
Campesterol decreased cell migration in PC-3 cells [13]. In the present study, campesterol
inhibited cell migration in human ovarian cancer cells. Also, angiogenesis plays key role in
the supply of nutrients to cancer cells and in their metastasis [58]. Therefore, the inhibi-
tion of angiogenesis can be useful for anticancer therapy. We observed that campesterol
suppressed the expression of angiogenic and migratory genes, including VEGFA, VEGFB,
MMP2, MMP9, MMP14, and PLAU, in the ES2 and OV90 cells. A recent study reported that
β-sitosterol may increase the sensitivity of colorectal cancer cells to anticancer drugs [59].
However, to the best of our knowledge, there has been no report on whether phytosterols
can improve the sensitivity of human ovarian cancer cells to conventional anticancer drugs.
In the present study, for the first time, we established that campesterol could exert syner-
gistic effects with anticancer drugs in cancer cells. However, we did not assess this effect
on drug-resistant cell lines, an aspect that requires further study. The results of this study
suggest that campesterol, like other conventional drugs, induces mitochondrial-mediated
apoptosis on ovarian cancer cells, as previously reported. Several studies have suggested
that the preservation of functional mitochondria is one of the key factors determining the
sensitivity of ovarian cancer cells to conventional drugs. This implies that mitochondrial
dysfunction caused by campesterol may contribute to increased sensitivity to cisplatin and
paclitaxel in ovarian cancer cells [17,60,61]. In addition, other campesterol-mediated effects
such as excessive ROS production, induction of ER stress, and changes in cellular signaling
pathways may also contribute to increasing the sensitivity of ovarian cancer cells to drugs
such as cisplatin or paclitaxel [18,60]. These results suggest that campesterol may be used
as a novel adjuvant for the treatment of human ovarian cancers.
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5. Conclusions

Campesterol caused cell apoptosis and activated proapoptotic signals in human ovar-
ian cancer cell lines. The treatment of cells with campesterol impaired the mitochondrial
membrane function and destroyed the calcium balance. In addition, ROS generation
and the expression of ER stress-sensor proteins were increased by campesterol in a dose-
dependent manner. The ER–mitochondria axis-related proteins were also activated by
campesterol in both cell lines. Campesterol inhibited cell growth and cell cycle progression
through the regulation of the PCNA and PI3K/MAPK signal pathways. It also inhibited
the aggregation of ovarian cancer cells and enhanced the anticancer effects of cisplatin and
paclitaxel in these lines. These results indicate the potential use of campesterol as a new
therapeutic agent for ovarian cancer.
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