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Abstract
NOTCH1 is frequently mutated in T-cell acute lymphoblastic leukaemia (T-ALL), and can
stimulate T-ALL cell survival and proliferation. Here we explore the hypothesis that Notch1 also
alters T-ALL cell migration. Rho GTPases are well-known to regulate cell adhesion and
migration. We have analysed the expression levels of Rho GTPases in primary T-ALL samples
compared to normal T cells by quantitative PCR. We found that 5 of the 20 human Rho genes are
highly and consistently upregulated in T-ALL, and 3 further Rho genes are expressed in T-ALL
but not detectably in normal T cells. Of these, RHOU expression is highly correlated with the
expression of the Notch1 target DELTEX-1. Inhibition of Notch1 signalling with a γ-secretase
inhibitor (GSI) or Notch1 RNAi reduces RhoU expression in T-ALL cells, whereas constitutively
active Notch1 increased RhoU expression. In addition, Notch1 or RhoU depletion, or GSI
treatment, inhibits T-ALL cell adhesion, migration and chemotaxis. These results indicate that
NOTCH1 mutation stimulates T-ALL cell migration through RhoU upregulation which could
contribute to the leukaemia cell dissemination.
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Introduction
T-cell acute lymphoblastic leukaemia (T-ALL) is a common cancer in children. T-ALL
patients usually present with large numbers of leukaemic blasts with an immature T-cell
phenotype in the bone marrow and peripheral blood. Although current ALL treatment
protocols have success rate of around 70 to 80% five-year event-free survival in children, T-
ALL is associated with a poorer prognosis than B-ALL (1) . Leukaemic blasts can infiltrate
numerous tissues, with the central nervous system (CNS) being a frequent site of metastasis
(2,3) . CNS relapse in T-ALL requires more aggressive treatment regimens that can lead to
secondary malignancies or neurocognitive disorders (4) . A better understanding of the
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genes involved in the pathogenesis of T-ALL could allow the development of T-ALL
therapies that have fewer negative effects on long-term patient health.

Among the genetic alterations that are associated with the development of T-ALL, mutation
of the NOTCH1 oncogene is one of the most common, being present in over 50% of cases
(5,6) . Notch1 is required for T lineage commitment and regulates T cell maturation in the
thymus (7,8) . Notch1 recognises ligands of the Delta and Serrate/Jagged families expressed
in the thymic stroma. Ligand binding induces two sequential proteolytic cleavage events.
The first cleaves a large portion of the ectodomain, exposing a site recognised by the
intramembrane γ-secretase proteolytic complex (GS). Cleavage by GS releases the Notch1
intracellular domain (NICD), which enters the nucleus where it associates with the DNA-
binding protein CSL (CBF1/Su(H)/Lag1) and other proteins to regulate transcription of a
wide range of genes, including DELTEX-1 and HES1 (9) . NOTCH1 mutations found in T-
ALL commonly lead to constitutive Notch1 signalling via ligand-independent NICD
production, or enhanced NICD half-life (10) . Constitutive Notch1 signalling promotes
leukaemic cell survival and proliferation. Notch1 also regulates expression of the chemokine
receptor CCR7, which contributes to CNS metastasis in T-ALL (11) , but whether Notch1
signalling affects other genes that regulate cell motility has not been investigated.

Rho family GTPases control haematopoietic cell morphology, migration and adhesion as
well as cell proliferation and differentiation (12,13) . Most Rho GTPases are active when
bound to GTP, and inactivated when the bound GTP is hydrolysed to GDP. Signalling
through Rho GTPases is therefore controlled by regulatory proteins that modulate GTP
binding and hydrolysis, including guanine nucleotide exchange factors (GEFs) and GTPase-
activating proteins (GAPs). Twenty Rho family members have been identified in humans,
several of which have atypical properties (14) . Rnd1, Rnd2, Rnd3 and RhoH have amino
acid substitutions that prevent GTPase catalytic activity, and therefore only exist in a GTP-
bound state. RhoBTB1 and RhoBTB2 are much larger than other Rho GTPases, and appear
not to bind or hydrolyse GTP (15,16) . RhoU and RhoV are also considered atypical because
they have high intrinsic GDP/GTP exchange rates and therefore are likely to be
predominantly in the GTP-bound state (16) . Rho proteins act through their downstream
effectors to regulate cytoskeletal and adhesion dynamics, and thereby contribute to cell
migration. Altered expression of Rho genes or activation of Rho proteins has been reported
in a variety of cancer types, and the RhoH gene is mutated in some lymphomas (17,18) .
Rho proteins contribute to the enhanced migration and invasion of cancer cells (17,19,20) .

In this study, we have investigated the hypothesis that the pathogenesis of T-ALL involves
the altered expression of Rho family genes. We have investigated the mRNA expression of
human Rho genes in primary T-ALL leukaemic blast samples and compared it to the
expression in normal peripheral blood T cells. We have found that several Rho genes have
significantly increased expression in T-ALL, and in particular shown that RhoU expression
is regulated by Notch1 signalling.

Results
Atypical Rho genes are upregulated in T-ALL

To study Rho GTPase involvement in the pathogenesis of T-ALL we investigated Rho gene
expression in 30 primary T-ALL blast samples compared to mature T cells from 5 healthy
blood donors. Expression of each Rho gene mRNA was determined by quantitative PCR,
using GAPDH as a reference gene (Suppl Fig. 1). Rho mRNA expression for each T-ALL
sample was quantified relative to the mean of the control samples (Fig. 1A, Table 1). To
determine which of the genes were differentially expressed to a statistically significant
degree, a Mann-Whitney test was applied (Table 1), considering the median to be the best
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representation of the data, which in many cases were skewed and not normally distributed
(Fig. 1A). Five Rho genes were significantly upregulated in the T-ALL samples: RHOH,
RHOBTB1, RHOA, RHOB and RHOU. RHOA and RHOH were very consistently
increased in nearly all the T-ALL samples although the median fold upregulation was quite
small. The magnitude of RHOBTB1, RHOB and RHOU upregulation was much higher, but
with more variation across the T-ALL samples (Fig. 1A, Table 1). Three genes were not
detectable in normal T cell samples but were detected in more than 30% of T-ALL samples:
RHOV, RND2 and RND3. We therefore could not determine the fold expression differences
relative to normal T cells for these genes, however the variation in expression with T-ALL
samples was analysed (Fig. 1B). RHOD was not expressed in normal T-cell or T-ALL
samples, and preliminary analysis indicated that RHOJ is also not expressed (data not
shown), in agreement with our published data on normal T cells and the CCRF-CEM T-ALL
cell line (21) . Interestingly, 5 of the 8 differentially expressed Rho genes (RHOBTB1,
RHOU, RHOV, RND2 and RND3) belonged to the atypical sub-class (16) , which was
therefore over-represented among the altered genes.

Rho gene expression patterns cluster T-ALL patients in two groups
T-ALL samples were grouped according to similarity of Rho expression (fold expression
relative to controls) using clustering algorithms. The expression values were visualized in a
heat-map, with a dendrogram showing the resulting clusters of T-ALL samples (Fig. 2). This
analysis resulted in the resolution of two major clusters of T-ALL patients (denoted clusters
A and B). The upregulation of RHOH, RHOBTB1, RHOA, RHOB and RHOU was similar
in both clusters, as expected due to the consistency of the changes in these 5 genes across all
samples. The distinction between the two groups reflected the expression of genes that
showed variable expression across the T-ALL samples. Cluster A was enriched in samples
where the expression of several Rho genes was lower than normal controls, including
RAC1, RHOC, CDC42 and RHOQ, whereas cluster B had a greater incidence of higher-
than-normal expression of these genes. The two Rho expression profile clusters might reflect
different patient characteristics. They did not show a significant association with available
patient information on age at diagnosis, white blood cell count (WBC), CNS disease and
relapse incidence, but it is likely that a higher number of T-ALL samples would be required
for this analysis.

In addition to the cluster analysis, the expression of each Rho gene was independentlytested
for association with patient information. Interestingly, the expression of RHOQ, RND1 and
RHOB was significantly correlated with WBC count (Table 2). As described above, RHOB
is highly upregulated in the T-ALL samples. Although RHOQ and RND1 expression in T-
ALL was not different overall from normal controls (Fig. 1), this suggests that RHOQ and
RND1 expression are increased in a subset of patients with higher WBC. The WBC count
could correlate with differences in the migratory properties of leukaemic cells.

RHOU expression correlates with Notch1 signalling in T-ALL
The NOTCH1 gene is mutated in over 50% of T-ALL cases, leading to dysregulated Notch1
signalling (9) . Mutations in other genes such as FBXW7, a ubiquitin ligase involved in
Notch1 turnover, also contribute to constitutive Notch1 signalling in T-ALL (22) . We
therefore investigated whether the Rho gene alterations we observed in the T-ALL samples
were linked to aberrant Notch1 signalling.

We used the mRNA expression levels of the Notch1 target gene DELTEX1 as a read-out of
constitutive Notch1 signalling and screened the T-ALL samples using quantitative PCR
(Fig. 3A). DELTEX1 transcript levels were at least two-fold higher than control T cells in
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68% of samples, indicating increased Notch1 signalling. This could be due to NOTCH1
mutations or other mutations that affect Notch1 signalling.

We determined whether the relative expression levels of any of the Rho genes correlated
with the expression of DELTEX1 using a Spearman Rank test (Table 3). RHOU (Fig. 3B)
and RAC2 mRNA levels were found to be significantly associated with DELTEX1 in T-
ALL samples. Since we had identified RHOU as upregulated in T-ALL, we decided to
investigate the relationship between RHOU and Notch1 signalling further.

A number of T-lymphoblastic cell lines have been derived from T-ALL patients. Several
have mutations that lead to constitutive Notch1 signalling, whereas others have normal
ligand-dependent Notch signalling (22) . We used a panel of T-ALL cell lines to investigate
whether there was an association between Notch1 signalling status and RhoU protein
expression. In accordance with published data, we detected cleaved Notch1 in PEER,
SUPT1, CCRF-CEM, DND41 and Jurkat lines but not in LOUCY and MOLT16 lines,
which do not have Notch1 mutations (Fig. 3C)(22) . The different sizes of NICD detected in
the cell lines reflect different sites of mutation in Notch1 and/or FBW7, a ubiquitin ligase
involved in Notch1 degradation (22) . RhoU protein was expressed in all the cell lines,
indicating that RhoU expression is not strictly dependent on oncogenic Notch1 activation.
However, it was highest in SUPT1, DND41 and JURKAT cells, which have cleaved
Notch1.

RhoU expression is regulated by Notch1 signalling
To determine if RhoU expression is influenced by Notch1 signalling, we first utilized the γ-
secretase inhibitor (GSI) compound E to block the generation of NICD (23,24) . T-ALL cell
lines with activating NOTCH1 mutations (CCRF-CEM, SUPT1 and PEER) and lines with
wild-type NOTCH1 (LOUCY and MOLT16) were treated with GSI or DMSO (vehicle
control) for three and seven days to allow time for gene expression changes to occur. RHOU
mRNA levels in response to the treatment were determined by qPCR (Fig. 4A). DELTEX1
mRNA levels were quantified to confirm Notch1 signalling inhibition, and CDC42 mRNA
was used as an additional control since its expression was not correlated with DELTEX1
(Table 3). As expected, GSI treatment led to a dramatic reduction in the levels of DELTEX1
mRNA in all three NOTCH1 mutant lines. GSI treatment resulted in a reduction of RHOU
mRNA in these T-ALL lines, whereas CDC42 was unaffected (Fig. 4A). In contrast, in the
NOTCH1 wild-type lines, RHOU expression was unaffected by GSI treatment. We could
not detect DELTEX1 mRNA well enough for quantification in LOUCY and MOLT16 lines,
consistent with the absence of constitutive Notch1 signalling (Fig. 4A).

We next analyzed the dependence of RhoU protein expression on Notch1 signalling. GSI
treatment resulted in a reduction of NICD levels at three and seven days of treatment in the
three NOTCH1 mutant lines, showing that the GSI treatment was inhibiting Notch1
cleavage. There was a progressive reduction in RhoU protein with GSI treatment in these
lines (Fig. 4B), whereas Rac2 levels were not affected (Suppl Fig. 2A). In contrast, RhoU
protein levels in the lines with wild-type NOTCH1 (LOUCY, MOLT16) were unaffected by
GSI treatment. As expected, NICD was not detected in these lines (Fig. 4B).

γ-secretase cleaves a number of proteins in addition to Notch1 (25) , and thus we tested
whether the effects of GSI on RhoU were also observed with direct Notch1 inhibition. Two
different Notch1 siRNAs strongly reduced RhoU protein levels in CCRF-CEM cells (Fig.
4C). To determine whether Notch1 signalling alone could induce RhoU expression, the
NICD was expressed in COS7 cells. NICD expression led to an increase in RhoU protein
levels (Fig. 4D). Together, these data show that Notch1 signalling positively regulates the
expression of RhoU.
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RhoU regulates T-ALL cell polarization, migration and adhesion
Since Rho GTPases are well known to regulate cell migration (26) , we investigated whether
RhoU affected the migration of T-ALL cells. We chose CCRF-CEM cells since they have
mutated NOTCH1, and are well characterized for their migration behaviour (21,27,28) .
RhoU expression was downregulated in CCRF-CEM cells by transfection with two different
siRNAs (Suppl Fig. 2B). RhoU-depleted cells had a rounder morphology and migrated more
slowly on fibronectin than control siRNA-transfected cells (Fig. 5A, B). Similarly, GSI-
treated cells and Notch1-depleted cells were more rounded and migrated more slowly than
control cells (Fig. 5A, B). RhoU- and Notch1-depleted cells and GSI-treated cells also
showed reduced total migration distance over 1 h (Fig. 5C) and RhoU and GSI affected
chemotaxis towards CXCL12 in transwells (Fig. 5D). RhoU or Notch1 depletion did not
detectably affect cell number or viability compared to siControl-transfected cells, as
determined with a CASY cell counter.

The rounded phenotype of RhoU-depleted and Notch1-inhibited cells suggested they might
have an adhesion defect. Indeed, depletion of RhoU or Notch1 or treatment with GSI
reduced adhesion CCRF-CEM cells to fibronectin (Fig. 6, Suppl Fig. 2C). Similarly, RhoU
depletion reduced adhesion of two other T-ALL cell lines, JURKAT and PEER (Fig. 6A,
Suppl Fig. 2B), indicating that the effect of RhoU is not cell type-specific. Next we
investigated whether RhoU depletion or Notch1 inhibition altered migratory polarity by
staining for F-actin and microtubules (27) . RhoU or Notch1-depleted cells and GSI-treated
cells still had a single F-actin-rich lamellipodium at the front and the microtubule-organising
center was behind the nucleus, but there was a strong reduction in the number of cells with
tails compared to control cells (Fig. 7A-D). Interestingly, the total level of F-actin in RhoU-
depleted or GSI-treated cells was increased (Fig. 7E), and the level of F-actin in
lamellipodia also increased (Fig. 7F). RhoU depletion therefore affects T-ALL cell
morphology and migration, and these effects can be reproduced by GSI-mediated inhibition
of Notch1 signalling.

Discussion
The pathophysiology of T-ALL suggests a significant deregulation of cell migration and
tissue infiltration. Large numbers of T-ALL cells accumulate in the peripheral blood and
tissues, with frequent metastasis to the CNS. We show that 8 of the 20 human Rho GTPases
are upregulated in T-ALL compared to normal T cells. We find that expression of the
atypical Rho family member RHOU is regulated by Notch1 and demonstrate that RhoU is
required for optimal adhesion, migration and chemotaxis of T-ALL cells. This indicates that
RhoU could contribute to T-ALL progression in NOTCH1 mutant T-ALL patients.

RhoU and RhoV form a subfamily of Rho GTPases that have a high intrinsic guanine
nucleotide exchange activity and are thus believed to be predominantly GTP-bound (16) .
RhoU (also known as Wrch1) and RhoV (also known as Chp) have been implicated in
migration in several cell types but have not previously been studied in leukocytes. For
example, they have been shown to stimulate lamellipodial or filopodial extension and/or an
increase in integrin-based focal adhesions (29-31) . In osteoclasts, RhoU is found in
podosomes and influences integrin signaling (32) , and RhoU is required for neural crest cell
migration in vivo (33) . Our data also indicate that RhoU is involved in regulating T-ALL
cell adhesion. RhoU-depleted T-ALL cells had a more rounded phenotype and lacked
uropods/tails. RhoU depletion also resulted in reduced migration and CXCL12-stimulated
chemotaxis. Loss of the uropod and reduced migration are consistent with a decrease in cell
adhesion. So far it is not clear how RhoU or RhoV affect cell adhesion, although RhoV was
shown to bind to and cause the degradation of the Rac/Cdc42 effector PAK1, which is
implicated in focal adhesion turnover (34,35) . The increased expression of RhoU and RhoV
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in T-ALL samples compared to normal T cells could therefore affect their attachment in the
bone marrow and thymus, as well as entry into and out of the peripheral circulation and
tissues.

The increased expression of Rho GTPases that we observe in T-ALL samples is likely to
reflect gene expression changes due to T-ALL genetic alterations (2,36) . Indeed, we show
that RHOU expression is regulated by Notch1. RHOU was also among the most
downregulated genes in two T-ALL cell lines treated with SAHM1, a new type of Notch
inhibitor that prevents formation of the active NICD/CSL transcription factor complex (37) .
Importantly, similar morphological and migratory phenotypes were induced in T-ALL cells
by RhoU depletion and by inhibiting Notch1 activation with GSI treatment, indicating that
RHOU is the predominant target of Notch1 involved in regulating cell migration.
Interestingly, RHOU was initially identified as a Wnt-regulated gene (38) , and Wnt
signaling plays an important role in T cell development (39) . In the future it will be
important to test whether other T-ALL-associated transcription factors affect the expression
of Rho GTPases upregulated in T-ALL.

In addition to RHOU and RHOV, we found that 4 other atypical Rho GTPases are
upregulated in T-ALL: RHOH, RHOBTB1, RND2 and RND3. RHOH is mutated through
chromosomal translocations or somatic hypermutation in a number of B-cell-derived
leukaemias and lymphomas, but has not previously been implicated in T-cell-derived
leukemias (40) . However, it does regulate T-cell receptor signaling and T-cell migration
(13,41) , and could thereby affect T-ALL progression. So far little is known about
RHOBTB1 in cancer. It has been proposed as a candidate tumour suppressor in head and
neck cancer, but the mechanistic basis for this function is unknown (42) . There is no
evidence as yet that RhoBTB1 is involved in cytoskeletal regulation (29) ; instead, the
RhoBTB proteins have been implicated in cullin3-based ubiquitination as well as
transcription regulation via BTB domain-dependent interactions (29,43) . It will therefore be
important to determine how RhoBTB1 contributes to T-ALL. In contrast to RhoBTB1, Rnd2
and Rnd3 affect the actin cytoskeleton and affect cell migration in a variety of cultured cell
lines (29,44) , although their function has not so far been studied in lymphocytes.

RHOB was consistently highly upregulated in T-ALL, whereas the fold-increase in RHOA
expression was less. RHOA overexpression has been reported in a variety of tumor types,
including colon, breast, testicular germ cell and head and neck squamous cell carcinomas
(45) . On the other hand, RhoB, which is involved in actin organization and membrane
receptor trafficking (46) , has been primarily reported as a tumor suppressor based on
expression analysis in solid tumors, although how it acts is not completely understood
(17,47) . RHOB expression is rapidly induced in response to a variety of stimuli including
growth factor stimulation and genotoxic stress (47) , and thus it is possible that a specific
stimulus in T-ALL cells induces high RHOB levels.

In addition to our results on Rho GTPases, some T-ALL-related gene expression analysis
studies have identified other potential regulators of cell migration. For example, the
tetraspanin TALLA-1 (tetraspanin-7) is a target of the transcription factor TAL1 (48) ,
which is frequently overexpressed in T-ALL (49) . Several tetraspanins affect integrin-
mediated processes such as adhesion, migration and invasion, but the function of TALLA-1
is not known (50) . TAL1 target genes identified by chromatin immunoprecipitation
included some regulators of the cytoskeleton (23) . Overexpression of NICD altered the
expression of chemokines, cell adhesion molecules and metalloproteases (11) . In particular,
the chemokine receptor CCR7 was upregulated and caused targeting of leukaemic blast cells
to the brain endothelium. Together with our data, these results indicate that genes regulating
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cell adhesion, migration and invasion are modulated in T-ALL and could contribute to
disease pathophysiology.

Materials & Methods
T-ALL patient samples and normal T-lymphocyte isolation

The primary childhood leukaemia samples used in this study were provided by the
Leukaemia and Lymphoma Research Childhood Leukaemia Cell Bank (UK), in accordance
with the requirements of the Childhood Cancer and Leukaemia Group (CCLG) and the Cell
Bank Steering Committee. Frozen samples (mononuclear bone marrow cells or peripheral
blood) obtained from 30 T-ALL patients at diagnosis were used. T-ALL samples are
generally accepted to be more than 90% leukaemic blasts. T-lymphocytes were isolated
from buffy coats of 5 healthy blood donors. Mononuclear cells were separated by density
gradient according to the manufacturer’s protocol (Lymphoprep, Axis-Shield). Cells were
then treated with 0.5% phytohaemagglutinin (Sigma-Aldrich, Dorset, UK) in RPMI medium
(Invitrogen, Paisley, UK) containing 10% foetal calf serum for 48 h, followed by culture for
10 days in 10 U/ml human IL-2 (Roche Diagnostics, Burgess Hill, UK). The T-lymphocyte
populations obtained were >90% pure, defined by CD4+ or CD8+ single positive
populations measured by flow cytometry with anti-CD4 and anti-CD8 antibodies (BD
Bioscences, Oxford, UK).

Cell culture and GSI treatment
CCRF-CEM and JURKAT cells were purchased from ATCC (LGL Promochem, Middlesex,
UK). PEER, SUPT1, MOLT16 and LOUCY T-ALL cell lines were from the German
Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). Cell
lines were cultured in Dulbeco’s RPMI containing 2 mM glutamine and supplemented with
10% fetal calf serum, 1 mM sodium pyruvate, 10 mM Hepes, penicillin (100 U/ml) and
streptomycin (100 μg/ml). COS7 cells were grown in DMEM containing 10% fetal calf
serum, penicillin (100 U/ml) and streptomycin (100 μg/ml). GSI (Compound E,
Calbiochem, Nottingham, UK) was solubilised in dimethylsulphoxide (DMSO). Cell lines
were resuspended in medium containing 100 nM GSI or an equal volume of DMSO and
cultured for the indicated times. For 7 day treatments, cells were re-treated at a lower cell
density in fresh GSI-containing medium after 3 or 4 days.

Transfection
Cells (5 × 105) were transfected by nucleofection (Amaxa Biosystems Nucleofection
System) with 1.2 μM siRNA (Sigma-Aldrich) in 100 μl of Nucleofection reagent (kit C,
Lonza Biologics, Slough, UK). siRNA sequences were RhoU-1:
CAGAGAAGAUGUCAAAGUC; RhoU-2: AAGCAGGACUCCAGAUAAAUU;
Notch1-1: GAACGGGGCUAACAAAGAU; Notch1-2: GCAAGGACCACUUCAGCGA.
siControl was from Thermo Fisher Scientific (D-001810-02-20, Lafayette, USA). Cells were
used for experiments 48 to 72 h after siRNA transfection.

pcDNA3 encoding HIS-tagged Notch1 intracellular domain (NICD) or vector alone was
transfected into COS7 cells by electroporation. Cells were detached from the plate and
washed twice in electroporation buffer (10 mM KCl, 10 mM K2PO4/KHPO4 pH 7.6, 25 mM
Hepes pH 7.6, 2 mM MgCl2, 0.5% Ficoll 400). After resuspending in 250 μl of
electroporation buffer cells were mixed with 5 μg DNA in a 0.4 cm electroporation cuvette
and left on ice for 10 min. Samples were then electroporated at 250 V, 975 μF and left again
on ice for 5 min and at room temperature for other 5 min. Cells were finally plated in 10 cm
dish and incubated for 24 h at 37°C. After 48 h, cells were solubilised in protein sample
buffer, and protein expression was analysed by immunoblotting.
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Sample preparation and real-time SYBR-Green PCR
RNA from T-ALL samples and control T-lymphocytes was extracted by the Trizol method
(Invitrogen), and treated with DNase (RNase-free, Ambion) to remove genomic DNA. RNA
concentration was determined, and purity was checked by measuring the A260/A280 ratio.
cDNA was prepared from identical amounts of RNA template with Superscript VILO cDNA
synthesis kit (Invitrogen).

Relative mRNA expression of Rho genes was determined by real-time polymerase chain
reaction (RT-PCR) assays, using SYBR-Green detection chemistry (PCR mastermix from
Primer Design, Southampton, UK) and the ABI Prism 7000 Sequence Detection System
(Applied Biosystems). Primers used for each gene are shown in Supplementary Table 1.
Wherever possible, primers were designed either across different exons or across exon-exon
boundaries to avoid detection of genomic sequences. Each gene assay was validated for
amplification efficiency between 90 and 110% by serial template dilutions, and for
specificity by melting curve analysis and agarose gel electrophoresis. The expression
analysis for each gene was carried out in a 96 well format, comparing all 5 control samples
to batches of 6 or 7 T-ALL samples, and for each sample assaying a Rho gene in parallel
with GAPDH as a reference. CT values of controls could therefore be used to correct for
plate-to-plate variations.

Statistical analyses
For T-ALL-associated expression changes, mean CT values for each sample were first
normalised to GAPDH CT values (expressed as dCT). Differential gene expression between
control and T-ALL samples was determined by the Mann-Whitney U test for medians of
dCT values. For clustering analyses, the comparative CT method (51) (using the average CT
of the controls) was used to determine relative fold expression changes for Rho genes in
each T-ALL sample. Cluster analysis software (Cluster 3.0)(52) and Java Treeview (53) )
were used to generate a heat-map of the fold changes as well as carry out unsupervised
hierarchical clustering of genes and T-ALL samples. Complete linkage clustering algorithm
was applied, using Pearson correlation as the similarity metric. Characteristics of grouped or
clustered T-ALL patients were compared by Mann-Whitney U test for medians or the
Fisher’s Exact test for associations, in two-tailed tests and considered significant if P < 0.05.
Statistical tests were carried out using Graphpad Prism 5 software.

Immunoblotting
Cells were lysed directly in Laemmli sample buffer and immediately heated to at least 90°C
for 10 min. Proteins were resolved by polyacrylamide gel electrophoresis, transferred to
PVDF membrane, and detected by immunoblotting. The following antibodies were used:
Cleaved Notch1 intracellular domain (Val1744, Cell Signaling, Hitchin, UK), RhoU (Wrch1
ab80315, Abcam, Cambridge, UK), ß-tubulin (Sigma-Aldrich), HIS-tag (Cell Signaling),
GAPDH and Rac2 (Millipore).

Immunofluorescence
Glass coverslips were coated with 10 μg/ml fibronectin at 4°C overnight and blocked in
2.5% BSA in phosphate-buffered saline (PBS) for 1 h. 2×105 cells were added to each
coverslip and incubated at 37°C with 1ng/ml of CXCL12 (R&D Systems, Abingdon, UK)
for 30 min. Subsequently, samples were fixed with 4% paraformaldehyde and permeabilized
in 0.1% Triton-X-100. Following 2 washes in PBS cells were incubated with Alexa Fluor
546 phalloidin (A22283, Invitrogen) and FITC-labeled anti-α-tubulin antibody (Sigma) for
1 h. Coverslips were mounted onto glass slides using Dako (Ely, UK) anti-fade mounting
medium. Images were acquired using a Zeiss LSM500 confocal microscope (Zeiss). F-actin
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content was measured using ImageJ software. Each experimental condition was done with
triplicate coverslips, counting 100 cells on each. Data was pooled from three independent
experiments. Polarized cells were defined as having F-actin localized to one side of the cell,
defined as the leading edge, and the microtubule organizing center (MTOC) localized at the
other side of the nucleus with respect to the leading edge. Elongated tails on cells were
defined as a narrow protrusion at the opposite side to the leading edge, at least the length of
the cell body.

Timelapse microscopy
siRNA-transfected or DMSO/GSI-treated CCRF-CEM cells were counted (Innovatis CASY
cell counter, Roche Applied Bioscience, Burgess Hill, UK), and 2×105 were added to each
well of a fibronectin-coated 8-well culture slides (BD Falcon, Oxford, UK). After 30 min,
wells were washed three times with complete culture medium to remove loosely attached
and non-viable cells, then stimulated with 1 ng/ml of CXCL12. Bright field phase-contrast
images were collected every minute for 1 h on a Nikon Eclipse TE2000 microscope with a
charge-coupled device camera (ORCA, Hamamatsu Photonics) using Metamorph software.
Cells were tracked, and velocities and distance migrated calculated using Image J.

Adhesion assay
96-well plates were coated overnight at 4°C with 10 μg/ml fibronectin. Cells were
resuspended in PBS at 106 cells/ml and incubated at 37°C for 15 min with 2 μM
CellTracker Green CMFDA (Invitrogen, Paisley, UK). Cells were then resuspended in warm
media and 105 cells/well (each sample in triplicate) were incubated at 37°C for 30 min.
After washes with PBS the plate was read on a Fusion-αFP plate reader (PerkinElmer,
Cambridge, UK) at 485 nm excitation and 525-535 nm emission.

Flow cytometry
T-ALL cells (2×105) were centrifuged and washed with PBS. Cells were fixed at room
temperature for 10 min with 4% PFA and permeabilized with 0.1% Triton X-100. Samples
were then incubated with 0.2 μg/ml Alexa488-labelled phalloidin and analyzed on a Becton
Dickinson FACS Calibur machine using FlowJo program.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Rho mRNA expression in T-ALL
A. RNA was extracted from 30 T-ALL blast samples and normal T-lymphocytes from 5
peripheral blood samples of healthy donors. mRNA expression of each Rho gene was
measured by quantitative PCR, using GAPDH expression as a reference. Rho gene
expression in each T-ALL sample was determined relative to the mean expression of the
normal control samples using the comparative CT method. Data are expressed as fold
expression relative to control on a logarithmic scale. B. mRNA expression of Rho genes not
detected in normal T-lymphocytes. The T-ALL sample with the lowest detected mRNA
expression was assigned a relative expression level of 2. Other values are shown relative to
this sample. Values above each column indicate the % of T-ALL samples that detectably
expressed each gene.
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Figure 2. Association of Rho expression and T-ALL disease characteristics
Relative expression data for T-ALL samples were log2 transformed and an unsupervised
hierarchical clustering algorithm applied (see Materials and Methods). The legend indicates
the magnitude and direction of expression changes relative to control T-lymphocyte
samples.
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Figure 3. Association of RhoU expression with Notch1 signalling in T-ALL patients and cell lines
A. Deltex-1 mRNA expression in T-ALL and control samples was analysed by quantitative
PCR using GAPDH expression as a reference. Deltex-1 mRNA expression in each T-ALL
sample was determined relative to the mean expression of the normal control samples using
the comparative CT method. Data are expressed as fold expression relative to controls on a
logarithmic scale. B. Scatter plot of RHOU and DELTEX1 expression in T-ALL samples. C.
Cells from a panel of T-ALL-derived cell lines in growth phase were lysed and then
analysed for RhoU protein expression and cleaved Notch1 intracellular domain levels by
immunoblotting. A representative blot from three independent experiments is shown.
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Figure 4. Notch1 regulates RhoU expression
A. T-ALL cell lines were treated with GSI or DMSO (vehicle) for 3 or 7 days. RNA was
extracted and analysed by quantitative PCR to determine relative mRNA expression levels
of DELTEX1, RHOU and CDC42, with GAPDH as a reference. Fold expression changes
were determined relative to expression in DMSO-treated cells using the comparative CT
method. B. Cells treated as in A were lysed and protein levels of the cleaved Notch1
intracellular domain (NICD) and RhoU were determined by immunoblotting. Blots were
probed for GAPDH or ß-tubulin as loading controls. Representative data from 3 independent
experiments are shown. C. CCRF-CEM cells were transfected with control siRNA or two
different siRNAs (1, 2) targeting Notch1. Cells were lysed after 72 hours and analysed by
immunoblotting for levels of NICD, RhoU, and GADPH as a loading control. D. A
construct encoding His-tagged NICD was transfected into Cos7 cells. After 48 h, cells were
solubilised in protein sample buffer and His-tag and RhoU were detected by
immunoblotting. GADPH was used as a loading control. A representative blot from 3
independent experiments is shown.
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Figure 5. RhoU regulates T-ALL cell morphology and migration
CCRF-CEM cells were transfected with control siRNA, two different siRNAs (1, 2)
targeting RhoU or Notch1 or treated for 7 days with 100 nM GSI or DMSO (vehicle). A.
Cells were added onto fibronectin-coated wells and stimulated with 1 ng/ml CXCL12 for 30
min. Phase-contrast time-lapse images were collected every 1 min for 1 h. Images shown are
at 0 min. Scale bar 50 μm. Representative of 3 independent experiments. Relative velocity
(B) and accumulated distance (C) was determined by tracking 60 cells in each of 3
independent experiments. (D) Cells were added to fibronectin-coated transwells containing
30 ng/ml CXC12 in the lower chamber. Cells that had migrated into the bottom of the well
were counted after 1 h using a Casy Counter. Data shown are mean of 3 independent
experiments ± SEM. *p <0.05, **p <0.01; two-tailed paired t-test.
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Figure 6. RhoU and Notch1 regulate T-ALL cell adhesion
CCRF-CEM, JURKAT or PEER cells were transfected with control siRNA or two different
siRNAs (1,2) targeting RhoU or Notch1. After 72 hours, cells were labelled with
CellTracker dye CMFDA and incubated on fibronectin-coated wells. Adhesion was
determined after 30 min. Data shown are the mean of 3 independent experiments ± SEM. *p
<0.05, **p <0.01; two-tailed paired t-test.
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Figure 7. RhoU regulates polarity
CCRF-CEM cells were transfected with control siRNA, two different siRNAs targeting
RhoU or Notch1 (1, 2) or treated for 7 days with 100 nM GSI or DMSO (vehicle). A, B.
Cells were plated onto fibronectin-coated wells and stimulated for 30 min with 1 ng/ml
CXCL12. Samples were then fixed and stained for F-actin and α-tubulin and imaged by
confocal microscopy. Arrow indicates microtubule-organizing center (MTOC); * indicates
high F-actin staining in the lamellipodium. Scale bar, 10 μm. C, D. The % of polarized cells
and cells with tails was quantified as described in Materials and Methods, by counting 100
cells in each of 3 independent experiments. E. Cells were fixed, permeabilized and
incubated with Alexa Fluor 488-labelled phalloidin and analyzed by flow cytometry. F. F-
actin level at the leading edge was quantified using ImageJ software. Data shown are the
mean of 3 independent experiments ± SEM. *p <0.05, **p <0.01; two-tailed paired t-test.
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Table 1
Rho mRNA expression in T-ALL relative to healthy controls

RNA was extracted from 30 T-ALL blast samples and normal T-lymphoblasts from 5 peripheral blood
samples of healthy donors. mRNA expression of each Rho gene was measured by qPCR, using GAPDH as a
reference gene. GAPDH-normalised Rho expression values (dCT), were used to compare expression levels
between normal and T-ALL populations using a two-tailed Mann-Whitney U test of medians.

gene P-value test summary

RHOF 0.079 ns

RHOH 0.002 **

RND1 0.113 ns

RHOBTB1 0.003 **

RHOBTB2 0.218 ns

RHOA 0.008 **

RHOB 0.001 ***

RHOC 0.437 ns

RAC1 0.522 ns

RAC2 0.044 *

RAC3 0.012 *

RHOG 0.579 ns

CDC42 0.340 ns

RHOQ 0.579 ns

RHOU 0.003 **

*
P < 0.05,

**
P < 0.01 and

***
P < 0.001, ns = not significant.
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Table 2
Association between relative Rho expression in T-ALL and WBC

The fold expression values for each Rho gene were tested for correlation with white blood cell count at
diagnosis (WBC), using the Pearson correlation statistic, R. R values can range from 1, indicating perfect
correlation, to −1, indicating perfect inverse correlation.

gene Pearson R P-
value test summary

RHOH 0.14 0.440 ns

RHOBTB1 −0.15 0.433 ns

RHOBTB2 0.11 0.551 ns

RHOA 0.04 0.838 ns

RHOC 0.25 0.172 ns

RAC1 0.24 0.195 ns

RAC2 0.33 0.069 ns

RAC3 0.25 0.178 ns

RHOG −0.15 0.424 ns

CDC42 0.24 0.186 ns

RHOQ 0.50 0.004 **

RND1 0.40 0.050 *

RHOU −0.02 0.912 ns

RHOF 0.16 0.405 ns

RHOB 0.48 0.006 **

*
P < 0.05,

**
P < 0.01, ns = not significant.
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Table 3
Association between relative Rho gene expression and DELTEX-1 levels in T-ALL

DELTEX-1 mRNA expression was analysed by quantitative PCR, and GAPDH-normalised dCT values were
used to test for correlation between Rho gene and DELTEX-1 expression using a Spearman Rank correlation
test;

gene Spearman r P
value test summary

RHOH 0.02 0.925 ns

RHOBTB1 0.20 0.324 ns

RHOBTB2 0.30 0.122 ns

RHOA 0.26 0.175 ns

RHOC 0.21 0.287 ns

RAC1 0.24 0.220 ns

RAC2 0.46 0.014 *

RAC3 0.00 0.980 ns

RHOG 0.29 0.137 ns

CDC42 0.34 0.073 ns

RHOQ 0.29 0.137 ns

RND1 0.25 0.260 ns

RHOU 0.45 0.016 *

RHOF 0.27 0.163 ns

RHOV −0.31 0.111 ns

RND2 −0.15 0.443 ns

RND3 0.10 0.605 ns

*
P < 0.05, ns = not significant.
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