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Facial UV photo imaging for skin 
pigmentation assessment using 
conditional generative adversarial 
networks
Kaname Kojima1,2, Kosuke Shido3, Gen Tamiya1,2, Kenshi Yamasaki3*, 
Kengo Kinoshita1,4,5,6 & Setsuya Aiba3

Skin pigmentation is associated with skin damages and skin cancers, and ultraviolet (UV) photography 
is used as a minimally invasive mean for the assessment of pigmentation. Since UV photography 
equipment is not usually available in general practice, technologies emphasizing pigmentation in 
color photo images are desired for daily care. We propose a new method using conditional generative 
adversarial networks, named UV-photo Net, to generate synthetic UV images from color photo 
images. Evaluations using color and UV photo image pairs taken by a UV photography system 
demonstrated that pigment spots were well reproduced in synthetic UV images by UV-photo Net, 
and some of the reproduced pigment spots were difficult to be recognized in color photo images. In 
the pigment spot detection analysis, the rate of pigment spot areas in cheek regions for synthetic 
UV images was highly correlated with the rate for UV photo images (Pearson’s correlation coefficient 
0.92). We also demonstrated that UV-photo Net was effective for floating up pigment spots for photo 
images taken by a smartphone camera. UV-photo Net enables an easy assessment of pigmentation 
from color photo images and will promote self-care of skin damages and early signs of skin cancers for 
preventive medicine.

Skin hyperpigmentary disorders such as pigment spots and freckles are caused by melanin increase in epidermis 
and dermis. Hyperpigmentary disorders are classified into congenital pigmentary disorders including café-au-
lait spot and nevus spilus or acquired pigmentary disorders including ephelides, melasma, and senile lentigo. 
Accumulated skin damages by aging and ultraviolet (UV) radiation accelerate acquired skin pigmentation1,2, and 
such accumulated skin damages also cause skin carcinogenesis such as actinic keratosis, squamous cell carcinoma, 
and melanoma3. Early signs of skin cancers therefore can be detectible by estimating acquired skin pigmentation, 
which reflects accumulated UV skin damages. However, it is difficult to detect early signs of UV skin damages and 
pigmentary disorders by imaging techniques under visible light. UV light is known to emphasize pigment spots 
from the absorption of UV light in melanin pigment4, and UV photography, a photographic process using light 
from the UV spectrum only, is used as a minimally invasive and accurate mean for the detection of pigmentary 
disorders. However, since UV photography equipment is not usually placed in general practice, it is desired to 
develop technologies that detect pigment areas on conventional color photo images taken under visible light in 
order to promote the assessment of skin pigmentation and early signs of skin cancers in daily life.

The recent development of deep learning technologies enables highly accurate image analysis in various 
fields. Remarkable progresses have been achieved particularly in medical image analysis by the deep learning 
technologies such as lesion detection in x-ray images, histopathological image analysis, and disease name clas-
sification for clinical photo images5–11. The increase of both computational resources and manually curated 
annotation data enables deep learning-based methods to lead accurate diagnosis results. Indeed, some of deep 
learning-based methods competed with medical specialists and achieved more accurate diagnosis results under 
certain conditions. Among the deep learning technologies, generative adversarial network (GAN) is a widely 
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used learning framework for machine learning models to generate synthetic images12, and there exist various 
applications using GAN for medical data analysis13–16. Under GAN, deep learning models are trained to generate 
synthetic images that are likely to exist as images in some specified domain. For example, if celebrity faces are 
specified as the domain, the trained deep neural network under GAN generates synthetic celebrity face images 
that are likely to exist in the real world17. As an extension of GAN, conditional GAN (CGAN) has been proposed 
to convert input images to images that  belong to some specified domain18.

CGAN considers two types of image domains, input domain and target domain. The deep learning model 
trained under CGAN takes input images that belong to the input domain and generates synthetic images suitable 
for the target domain based on the input images. An application of CGAN is colorization of grayscale images by 
setting grayscale images and color images as the input and target domains, respectively. CGAN also can be used 
to generate sketch images from color photo images by setting color photo images and sketch images as the input 
and target domains, respectively. We consider that CGAN is a promising technology to assess skin pigmentation 
by generating synthetic UV skin images that float up UV-damaged areas from general photo images taken under 
visible light. We thus propose a new CGAN-based deep learning method, named UV-photo Net, to generate 
synthetic UV photo images from face skin photo images taken by conventional digital cameras.

In UV-photo Net, color and UV photo images are set as the input and target domains, respectively, and then 
the deep neural network trained under CGAN generates synthetic UV-photo images from conventional digital 
color photo images. The assessment of UV skin damages and pigmentary disorders is hence enabled from the 
synthetic UV-photo images without UV photography equipment. Although the awareness for the risk of sun 
exposure is low even in the high-risk group for sun exposure such as farmers19, UV-photo Net will contribute 
to the promotion of self-assessment of UV skin damages and susceptibility to sun exposure, which is important 
for the detection of early signs of skin cancers as well as the enlightenment for preventive medicine.

Results and discussion
Overview of training process of UV‑photo Net.  UV-photo Net converts color photo images to syn-
thetic UV photo images using a deep neural network model called U-net, which is one of the widely used deep 
neural network structures for image conversion and image segmentation20. The size of color photo images con-
sidered in UV-photo Net is thousands of pixels in both width and height. Since whole color photo images are 
too large to handle directly in U-net, we used pairs of color and UV photo image patches of 256 ×256  pixels 
from face regions to train U-net. We trained U-net under CGAN by considering sets of color photo images and 
UV-photo images as the input and target domains, respectively. Training under CGAN considers two types of 
models called generator and discriminator. U-net serves as the generator in UV-photo Net to generate synthetic 
UV image patches from color photo image patches. The discriminator in UV-photo Net classifies the original 
UV photo image patches and synthetic UV image patches, and the loss based on the classification results from 
the discriminator is considered in the training process of the generator. With the loss from the discriminator, 
the generator is expected to re-generate synthetic UV image patches that are more perceptually realistic as UV 
photo image patches.

Color photo images and their corresponding UV photo images are not matched completely in pixel-level 
due to the subtle movement of subjects in photographing time interval, and such pixel-level mismatches could 
cause blurred points in synthetic UV images. We thus considered the following steps to train UV-photo Net as 
shown in Fig. 1: 

1.	 Detect face regions by a deep neural network, from which color and UV photo image patches are extracted 
for training data of UV-photo Net (Fig. 1a-1).

2.	 Train U-net without considering the loss from the discriminator to obtain temporal synthetic UV images 
from color photo images (Fig. 1a-2-i).

3.	 Align large image patches of 900 × 900 pixels from the temporal synthetic UV images and their corresponding 
UV photo images, and reflect the alignment results to their corresponding color photo images (Fig. 1a-2-ii).

4.	 Train U-net under CGAN using the locally aligned color and UV photo image patches (Fig. 1a-2-iii).

Since digital information of color and UV photo images is quite different, it is difficult to directly align color and 
UV photo image patches at pixel levels. We thus proposed to prepare temporal synthetic UV images from color 
photo images, which were expected to be the digital information comparable to UV photo images (Fig. 1a-2-i). 
We then used the temporal synthetic UV images for the alignment with UV photo images (Fig. 1a-2-ii). For the 
generation of the temporal synthetic UV images, we used U-net trained without considering the discriminator. 
The local alignment results for the temporal synthetic UV images were reflected to the corresponding color photo 
images. We then used the locally aligned color and UV photo image patches of 256× 256 pixels to train deep 
learning models for the generator and the discriminator (Fig. 1a-2-iii).

In the process of synthetic UV image generation, UV-photo Net first converted color photo image patches of 
256× 256 pixels into synthetic UV image patches by the trained U-net (Fig. 1b). UV-photo Net then assembled 
the synthetic UV image patches to reconstruct whole synthetic UV images.

Evaluation.  We used color and UV photo image pairs of 184 Japanese individuals taken with VISIA Skin 
Analysis System (Canfield Imaging Systems, Fairfield, NJ, United States)21. We divided the 184 individuals into 
160 individuals as training samples and the remaining 24 individuals as test samples. Age distributions of the 
training and test samples are shown in Table 1. Among the 160 training samples, we used color and UV photo 
image pairs taking front face appearances of 150 samples as a training dataset, and used image pairs for the 
remaining 10 samples as a validation dataset. The width and height of photo images taken with the VISIA sys-
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tem in our datasets is 3, 456× 5, 184 pixels, 3, 000× 4, 000 pixels, or 2, 964× 3, 560 pixels. We trained the deep 
neural network models by iteratively updating their parameters using the training dataset. The validation dataset 
was used for early stopping of the iteration.

Evaluation in terms of per‑pixel L1 loss and Fréchet Inception Distance.  We used the color and UV photo image 
pairs of the 24 test samples to evaluate the accuracy of UV-photo Net. In order to examine the effectiveness of 
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Figure 1.   Outline of the training process of UV-photo Net. (a) The training process of UV-photo Net is 
comprised of (a-1) face region detection, (a-2-i) training for temporal synthetic UV image generation, (a-2-ii) 
local alignment of temporal synthetic UV images and UV photo images, and (a-2-iii) training under CGAN 
using locally aligned image patches. (b) Synthetic UV image generation from color photo images by assembling 
the image patches converted by UV-photo Net.
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CGAN and the local alignment, we compared four training conditions; UV-photo Net, UV-photo Net trained 
without the discriminator, UV-photo Net trained without the local alignment, and UV-photo Net trained with-
out both the discriminator and the local alignment. Table 2 shows per-pixel L1 loss and Fréchet Inception Dis-
tance (FID) of synthetic UV images generated in the four training conditions. We defined per-pixel L1 loss as 
the median of pixel-wise absolute distance between the synthetic UV images and the original UV photo images. 
Per-pixel L1 loss ranges from 0 to 255. Although the mean can be considered for the aggregation of the pixel-
wise absolute distance instead of the median, we here adopted the median to avoid the influence of outlier values. 
We also summarized the per-pixel L1 losses obtained by the use of the mean in Supplementary Table 1. Note that 
the use of the mean or the median did not affect largely the superiority between the methods or the conditions.

FID represents the distance of two image distributions and is used for evaluating perceptual quality of syn-
thetic UV images22. FID is obtained by calculating the distance of multivariate normal distributions of two types 
of images in the feature space of some deep neural network model with the following formula:

where µ1 and �1 are respectively the mean and covariance matrix of the features for one type of images, and µ2 
and �2 are respectively the mean and covariance matrix of the features for the other type of images. In accord-
ance with the FID calculation in22, we applied image patches of 256 × 256 pixels to Inception-v323 trained on 
the ILSVRC-2012-CLS image classification dataset (http://www.image​-net.org/chall​enges​/LSVRC​/2012/) and 
obtained the mean and covariance in the final layer of Inception-v3 to calculate FID values.

Both per-pixel L1 loss and FID were calculated in face regions, and the smaller value is better for both evalu-
ation metrics. From the comparison, the consideration of the discriminator was effective for the reduction of 
both evaluation metrics, especially for FID. The local alignment additionally contributed to the reduction of 
both per-pixel L1 loss and FID. We also considered the per-pixel L1 loss and FID for grayscale images, blue 
channel images, and melanin emphasized images by an independent component analysis (ICA)-based method 
by Tsumura et al.24,25. The blue channel of color photo images was expected to be closer to UV photo images 
than grayscale images. In the ICA-based method, a color skin image is decomposed into two types of images 
by ICA: one indicates melanin component and the other indicates hemoglobin component as shown in Sup-
plementary Fig. 2a,b. By synthesizing the two components with a higher weight for the melanin component, 
images emphasizing the melanin component are obtained as shown in Supplementary Fig. 2c. We restricted the 
sum of weights for the melanin and hemoglobin components to two, and selected the weights minimizing the 
per-pixel L1 loss from a grid search with a step size of 0.1. The selected weights for the melanin and hemoglobin 
components were 1.3 and 0.7, respectively. In the comparison of these additional cases, blue channel images were 
closer to the UV photo images than grayscale images in terms of both per-pixel L1 loss and FID. The use of the 
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Table 1.   Age distributions of training and test samples.

Age group (years) Training samples Test samples

10−19 1 0

20−29 6 1

30−39 33 6

40−49 39 4

50−59 30 7

60−69 35 5

70−79 13 1

80−89 3 0

Table 2.   Per-pixel L1 loss and Fréchet Inception Distance (FID) for synthetic UV images generated by 
UV-photo Net, grayscale images, blue channel images, and images obtained with the ICA-based method 
(grayscale and blue channel) ( + ) denotes the case using the corresponding learning technique for training, 
while (−) denotes the case without the corresponding learning technique.

Method Discriminator Local Alignment Per-pixel L1 Loss FID

UV-photo Net

(+) (+) 18.58 50.08

(−) (+) 18.92 63.43

(+) (−) 18.79 55.84

(−) (−) 19.00 66.80

ICA (blue channel) (−) (−) 32.08 82.65

ICA (grayscale) (−) (−) 48.42 107.29

Blue channel (−) (−) 33.38 93.50

Grayscale (−) (−) 53.75 120.99

http://www.image-net.org/challenges/LSVRC/2012/
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ICA-based method further reduced both per-pixel L1 loss and FID. Both per-pixel L1 loss and FID for synthetic 
UV images by UV-photo Net with any condition were lower than those for images by the ICA-based method, 
blue channel images ,and grayscale images, which supported the effectiveness of UV-photo Net.

Figure 2 shows color photo images (a,d), synthetic UV images generated by UV-photo Net from the color 
photo images (b,e), and the original UV photo images corresponding to the color photo images (c,f). The subject 
was in his fifties and agreed to showing his face photo images. The subject was also included in the 24 test samples, 
and hence his images were not used for training UV-photo Net. Pigment spots identified in the original UV photo 
images were well reproduced in the synthetic UV images although there exist pigment spots that UV-photo Net 
failed to reproduce, e.g., the pigment spots in red circles. Of note, pigment areas were also successfully reproduced 
in the synthetic UV images for profile faces (Fig. 2e) despite the fact that only the color photo images for front 
faces were used for the training and validation datasets. In addition, UV-photo Net was able to reproduce some 
of pigment spots that were difficult to be recognized in the color photo images such as those in yellow circles. 
We also compared synthetic UV images for the subject by UV-photo Net trained without the discriminator or 
the local alignment (Supplementary Figs. 3 and 4). The comparison confirmed that both the discriminator for 
CGAN and the local alignment were effective to generate sharp and clear images.

Figure 3 show heatmap images where heatmaps indicating pixel-wise L1 loss from the UV photo image are 
overlaid on the UV photo image. From the heatmap images for the front face (Fig. 3a–d), we confirmed that the 
synthetic UV image by UV-photo Net overall has less L1 loss than the images by the ICA-based method, the blue 
channel image, and the grayscale image. For the heatmap image for the synthetic UV image by UV-photo Net 
(Fig. 3a), high L1 loss regions were observed around eyes and nasolabial folds, and these regions were blurred 
in the synthetic UV image in Fig. 2b. Since the specular reflectance in these regions was different from other 
regions due to 3D facial geometry, UV-photo Net may fail the precise reconstruction of the synthetic image. For 
the right profile face, shadowed regions caused by the 3D facial geometry such as the region around the right side 
of the base of the nose and the left part of the face similarly have high L1 losses in the heatmap image (Fig. 3e).

Detection of pigment spots in synthetic UV images generated by UV‑photo Net.  In order to evaluate the practi-
cal usefulness of UV-photo Net for pigment spot detection, we performed pigment spot detection for cheek 
regions in both synthetic UV images by UV-photo Net and UV photo images. For the pigment spot detection, 
we devised a U-net-based method named Spot Net. In Spot Net, U-net was trained by using UV photo images 
and their corresponding pigment spot information from the VISIA system.

Figure 2.   Color photo images of a front face and a right profile face (a,d), synthetic UV images generated by 
UV-photo Net (b,e), and UV photo images (c,f) for a subject.
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We used Spot Net to detect pigment spots in synthetic UV images and UV photo images. Since the VISIA 
system detects pigment spots in cheek regions only for profile face images, we trained Spot Net using the profile 
face images for samples included in the training samples. Figure 4a shows pigment spots detected by Spot Net for 
a cheek region of the UV photo image in Fig. 2f. Spot Net well reproduced pigment spots detected by the VISIA 
system for the same UV photo image as shown in Supplementary Fig. 5. Figure 4b shows pigment spots detected 

Figure 3.   Heatmap images indicating pixel-wise L1 distance from the UV photo image for (a) the synthetic 
UV image by UV-phot Net, (b) the image by the ICA-based method, (c) the blue channel image, and (d) the 
grayscale image for a front face as well as (e) the synthetic UV image by UV-photo Net for a right profile face.

Figure 4.   Detected pigment spots by Spot Net for (a) the UV photo image of a right profile face and (b) the 
corresponding synthetic UV image by UV-photo Net. The area surrounded by a blue line is a manually selected 
cheek region, and the areas surrounded by yellow lines denote the detected pigment spots.
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by Spot Net for the cheek region of the synthetic UV image in Fig. 2e. The pigment spots detected by Spot Net 
for the synthetic UV image in Fig. 4b formed a similar pattern to those for the UV photo image in Fig. 4a.

We used Spot Net to detect pigment spots in the cheek regions of front face UV photo images and their cor-
responding synthetic UV images generated by UV-photo Net for the 24 test samples. In order to consider the 
pigment spot detection directly from color photo images, we also prepared Spot Net that was trained by using 
color photo images as input images instead of UV photo images. Figure 5a shows boxplots for intersection over 
union score (IoU), recall, precision, and F-measure obtained by designating pigment spots detected from the UV 
photo images as true pigment spots. IoU is a metric used for the evaluation on object detection and obtained by 
calculating the size of the intersection of true and estimated regions divided by the size of their union. F-measure 
is given by the harmonic mean of recall and precision and used to evaluate the aggregated accuracy considering 
both recall and precision. For IoU, recall, precision, and F-measure, the maximum and minimum values are 1 
and 0, and the higher value is better. The results of synthetic UV images were better than those for color photo 
images for all IoU, recall, precision, and F-measure. Although the synthetic UV images were also obtained from 
the color photo images, the information from the UV-photo images via UV-photo Net presumably contributed 
to the more accurate pigment spot detection.
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Figure 5.   (a) Boxplots of IoU, recall, precision, and F-measure of Spot Net for synthetic UV images and color 
photo images for 24 test samples. (b) A plot comparing the percentages of pigment spots in cheek regions 
between UV photo images and synthetic UV images by UV-photo Net for the test samples. Dots indicate pairs 
of the percentages, and the red line is a linear regression line without intercept for the pairs of the percentages. 
The regression coefficient is 1.05. The red dot indicates the pair of the percentages for the subject in Fig. 4. (c) A 
plot showing the relationship between the age and percentage of pigment spot areas for UV photo images and 
synthetic UV images by UV-photo Net for the test samples. The x-axis indicates the age of the samples, and the 
y-axis indicates the percentage of pigment spot areas in the cheek regions for the UV photo images and synthetic 
UV images of the respective samples.
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We measured the percentages of pigment spot areas detected by Spot Net in the cheek regions of the UV photo 
images and synthetic UV images for the 24 test samples (Fig. 5b). The percentages for the UV photo images and 
synthetic UV images were highly correlated (Pearson’s correlation coefficient 0.92, p-value = 3.43× 10−10 ). The 
red line in Fig. 5b indicates the linear regression without intercept for the pairs of the percentages, for which the 
regression coefficient is 1.05. Since the percentage of the pigment spot areas was highly correlated between UV 
photo images and synthetic UV images, the size of pigment spot areas in the UV photo images can be estimated 
by evaluating synthetic UV images. Also, the tendency in the increase of the percentage of pigment spot areas 
along with the age was observed for both UV photo images and synthetic UV images (Fig. 5c).

Verification of synthetic UV images for smartphone photo images.  We applied UV-photo Net to front, right 
profile, and left profile face photo images taken by iPhone (Fig. 6a,d,g). The width and height of iPhone images 
was 2320× 3088 or 3024× 4032 . The photo images for the front face and the right profile face were taken by 
putting iPhone near the camera position of the VISIA system. In order to examine the influence of lightning 
conditions to UV-photo Net, the iPhone image for the left profile face was taken under a standard fluorescent 
light. Figure 6b,e,h show synthetic UV images by UV-photo Net from the iPhone images in Fig. 6a,d,g, respec-
tively. Two board-certified dermatologists evaluated the synthetic UV images for the iPhone images through the 
comparison with the original iPhone images (Fig. 6a,d,g) and the UV photo images taken with the VISIA system 
(Fig. 6c,f,i). Red circles indicate examples of pigment spots that UV-photo Net failed to reproduce, and yellow 
circles indicate examples of pigment spots that were difficult to be recognized in the iPhone images by the two 
dermatologists.

The iPhone image for the front face is not well-focused, and hence pigment spots were not reproduced clearly 
in the corresponding synthetic UV image. On the other hand, the iPhone image for the right profile face is clear, 
and the pigment spots were well reproduced in the synthetic UV image for the right profile face. The synthetic 
UV image for the left profile face is less realistic somewhat as the UV photo image due to the difference of the 
lightning condition. However, the pigment spots were well reproduced in the synthetic UV image because of the 
clear photographing of the left profile face in the iPhone image. While we demonstrated that UV-photo Net was 
also effective for the pigment spot detection in the iPhone images, we confirmed the importance of stable environ-
ments for taking well-focused photo images for the accurate pigment spot detection from smartphone images.

Conclusion
We proposed a CGAN-based deep learning method named UV-photo Net to estimate UV photo images from 
color photo images for the daily care of UV skin damages. We evaluated UV-photo Net using color and UV 
photo face images of 150 individuals for a training dataset, those of 10 individuals for a validation dataset, and 
those of 24 individuals for a test dataset. Although the number of individuals considered in the training set 
seems insufficient for training deep learning models, the deep learning models comprising UV-photo Net were 
trained using not whole images but image patches, and the sufficient number of image patches were obtained for 
training the models. As a result, UV-photo Net in our experiment was able to generate synthetic UV images that 
were much closer to UV-photo images than simple grayscale images, blue channel images, and images obtained 
with the ICA-based method in terms of both per-pixel L1 loss and FID. In order to fix the mismatch between 
color and UV photo images in the training data, we devised a local alignment method. We confirmed that the 
consideration of both CGAN and the local alignment was effective to improve the quality of synthetic UV images.

In order to examine the effectiveness of UV-photo Net for pigment spot detection, we proposed a deep 
learning-based pigment spot detection method named Spot Net. We used Spot Net to analyze UV skin damages 
for UV photo images and synthetic UV photo images by UV-photo Net in terms of the percentages of detected 
pigment spot areas in cheek regions. These percentages were highly correlated (Pearson’s correlation coefficient 
0.92, p-value = 3.43× 10−10 ), and hence the percentage for the synthetic UV image can be used for as an indica-
tor of skin damage with sufficient accuracy. We also applied UV-photo Net to iPhone images in order to examine 
the practical usefulness of UV-photo Net in smartphone camera images. The validation by two dermatologists 
showed that the resulting synthetic UV images successfully emphasized pigment spots which were difficult to 
be recognized in the original iPhone images.

In contrast to the above successful points, UV-photo Net still has some limitations. The estimated results for 
shadowed regions such as regions around eyes or nasolabial holds, were relatively less accurate than other regions 
due to the difference of skin specular reflectance. Furthermore, the resulting synthetic UV image by UV-photo 
Net was less realistic for iPhone image taken under the different lightning condition from the training dataset. 
To address the influence of skin specular reflectance, Gevaux et al. proposed to the additional use of artificial 
training data by simulating the effect of varying lighting and viewing conditions as a data augmentation process26. 
We believe that both issues can be resolved by additionally using the training data under various conditions 
similarly to their solution. Although pairs of color and UV photo images are required in the learning framework 
considered in this study, color photo images without the corresponding UV photo images can be used for train-
ing under CycleGAN framework27. The hybrid use of such a learning framework is promising for the increase 
of the training data under various conditions, and will be a possible future work for more robust estimation.

There exist a number of studies analyzing genetic aspects of sunburn related diseases. Genome-wide associa-
tion studies, for example, revealed the genes related to melanin production and sunburn, and those genes are 
also related to actinic keratosis, squamous cell carcinoma, basal cell carcinoma, and melanoma28. Sun protection 
and care for UV skin damages in early stages are essential for people genetically susceptible to sunburn related 
diseases. Since the understanding of skin damage from UV photo image promotes the use of sunscreen3, further 
development of our method with the consideration of additional deep learning technologies such as CycleGAN 
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is important for enabling the daily basis care of UV skin damages and skin cancers especially for the people 
genetically susceptible to sunburn.

Methods
Study participants and ethical committee approval.  This study was approved by the ethical com-
mittee of the Tohoku University Graduate School of Medicine. The participants of this study is comprised of 
184 Japanese individuals (180 females and 4 males) who visited the Dermatology Clinic of the Tohoku Uni-
versity Hospital (Sendai, Japan) from 2013 to 2019. Written informed consent was obtained from all the study 
participants to use their color and UV photo images. Color and UV photo image pairs for the 184 individuals 
were taken with VISIA Skin Analysis System (Canfield Imaging Systems, Fairfield, NJ, United States)21 in the 
Dermatology Clinic of Tohoku University hospital through the general clinical practice. We used standard mode 

Figure 6.   Color photo images for front, right profile, and left profile faces taken by iPhone (a,d,g), their 
respective synthetic UV images by UV-photo Net (b,e,h) from the iPhone photo images, and UV photo images 
for the front, right profile, and left profile faces taken by the VISIA system (c,f,i).
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for photographing color images. The room for photographing was maintained with a constant temperature at 
26 degrees Celsius and 31% humidity without daylight inside29. All methods and procedures follow the Declara-
tion of Helsinki and were carried out in accordance with the Japanese guidelines and regulations for medical 
researches. We divided the 184 individuals into 160 individuals as training samples and the remaining 24 indi-
viduals as test samples. A male study participant in the test samples agreed to the publication of his photo images 
in online open-access publications.

Detection of face region to designate training and evaluation area (Fig. 1a‑1).  We trained a 
deep neural network model called Inception-v430 for binary classification to detect face regions, from which 
we extracted image patches of 256× 256 pixels for training UV-photo Net. Since image patches of 256× 256 
pixels used in UV-photo Net are too coarse to detect face regions precisely in our image dataset, we used smaller 
image patches of 120× 120 pixels for input images of Inception-v4. For the generation of image patches of 
120× 120 pixels for training, we first detected face landmarks for eyes, eye brows, nose, lips, and jawline from 
color photo images as shown in Supplementary Fig. 1a by using a method based on an ensemble of regression 
trees31 implemented in dlib library (http://dlib.net/). We then extracted image patches of 120× 120 pixels labeled 
as face region from the region surrounded by the detected face landmarks. We also extracted image patches of 
120× 120 pixels for non-face region from the outside region of the jawline estimated by the face landmark detec-
tion (the hatched region in Supplementary Fig. 1a). Although the detection of some of the face regions such as 
forehead regions is difficult by the face landmarks, the Inception-v4-based method is expected to detect all the 
face regions accurately. We used around 30,000 image patches of 120× 120 pixels and their associated labels for 
training Inception-v4. Overlapping between the image patches was allowed in the extraction. In the training 
process, parameters of Inception-v4 were updated iteratively with 100,000 steps by using Adam solver32 with a 
learning rate of 0.0001 and a batch size of 100. After the training, we generated face region maps for all the color 
photo images as shown in Supplementary Fig. 1b by assembling image patches of 120× 120 pixels with the esti-
mated labels by the trained Inception-v4 model.

Structure and training of UV‑photo Net.  We developed UV-photo Net, which converts color photo 
images to synthetic UV photo images using a deep neural network model trained under CGAN. CGAN consid-
ers two types of models called generator and discriminator. We used a deep neural network model called U-net 
for the generator. The structure of U-net used in UV-photo Net is shown in Fig. 7a, where the height h, the 
width c, and the number of channels c of the output tensor of each layer are denoted by h× w × c beside the 
outgoing arrow. The shape of the output tensor is also visually represented by the rectangle size of the layer in a 
similar manner to the original article describing the U-net structure20. Dropout33 with a dropout rate of 0.5 was 
applied to output tensors for the rectangles with ‘ ∗ ’ in the training process. In U-net, input images are encoded 
to smaller images in the first half part of the network structure. Since global characteristics of the input images 
can be captured by encoded images, U-net can generate images considering both local and global characteris-
tics by additionally using encoded images in the latter half part of the network structure. Although whole color 
photo images are too large to handle directly in U-net, we used U-net to convert color photo image patches of 
256× 256 pixels into synthetic UV image patches of 256× 256 pixels. A whole synthetic UV image was then 
reconstructed by assembling the synthetic UV image patches.

For the discriminator, we used a deep neural network that takes two types of input images; one is a color photo 
image patch, and the other is its corresponding UV photo image patch or a synthetic UV image patch generated 
from the color photo image patch by the generator (Fig. 7b). The discriminator is trained to classify whether the 
latter input images are UV photo image patches or synthetic UV image patches from the generator. The generator 
is trained based on the per-pixel L1 loss between synthetic UV image patches and the original UV photo image 
patches as well as the loss based on the classification results from the discriminator for the synthetic UV image 
patches. By alternately training the generator and the discriminator, the generator comes to generate synthetic 
UV image patches that are difficult to be distinguished by the discriminator, while the discriminator comes to 
successfully classify the synthetic UV image patches that are perceptually realistic as UV photo image patches.

Formal description for training process.  We let G(X) be a function representing the generator that generates a 
synthetic UV image patch from color photo image patch X. We also let D(X, Y) be a function representing the 
discriminator that returns the probability of Y being the UV photo image patch corresponding to color photo 
image patch X. The ideal D(X, Z) should return one if Y is the UV photo image patch corresponding to X and 
zero otherwise. Let I and J be sets of indices for training images. The following equation is optimized in training 
under CGAN:

where Yi is the UV photo image patch that corresponds to color photo image patch Xi , wi and hi respectively 
are the width and height of Yi , � is a weight for the loss from the discriminator, and | · | denotes the size of the 
set. We empirically chose 0.005 as the value of � for UV-photo Net. The optimization is performed by genera-
tor G and discriminator D, alternately. For the optimization by the discriminator, the following cost function is 
minimized with respect to D:

LG,D = min
G

max
D

1

|I|

∑

i∈I

(

1

wi · hi
|Yi − G(Xi)| + � log(1− D(Xi ,G(Xi))

)

+
�

|J|

∑

j∈J

logD(Xj ,Yj),
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For the optimization by the generator, the following cost function is minimized with respect to G:

where the first term is the per-pixel L1 loss of UV photo image patch Yi and synthetic UV image patch G(Xi) , 
and the second term is the loss for the naturalness of synthetic UV image patch G(Xi) as a UV photo image patch 
evaluated by discriminator D. Under the alternate update of the generator and the discriminator, the generator 
can generate synthetic UV images that are close to the original UV photo images in terms of per-pixel L1 loss 
and perceptually realistic as UV photo images. It is worth noting that sets of indices I and J should be disjoint 
for stable and proper training because the discriminator can easily distinguish synthetic UV image patches from 
UV photo image patches in the cost function for the generator if indices in I are also included in J.

−
1
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1
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Figure 7.   Structures of deep neural network models for the generator and discriminator. (a) The structure 
of U-net used for the generator in UV-photo Net. (b) The structure of the model for the discriminator in 
UV-photo Net. The value beside the outgoing arrow of each layer denotes the shape of the output tensor. The 
number of channels and image size of tree-dimensional output tensors are represented by the width and height 
of their rectangles, respectively. For vector-shaped output tensors, the height of their rectangles represents their 
respective vector length. The width of rectangles for the vector-shaped output tensors is equivalent to the size for 
one channel. Dropout was applied to the output tensors for the rectangles with ‘*’.
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Local alignment of color and UV photo images for training data (Fig. 1a‑2‑ii).  Color photo images and their cor-
responding UV photo images are not completely matched in pixel-level due to the subtle movement of subjects 
in photographing time interval. Such pixel-level mismatches can cause vague and blurred areas in synthetic UV 
images. We thus considered the alignment of color and UV photo images to correct the pixel-level mismatches. 
The alignment with the whole image was not suitable for the UV-photo Net since the pixel-level mismatches 
occur locally. It is also difficult to directly align the color and UV photo images due to the high discrepancy in 
their characteristics of images and pixel-level information. A possible solution for the former issue is to align 
image patches instead of whole images. For the latter issue, we instead aligned UV photo images and synthetic 
UV images for the corresponding color photo images obtained by UV-photo Net trained without the discrimina-
tor and the local alignment. Since image patches of 256× 256 pixels are too small to capture the outlines of facial 
parts such as eyebrows, eyes, nose, and lips, we used larger image patches of 900× 900 pixels for the alignment. 
Image patches of 900× 900 pixels were extracted in a tiled manner where overlapping of the image patches was 
allowed. We considered vertical and horizontal shifts in the alignment and selected the shift with the minimum 
mean per-pixel L1 loss between UV photo and synthetic UV image patches of 900× 900 pixels as the alignment 
result. The alignment results for synthetic UV image patches of 900× 900 pixels were directly applied to the 
corresponding color photo image patches of 900× 900 . We then aligned each image patch of 256× 256 pixels 
for training U-net using the alignment result of the image patch of 900× 900 pixels with the minimum distance 
with the image patch of 256× 256 pixels. We defined the distance between an image patch of 900× 900 pixels 
and an image patch of 256× 256 pixels by the distance of their center points.

Training process of UV‑photo Net (Fig. 1a‑2‑i,iii).  We extracted small image patches of 256× 256 pixels from 
the face regions of the training and validation datasets. The face regions were detected by the aforementioned 
Inception-v4-based method. We considered random vertical flip, horizontal flip, and 90-degree rotation as the 
data augmentation. For training under CGAN, models for the generator and discriminator were alternately 
updated with 150,000 iterations. We considered early stopping to select the best model according to the mean 
pixel-wise L1 loss in the validation dataset. We then updated only the model for the discriminator with 5,000 
iterations, and selected the best model for the discriminator according to the discriminator loss in the validation 
dataset. We further updated only the model for the generator with 5,0000 iterations and selected the best model 
for the generator according to the mean pixel-wise L1 loss in the validation dataset. For all the iterations, we set 
batch size to 80 and used Adam solver with a learning rate of 0.0001 to update parameters. In order to examine 
the effect of the discriminator for CGAN, we also considered UV-photo Net trained without the discriminator 
for which only the model for the generator was trained under the loss function with � = 0 . In the UV-photo Net 
trained without the discriminator, we only updated the model for the generator with 150,000 iterations. Early 
stopping based on the mean per-pixel L1 loss for the validation set was also considered for the UV-photo Net 
trained without the discriminator.

Pigment spot detection by Spot Net.  We devised a U-net-based method for pigment spot detection 
named Spot Net. The structure of U-net for Spot Net is the same as the structure of U-net for UV-photo Net 
except for the final output layer. The softmax function for binary classification was instead used in the final 
output layer for Spot Net. For training Spot Net, the combination of the cross entropy of the softmax function 
and the DICE coefficient34 was used as the cost function. Since the VISIA system detects pigment spots in cheek 
regions only for profile face images, we trained Spot Net using UV photo image patches of 256× 256 pixels from 
the cheek regions of the profile face images and their corresponding spot map image patches. We also included 
synthetic UV image patches by UV-photo Net as the input images of the training dataset to adapt Spot Net for 
the synthetic UV images as well. Of the 160 training samples, 69 samples had profile face images with pigment 
spot information detected by the VISIA system. We used profile face images for 49 samples as a training dataset 
and profile face images for the remaining 20 samples as a validation dataset for Spot Net. We set batch size to 80 
and used Adam solver with a learning rate of 0.0001 to update parameters with 150,000 iterations. The model 
with the minimum cost in the validation dataset was used as the training result. For the data augmentation, we 
considered random brightness change as well as random vertical flip, horizontal flip, and 90-degree rotation. In 
order to consider the pigment spot detection directly from color photo images, we also prepared Spot Net that 
was trained by using color photo image patches as the input images of the training and validation datasets.

Implementation and computational resources for proposed methods.  We implemented the deep 
neural network models for face region detection, UV-photo Net, and Spot Net in Python 3 and TensorFlow 
r.1.15. We used GeForce GTX 1080 and GeForce RTX 2080 SUPER for GPU computation to train and test these 
deep neural network models.
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