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Abstract

Bruton’s tyrosine kinase (BTK) is a cytoplasmic, non-receptor tyrosine kinase which is
expressed in most of the hematopoietic cells and plays an important role in many cellular
signaling pathways. B cell malignancies are dependent on BCR signaling, thus making BTK
an efficient therapeutic target. Over the last few years, significant efforts have been made in
order to develop BTK inhibitors to treat B-cell malignancies, and autoimmunity or allergy/
hypersensitivity but limited success has been achieved. Here in this study, 3D QSAR phar-
macophore models were generated for Btk based on known IC5, values and experimental
energy scores with extensive validations. The five features pharmacophore model, Hypo1,
includes one hydrogen bond acceptor lipid, one hydrogen bond donor, and three hydropho-
bic features, which has the highest correlation coefficient (0.98), cost difference (112.87),
and low RMS (1.68). It was further validated by the Fisher’'s randomization method and test
set. The well validated Hypo1 was used as a 3D query to search novel Btk inhibitors with dif-
ferent chemical scaffold using high throughput virtual screening technique. The screened
compounds were further sorted by applying ADMET properties, Lipinski’s rule of five and
molecular docking studies to refine the retrieved hits. Furthermore, molecular dynamic sim-
ulation was employed to study the stability of docked conformation and to investigate the
binding interactions in detail. Several important hydrogen bonds with Btk were revealed,
which includes the gatekeeper residues Glu475 and Met 477 at the hinge region. Overall,
this study suggests that the proposed hits may be more effective inhibitors for cancer and
autoimmune therapy.

Introduction

Bruton’s tyrosine kinase (BTK) is a cytoplasmic, non-receptor tyrosine kinase from a Tec-fam-
ily kinase, which is expressed in most of the hematopoietic cells and plays an important role in
many cellular signaling pathways [1-4]. In the life cycle of B-lineage cells BTK plays a central
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role in proliferation, development, differentiation, survival and apoptosis [5]. BTK is character-
ized by five structural domains including N-terminal pleckstrin homology (PH) domain, a pro-
line-rich TEC homology (TH) domain, Src homology 3 (SH3) followed by Src homology 2
(SH2) domain and a C-terminal kinase domain (BTK-KD). The PH domain plays an essential
role in the regulation and functioning of the BTK. The PH domain contains the site for binding
the transcription factors (BAP-135/TFII-1), inhibitors (PIN 1, 1BTK) [6] and activators (phos-
phatidylinositol 3,4,5-trisphosphates and G-protein By) [7]. The TH domain is stretch of 80
amino acid residues having a conserved region for zinc cofactor binding site and proline-rich
segment [8], which serves as a binding site for protein kinase C-beta (PKC-p) [9]. Initially BTK
is activated by phosphorylating Tyr551 in the activation loop of C-terminal kinase domain;
however further activation occurs in the SH3 domains, were autophosphorylation of Tyr223
occurs [10, 11].

In the lymphoid lineage, Btk is only expressed in B cells and is not found in natural killer or
T cells. B cells play a significant role in the pathogenesis of several autoimmune diseases. Clini-
cal studies have shown that depletion of mature B cells can be efficacious in multiple sclerosis,
systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA) [12]. Even though Btk is
expressed in the myeloid cell lineage, mutations in the Btk gene lead to prominent B cell—spe-
cific defects in mice and humans, hence it has been considered as a target for the selective inhi-
bition of B cells [13]. In humans, mutations in the BTK gene is characterized by a B-
lymphocyte developmental defect, giving rise to a primary immunodeficiency disease called X-
linked agammaglobulinemia (XLA). The individuals suffering from XLA is characterized by
lack of circulating B lymphocytes, therefore unable to generate immunoglobulins, and thus
cannot stand humoral immune responses. Similarly, mutation in the mouse-Btk gene results in
X-linked immunodeficiency (xid), a related but less severe phenotype than XLA [14-18]. B cell
expansion and the production of autoantibodies by polyclonal B cell activation is a characteris-
tic of RA [19], thus selective inhibition of Btk may be an attractive therapeutic target for B cell
inhibition in RA as well as for B cell lymphoma.

Ibrutinib (PCI-32765), Dasatinib, LFM-A13, CC-292, and ONO-WG-307 are well known
Btk inhibitors, with varying specificities [20]. For example, LEM-A13 and Dasatinib not only
inhibits Btk with an ICs, value of 2.5 uM and 5 nM, but also binds to other kinases such as
PLK3, JAK2 and SRC family members (HCK, SRC, CSK) [21-24]. Also, Ibrutinib (PCI-32765)
interferes with B-cell functioning and leads to hypogammaglobulinemia [25]. Though many
inhibitors are reported and few are in clinical trials, none are FDA approved and are selective
to Btk. Hence, designing potent and specific Btk inhibitors becomes crucial.

Here, we used computer-aided drug design approaches to identify potent and novel inhibi-
tors which can cause inhibition of Btk. A 3D QSAR pharmacophore model was built from the
chemical features present in already known inhibitors. The best model, Hypo 1, was validated
and used for database screening. The potential compounds were filtered by checking their drug
like properties. Binding conformations of the selected hit compounds were predicted by molec-
ular docking studies. Finally, the appropriate binding modes of final hit compounds were
revealed by molecular dynamics (MD) simulations and free energy calculation studies.

Materials and Methods
Collection of dataset

To perform pharmacophore modeling calculations a dataset of 85 known inhibitors of Btk
with diverse scaffold collected from different literature resources [26-29] and classified into
two different data sets: (i) a training set and (ii) a test set. Training set was used to generate the
hypothesis while the generated hypothesis was validated by a test set. Among these 85
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compounds, 25 were selected as the training set compounds (Fig 1) based on their ICs, values
and structural diversity. The remaining 60 compounds were used as a test set for validating the
hypothesis. The inhibitory activity value of these compounds was between 0.09 nmol/L to
40570 nmol/L. The data set compounds were classified into active (ICsy < 100 nmol/L, +++),
moderately active (100 nmol/L < ICs, < 10000 nmol/L, ++) and inactive (ICso > 10000 nmol/
L, +) based on their ICs, value. ChemSketch was used to sketch the 2D form of all the data set
compounds (ACD Inc., Toronto, Canada) and was consequently exported to Discovery Studio
v3.5 (DS) for their corresponding 3D structure generation.

Generation of pharmacophore model

Before performing the pharmacophore modeling, Feature Mapping protocol was used to iden-
tify the chemical features of the training set compounds that are important in inhibition of Btk.
The chemical features identified by the feature mapping protocol were used to generate phar-
macophore models using the 3D QSAR Pharmacophore Generation protocol available in DS
by correlating the experimental activities values of compounds with their chemical structures.
BEST algorithm was used to generate low energy conformation of the compounds. Uncertainty
value was set to 3 while other parameters had default values. Debnath method was used to
identify and evaluate the top ten hypotheses based on the activity values offered by the training
set compounds [30]. Debnath method suggests that the model having a high correlation coeffi-
cient, the lowest total cost, the lowest RMS deviation, and the total cost close to the fixed cost
and far from the null cost is considered as the best quantitative hypothesis [30]. The reliability
of hypothesis depends on the difference between the total cost of the generated hypothesis and
the null hypothesis.

Pharmacophore validation

The best hypothesis selected from the top ten hypotheses was subjected to validation by Fish-
er’s randomization and the external test set method. The statistical significance of the model
was computed by employing Fischer’s randomization method [31]. This method is used to ver-
ify that the selected hypothesis is not generated by chance and also to checks if there is a strong
correlation between the biological activities and the chemical structures. The confidence level
was set to 95% and nineteen random spreadsheets were generated [32]. This was done by ran-
domizing the activity of these compounds by using the same features and parameters used to
generate the original pharmacophore hypothesis. During this process if any of the random
pharmacophore hypotheses showed better statistical values than Hypol, then the Hypol was
generated by random correlation [33]. Test set was used to determine whether Hypol can pre-
dict and classify the compounds correctly in their activity scale of molecules other than the
training set compounds. External test set contained 60 chemically diverse compounds with
wide range of inhibitory activity values when compared to the training-set compounds. The
selected pharmacophore hypothesis (Hypol) was used to predict the activity values of test-set
compounds. The predicted and experimental activity values were plotted to observe the range
of correlation between them.

Virtual screening and drug-likeness prediction

Virtual screening of chemical databases is done to identify new scaffolds that can trigger or
inhibit the activity of a particular target. The benefit of virtual screening is that the hit com-
pounds can be gained easily for biological testing as compared to de novo design methods [34].
In this work, Hypol was used as a 3D structural query in virtual screening to retrieve a novel
lead compound for Btk inhibition from four different chemical databases: Chembridge, NCI,
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Fig 1. 2D Chemical structures of 25 Btk inhibitors in the training set used for hypothesis generation along with their IC5, values.

doi:10.1371/journal.pone.0147190.g001

Asinex, and Maybridge. The screened compounds that mapped all the features of Hypol were
selected as hit compounds. Estimated activity values, geometric fit values ADME properties
and Lipinski’s rule of five were used as a filter for further refinement of mapped compounds.
During ADME investigation the compounds were checked for low blood—brain barrier (BBB),
optimal solubility, good absorption, non-inhibition to CYP2D6 and non-hepatotoxicity; if the
molecule had values of 3, 3, and 0 for BBB, solubility, and absorption, respectively, it was con-
sidered that the molecule had good solubility, absorption, and BBB [35]. Lipinski’s rule of five
[36] estimates the absorption and intestinal permeability of a compound. Lipinski’s rule states
that, the compounds that are well absorbed have a logP value less than 5, less than 5 hydrogen-
bond donors, less than 10 hydrogen-bond acceptors, molecular weight of less than 500, and
fewer than ten rotatable bonds. The compounds having better estimated activity values and fil-
tered by drug-like properties was conceded further for molecular docking.

Molecular docking

In the drug designing process, molecular docking is used as a filtering method, as it is used to
find the most appropriate conformation and interactions of each hit compound at the active
site of protein. Docking studies were performed using GOLD program version 5.2.2. For
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molecular docking calculation a high resolution (1.80 A) crystal structure (PDB code 30CS) of
Btk bound with an inhibitor was selected as protein molecule [37]. The water molecules and
hetero atoms were removed from protein. CHARMm force field was used to add hydrogen
atoms to the protein molecule. The binding site was identified based on the volume occupied
by the co-crystallized ligand in the protein. The hit compounds along with training set com-
pounds were docked into the active site of protein. ND1H protonation state was kept for all the
histidine tautomers as observed in the crystal structure. To predict the binding affinity of the
ligand to the target protein, Gold fitness score function was used as the default scoring function
while rescoring was done using Chemscore. Based on the scoring functions (high Goldscore
and low Chemscore), molecular interactions, and the formation of hydrogen bonds between
the ligand and the active site residues of protein the best docked poses were selected.

Molecular dynamics simulations

The molecular dynamic (MD) simulations of Btk in complex with the final hit compounds
obtained from docking studies and the most active compound from the training set were per-
formed using GROMACS 4.5.7 package with CHARMm?27 force field [38]. Topology files for
ligands were generated by SwissParam [39]. The system were solvated in a dodecahedron

box containing TIP3P water model to form an aqueous environment and neutralized with Na
+ counter ions. 10000 minimization steps were carried out with steepest descent algorithm to
remove possible bad contacts from initial structures until tolerance of 2000 kJ/mol. The energy
minimized system was then subjected to equilibration in three different steps. A constant tem-
perature controlled by V-rescale thermostat [40] was applied for 100 ps at 300k in the first
phase of equilibration. Later, 100 ps NPT ensemble was applied at 1 bar of pressure followed
by 20 ns of production run under the same ensembles. During this process, Parrinello-Rahman
barostat was used to maintain the pressure of the system [41]. In the equilibration process the
solvent molecules with counter ions were allowed to move while protein backbone was
restrained. SETTLE and LINCS algorithm were used to constrain the geometry of water mole-
cules and bond involving hydrogen atoms respectively [42, 43]. Periodic boundary conditions
were applied to avoid edge effects. Particle Mesh Ewald (PME) algorithm were applied to calcu-
late the long range electrostatic interactions [44]. A cut off distance of 9A and 10A was set for
Coulombic and van der Waals interactions. Each simulation was run for 20 ns and the coordi-
nate data was stored at every picosecond (ps). All the analysis of MD simulations was carried
out by VMD [45] and DS software.

Binding free energy calculations

The binding free energy calculations were performed using Molecular Mechanics/Poisson-
Boltzmann Surface Area (MM/PBSA) method as described previously [46, 47]. For calculating
binding free energy 40 snapshots of protein-ligand complex were selected evenly from 0 to 20
ns of MD trajectories as per earlier studies [46, 48]. Different energy parameters have been cal-
culated using MM/PBSA method by using the same snapshots [46, 48— 49]. The binding inter-
action between protein and ligand was calculated in three terms such as solvation contribution
(AEsol), van der Waals contribution (AEvdw) and the electrostatic contribution (AEele).

Results and Discussion
Pharmacophore modeling

HypoGen algorithm was used to build the quantitative hypotheses by correlating the estimated
and the experimental activity values of the Btk inhibitors. The hypothesis was generated by
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using the training set of 25 chemically diverse compounds (Fig 1) with activity values ranging
from 0.09 nmol/L to 40570 nmol/L by selecting hydrogen bond acceptor lipid (HBAL), hydro-
gen bond donor (HBD), hydrophobic (HYP), hydrogen bond acceptor (HBA), and ring aro-
matic (RA) features as suggested by Feature Mapping protocol. A total of 10 hypotheses were
generated each having five chemical features. Hypol is the representative hypothesis, showing
a good geometric spatial arrangement consisting five chemical features namely 1 HBAL, 1
HBD, and 3 HYP (Fig 2). Hypol fulfilled all the statistical parameters such as the configuration
cost of 12.21; total cost (125.42) which was close to the fixed cost (116.43) and away from the
null cost (238.29) indicates that Hypol was the best hypothesis. There was a high correlation
coefficient of 0.981 along with large cost difference of 112.87 and lowest RMS value of 0.68
(Table 1). By considering all the above parameters it was revealed that the statistical values of
Hypol was best as compared to the other hypothetical structures. As a result, Hypol, was
selected as the best hypothesis for further analysis (Fig 2). The 3D spatial relationship and dis-
tance constraint of Hypol is depicted in Fig 2.

To elucidate the predictive accuracy of Hypol the training set compounds were classified
into active (ICso < 100 nmol/L, +++), moderately active (100 nmol/L <ICs, < 10000 nmol/L,
++) and inactive (ICso > 10000 nmol/L, +) based on their IC5, value. Regression analysis was
used to estimate the activity of each compound. Hypol estimated the inhibitory activity value
in the same order of magnitude for all the training set compounds (Table 2) except two moder-
ately active and two inactive compounds which were overestimated as active and moderately
active compounds, respectively.

Hypo 1 aligned with the most active (ICso = 0.09 nmol/L) compound and the least active
(ICsp = 40570 nmol/L) compound in the training set as depicted in Fig 3. Clearly, all the hypo-
thetical features were perfectly mapped by the most active compound (Fig 3A), whereas the
least active compound (Fig 3B) failed to fit on one HBA and one HYP feature. This reveals the
difference in activities among the most active and the least active compounds. This analysis
suggests that Hypol was able to differentiate the compounds based on the activity values with
high accuracy (Table 2). Hypol was further validated using the test-set and Fischer randomiza-
tion method.

Pharmacophore validation

Test set validation. A good pharmacophore should have the ability to predict and classify
the compounds according to their activities scale. Hypol was validated by external validation
(test set) process which consist of 60 structurally diverse compounds other than the training
set compounds (S1 Table) and were classified into active (ICso < 100 nmol/L, +++), moder-
ately active (100 nmol/L < ICs, < 10000 nmol/L, ++) and inactive (ICs, > 10000 nmol/L, +)
respectively. One moderately active compound was underestimated as being inactive, and two
inactive molecules were overestimated as moderately active compounds. The remaining com-
pounds were classified correctly, indicating that Hypol was able to predict the activities of
compounds in their own activity scales as depicted in Table 3. The linear regression between
the Hypol-predicted activities and experimental inhibitory activities of the test-set compounds
showed a correlation coefficient (r) value of 0.96 (Fig 4). This result shows the predictive capac-
ity of Hypol to discriminate between the active and moderately active compounds.

Fischer’s randomization method. To estimate the statistical relevance of Hypol Fischer’s
test was applied. Here we set a 95% confidence level; as a result 19 random spreadsheets were
generated by arbitrarily reassigning the experimental activity values to each compound in the
training set, and a hypothesis was created for each spreadsheet (Fig 5). The formula used to cal-
culate the significance of the hypothesis is S = [1-(1+X)/Y]x100, where X denotes total number

PLOS ONE | DOI:10.1371/journal.pone.0147190 January 19, 2016 6/19



el e
@ ' PLOS ‘ ONE 3D QSAR Modeling of Bruton's Tyrosine Kinase

HBAL

Fig 2. Chemical features of the best pharmacophore 'Hypo 1' with its distance constraints. 'Hypo 1'
consists of one hydrogen bond acceptor lipid (HBAL: Green), one hydrogen bond donor (HBD: Magenta),
three hydrophobic (HYP: Cyan) features.

doi:10.1371/journal.pone.0147190.g002

of hypotheses with total cost that are lower than the original hypothesis, and Y represents the
total number of HypoGen runs (initial+random runs). Here, X = 0 and Y = (1+19), hence 95%
= {1-[(1+0)/(19+1)]}x100. The generated random spreadsheets showed least total cost value
for Hypol as compared to other hypothesis, which indicates that Hypol is far more superior to
all other random hypotheses and was not generated by chance.

Virtual screening

In the drug discovery process, virtual screening of chemical databases is an alternative method
to the high-throughput screening technique. Chemical features of Hypol play an important
role in mapping and screening out novel compounds from a database. We therefore used
Hypol as a 3D structural query to screen Asinex, Chembridge, Maybridge, and NCI databases
which contains 213262, 50000, 59652 and 238819 compounds, respectively. Among these,

Table 1. Statistical data of ten pharmacophore hypotheses generated by HypoGen.

Hypo No. Total Cost Cost Difference® RMSD" Correlation (R?) Max Fit Features®
Hypo 1 125.42 112.87 0.68 0.981 11.68 1 HBAL, 1 HBD, 3 HYP
Hypo 2 122.71 115.58 0.84 0.970 10.97 1 HBA, 1 RA, 3HYP
Hypo 3 122.07 116.22 0.87 0.968 11.19 1 HBAL, 3HYP, 1 RA
Hypo 4 121.84 116.45 0.88 0.967 10.78 1 HBD, 1 HBA, 3 HYP
Hypo 5 119.49 118.8 0.95 0.962 11.97 1 HBAL, 1 HBD, 3 HYP
Hypo 6 118.64 119.65 1.02 0.956 10.83 1 HBAL, 3HYP, 1 RA
Hypo 7 118.45 119.84 1.03 0.955 10.47 1 HBA, 3HYP, 1 RA
Hypo 8 117.74 120.55 1.05 0.953 10.86 1 HBAL, 3HYP, 1 RA
Hypo 9 117.38 120.91 1.06 0.953 11.25 1 HBAL, 1 HBD, 3 HYP
Hypo 10 117.33 120.96 0.99 0.959 10.44 2 HBA, 1 HYP, 1 RA

& Cost difference, difference between the null cost and the total cost. The null cost of ten scored hypotheses is 238.29, the fixed cost value is 106.43. All
costs are represented in bit units.

® RMSD: deviation of the log (estimated activities) from the log (experimental activities) normalized by the log (Uncertainties).

¢ HBAL, hydrogen bond acceptor lipid; HBD, hydrogen bond donor; HYP hydrophobic; HBA, hydrogen bond acceptor; and RA, ring aromatic.

doi:10.1371/journal.pone.0147190.t1001
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Table 2. Experimental and estimated activity of training set compounds based on Hypo 1.

Compound No. Fit Value
1 11.16
2 11.33
3 10.57
4 10.07
5 10.33
6 9.76
7 10.39
8 10.01
9 9.78
10 9.43
11 9.45
12 8.79
13 8.63
14 8.93
15 8.40
16 7.91
17 6.98
18 7.97
19 7.27

20 7.48
21 6.92
22 6.33
23 6.54
24 6.57
25 5.40

Exp IC50 nmol/L

0.09
0.12
0.87
1
1.4
1.9
2
3.8
7.7
8
17
33
100
140
142
320
670
1000
3400
4100
5800
9200
14000
15000
41000

Pred IC5o nmol/L

0.22
0.15
0.87
2.8
1.5
5.5
1.3
3.2
5.3
12
12
52
76
38
130
390
3400
350
1700
1100
3800
15000
9200
8600

130000

Error®

+2.4
+1.3
-1

+2.8
+1.1
+2.9
-1.5
-1.2
-1.5
+1.5
-1.5
+1.6
-1.3
-3.7
-1.1

+1.2

+5

-2.9
-1.9
-3.9
-1.5
+1.7
-1.6
-1.8
+3.2

Exp Scale®

+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
++
++
++
++
++
++
++
++
++

& Error, ratio of the predicted activity (Pred ICso) to the experimental activity (Exp ICsp) or its negative inverse if the ratio is <1.
P Activity scale: ICso < 100 nmol/L = +++ (active), 100 nmol/L < ICso < 10000 nmol/L = ++ (moderate active), ICso > 10000 nmol/L = + (inactive).

doi:10.1371/journal.pone.0147190.t002

Pred Scale®

+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
++
++
++
++
++
++
++
+++
++
++

Hypo 1 mapped 29249 compounds that had all the chemical features of Hypol. Further these
compounds were filtered down to 3723 by applying a filter of maximum fit value greater than
10. However, even if a molecule passes various filters, it may not be active towards Btk, hence
we tested the filtered compounds for their ADME properties and Lipinski’s rule of five. ADME

Fig 3. The best pharmacophore model Hypo1 aligned to training set compounds: A) most active compound 1 (IC50 0.09 nmol/L) and B) least activity
compound 20 (IC50 40570 nmol/L). The most active compound mapped to all four features in Hypo 1, whereas the least active compound mapped only two

features.

doi:10.1371/journal.pone.0147190.g003
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Table 3. Evaluation of estimated and experimental activity (IC5o) values of test set compounds using Hypo 1.

Compound number Fit Value Experimental IC5, (nmol/L) Predicted IC5, (nmol/L) Error® Experimental Scale® Predicted Scale®

1 11.31 0.15 0.43 +0.36 +++ +++
2 11.08 0.26 0.24 -1.10 +++ +++
3 11.01 0.30 0.51 +0.60 +++ +++
4 10.99 0.32 0.56 +0.57 +++ +++
5 10.92 0.37 0.57 +0.66 +++ +++
6 10.88 0.41 0.95 +0.43 +++ +++
7 10.85 0.44 0.83 +0.53 +++ +++
8 10.78 0.52 0.36 -1.45 +++ +++
9 10.40 1.27 2.2 +0.58 +++ g
10 10.39 1.29 3 +0.43 +++ +++
11 10.39 1.29 2.8 +0.46 +++ +++
12 10.26 1.74 3.6 +0.48 -+ +++
13 10.26 1.74 2.1 +0.83 +++ +++
14 10.18 2.10 2.6 +0.80 +++ +++
15 10.16 2.17 3.4 +0.64 +++ +++
16 10.12 2.41 5 +0.48 +++ +++
17 10.10 2.51 3.3 +0.76 +++ +++
18 10.07 2.68 3.4 +0.78 +++ +++
19 10.06 2.78 4 +0.69 +++ +++
20 10.00 3.17 6.2 +0.51 +++ +++
21 9.97 3.43 4.7 +0.73 +++ +++
22 9.94 3.65 4.9 +0.74 +++ +++
23 9.86 4.37 6 +0.72 +++ +++
24 9.86 4.41 8.7 +0.50 +++ +++
25 9.83 4.70 5.2 +0.90 +++ +++
26 9.77 5.38 9.8 +0.54 +++ +++
27 9.69 6.47 4.0 -1.61 +++ +++
28 9.68 6.67 8.1 +0.82 +++ +++
29 9.58 8.41 13.0 +0.64 +++ +++
30 9.57 8.60 19.0 +0.45 +++ +++
31 9.55 8.90 6.1 -1.45 +++ +++
32 9.48 10.52 6.12 -1.72 +++ +4+
33 9.43 11.78 10.1 -1.16 +++ +++
34 9.42 12.06 8.0 -1.50 +++ +++
35 9.42 12.06 9.0 -1.34 +++ +++
36 9.33 14.80 171 +0.86 +++ +++
37 9.32 15.21 171 +2.14 +++ +++
38 9.30 15.76 22.9 +0.68 +++ +++
39 9.23 18.75 11.04 -1.69 +++ +++
40 9.15 22.64 43.0 +0.52 +++ +++
41 8.99 32.22 14.28 -2.25 +++ +++
42 8.93 37.14 16.6 -2.23 +++ +++
43 8.91 38.61 67.0 +0.57 +++ +++
44 8.91 38.71 16.6 -2.41 +++ +++
45 8.79 50.90 39.35 -1.29 +++ +++
46 8.73 58.77 47.0 -1.25 +++ +++
47 8.26 174.33 129.9 -1.34 ++ ++
(Continued)
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Table 3. (Continued)

Compound number

48
49
50
51
52
53
54
55
56
57
58
59
60

Fit Value

8.25
8.24
8.17
7.75
7.71
7.71
7.60
7.37
6.84
6.67
6.61
6.37
6.03

Experimental ICso (nmol/L)  Predicted ICso (nmol/L)  Error®  Experimental Scale®  Predicted Scale®
178.33 333.06 +0.53 ++ ++
181.87 280.83 +0.64 ++ ++
215.87 267.74 +0.80 ++ ++
570.61 3700 +0.15 ++ ++
620.37 518 -1.19 ++ ++
620.87 287 -2.16 ++ ++
798.80 3142 +0.25 ++ ++

1359.21 1255 -1.08 ++ ++
4587.11 1270 -3.61 ++ ++
6787.21 3330 -2.03 ++ ++
7821.13 12700 +0.61 ++ +
13667.60 1050 -13.01 ++
29655.90 2687 -11.03 ++

& Error, ratio of the predicted activity to the experimental activity or its negative inverse if the ratio is <1.
® Activity scale: ICso < 100 nmol/L = +++ (active), 100 nmol/L < ICso < 10000 nmol/L = ++ (moderate active), ICs, > 10000 nmol/L = + (inactive).

doi:10.1371/journal.pone.0147190.t003

and Lipinski's rule of five plays an important role in sorting the chemical compounds based on
drug-like properties. Therefore, ADME and Lipinski's rule of five were used as a filter to sort
these molecules. Finally, a total of 23 compounds satisfied the drug-like properties and were
subjected to molecular docking to study their critical interactions with the important amino
acids present in the active site of Btk.

Molecular docking

The training set compounds along with 23 drug-like hits resulted from pharmacophore model-
ing were subjected to docking using GOLD program so as to refine the retrieved hit com-
pounds and to eliminate the false positives. To gauge the accuracy of GOLD and to examine
the parameters to produce the appropriate binding orientation the co-crystal was docked in the

14 - @ Testset (R2=0.96) Traning set (R=0.98)

Predicted activity (pICs,)

-4 % O 2 4 6 8 10 12 14
Experimental activity (pICs,)

Fig 4. Correlation plot between Hypo1 predicted Btk inhibitory activities and experimental activities of
60 test set compounds and 25 training set compound.

doi:10.1371/journal.pone.0147190.g004
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Fig 5. Comparison between the total cost of Hypo1 with the total costs of the 19 scrambled runs
generated during the Fisher randomization run.

doi:10.1371/journal.pone.0147190.g005

active site of Btk. It resulted in an acceptable RMSD value of 1.04 A between the predicted
structure and the co-crystal (S1 Fig). Therefore, by using the same parameters the candidate
compounds were docked. The GOLD fitness scores, molecular interactions with the binding
site residues, binding modes, and Chemscore were considered as key components in selecting
the best conformation of the docked compounds. GOLD fitness score differentiates molecules
based on their interacting ability. GOLD fitness score value greater than that of most active
compound was taken as cut-off for the further screening of compounds. Chemscore estimates
the total free energy change that occurs upon ligand binding and was used as the rescoring
function. The most active compound in the training set has scored a GOLD fitness score of
69.7 and Chemscore of -30.7 (Table 4). Thus, the compounds were selected based on GOLD fit-
ness score greater than 69.7, Chemscore lower than -30.7, and the ligand conformations satisfy-
ing the necessary interactions in the active site. Finally, three hit compounds fulfilled the above
criteria and also mapped well to the pharmacophoric features of Hypo 1 (Fig 6) were character-
ized as final hits.

Molecular dynamics simulations

In order to further validate the results and to predict more reliable ligand—receptor interaction
MD simulations were performed. The 20 ns MD simulations were done to understand the con-
formational changes and dynamic behavior with each other by taking the best docked confor-
mation of three hits and a reference compound as the initial structure. All the four systems
were subjected to the MD simulation. To explore the dynamic stability of the complexes during

Table 4. Comparison of Gold fitness score, Chemscore and average binding energy of Btk and reference inhibitor/hit1/hit2/hit3 complex.

Systems
BTK + Inhibitor
BTK + Hit 1
BTK + Hit 2
BTK + Hit 3

doi:10.1371/journal.pone.0147190.1004

Gold fitness score ChemScore Average binding energy (KJ/mol)
69.7 -30.7 -84.1
72.4 -29.3 -87.9
7.7 -36.9 -81.3
70.6 -36.1 -92.0
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Fig 6. Hypo1 mapped onto the hit compounds. A) Hit 1, (B) Hit 2, (C) Hit 3. The HBAL, HBD and HYP features are displayed in green magenta and cyan,

respectively.
doi:10.1371/journal.pone.0147190.g006

simulation the root mean square deviation (RMSD) of protein backbone atoms (Fig 7A) and
potential energy (Fig 7B) of the system were calculated. The RMSD values observed for the
complexes were in between 0.8 A to 1.7 A throughout the simulations which shows that system
are well converged. The average RMSD values obtained during simulation for hitl, hit2, hit3,
and inhibitor were 1.12 A, 1.17 A, 1.05 A, and 1.45 A respectively. The potential energy of the
system was stable throughout the simulation indicating that no abnormal behavior occurred in
the protein. The last 5 ns trajectories were used to analyze the binding mode of the representa-
tive structures of four systems. When all the representative structures were superimposed, it
was found that the binding pattern of hit compounds was similar to reference compound (Fig
8). The substrate binding pocket of Btk was formed by GIln412, Phe413, Lys430, Glu475, Met
477, Ser538 and Asp539 amino acids. These key residues were also found to interact with the
reference inhibitor and hit compounds. In case of Hit compounds, Hitl formed hydrogen
bond interactions with GIn412, Phe413, Lys430, Met477, Asp539 and hydrophobic interaction
with Leud408, Gly411, Ala428, Ala478, Gly480, Asp521, Leu528, Leu542, Ser543, Tyr551 (Fig
9A, Table 5). The benzene moiety of hitl was involved in m -n and o-m interaction with Phe413
and Val416, respectively. In hit2 binding, hydrogen bonds with Lys430, Met477, Ser538 and
Asp539 were observed (Fig 9B, Table 5). Hit2 showed hydrophobic interactions with Leu408,
Gln412, Phe413, Val416, Ala428, Met477, Ala478, Gly480, Asn526, Leu528, Ser538, Asp539,
Leu542, Ser543, and Tyr551. The benzene moiety of hit2 was involved in 7 -7 interaction with
Tyr476 while n-cation interaction with Lys406, and Lys430, respectively. Hit3 formed hydro-
gen bond interactions with Gln412, Phe413, Lys430, Met477, and Asp539 (Fig 9C, Table 5).
Hit3 showed interactions with hydrophobic pocket residues such as Leu408, Gly411, Val416,
Ala428, Tyr476, Ala478, Asn479, Gly480, Asn526, Leu528, Leu542, Ser543, Val546, and
Tyr551. On the other hand reference compound, inhibitor formed hydrogen bonds with
Lys430, Glu475, and Met 477 (Fig 9D, Table 5). Furthermore, Inhibitor was stacked on Lys430
via cation-m interaction. Inhibitor showed hydrophobic interactions with Leu408, Gly411,
Gln412, Phe413, Val416, Ala478, Asn479, Gly480, Asn526, Leu528, Leu542, Ser543, Val546,
and Tyr551. These results reveals that, the final hit compounds bound to the active site either
by forming hydrogen bond interactions, or by o-n and cation-n interactions and the interacting
residues are given in Table 5.

In order to understand the nature of the binding of drug molecules in the active site, the
intermolecular hydrogen bonds between protein and hit compounds were monitored during
the simulation period (Fig 10). The average numbers of hydrogen bonds between the Btk pro-
tein and hit compounds were 2.6, 1.8, and 1.5 for hitl, hit2, and hit3 respectively. Inhibitor
showed almost 1.3 hydrogen bonds throughout the simulation. The reference compound
showed relatively less hydrogen bonds than the hit compounds. Further, search by PubChem
Structure [50] an online search tool confirmed that these compounds were not tested
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Fig 7. The RMSD and potential energy graph for four complex systems. (A) The RMSD profile for the
backbone atoms of Btk protein. (B) The potential energy of the system. These graphs were calculated during
20 ns MD simulations for each complex. Blue, cyan, pink, and green lines represent Hit1, Hit2, Hit3, and
Inhibitor respectively.

doi:10.1371/journal.pone.0147190.g007

experimentally for the inhibition of Hck and can be recommended as potential Btk inhibitors.
Hence, we suggest that these compounds could be novel as Btk inhibitors (Fig 11).

Analysis of the binding free energy of Btk and reference inhibitor/hit
compounds

Calculation of binding energy is a key aspect in understanding the molecular activity of the tar-
geted biomolecules. Estimation of various bonded and non-bonded interactions arbitrating
bimolecular association or dissociation offers us supportable information in developing the
therapeutic drugs against several biological disorders. MM/PBSA method was used to calculate
the binding free energy of each set of protein ligand complex in order to compare the binding
affinity between protein with the identified potent lead compounds. The MM/PBSA calculation
of Btk-ligand complexes using the reference inhibitor, hitl, hit2 and hit3 as the ligands gave
favorable AG values in the range of —35 to —137 kJ/mol as depicted in Fig 12. The binding
energy showed slight variation in each snapshot as the conformational space was not sampled
enough to get converged results. The average binding energy obtained for Btk-ligand com-
plexes were -84.18 kJ/mol (reference inhibitor), -87.96 kJ/mol (hit1), -81.39 (hit2), and -92.09
(hit3) (Table 4). The binding energy obtained from the trajectories produced during the MD
simulation, considers the ligand conformation and the fluctuation of the protein in the com-
plex, as a result confirming a proper adjustment of the ligand in the binding site [49, 51]. Btk
has charged binding pocket comprising of two Asp, one Glu, two Lys, one Arg, one Gln, and
two Asn residues. These amino acid residues form strong ionic interactions with ligands, thus,
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Fig 8. The binding mode of the three hit compounds and reference inhibitor in the active site of Btk. All compounds in their representative structures
were superimposed (left) and enlarged (right). The Btk protein is shown in gray color solid ribbon while the compounds are depicted by sticks. Blue, cyan,
pink, and green sticks represent Hit1, Hit2, Hit3, and Inhibitor respectively.

doi:10.1371/journal.pone.0147190.g008
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Fig 9. The binding conformation and hydrogen bonding interactions of the three hit compounds and
reference inhibitor in the active site of Btk. (A) Hit1: blue (B) Hit2: cyan (C) Hit3: pink and (D) Inhibitor:
Green. Hydrogen bond interactions between proteins and compounds are shown as black dotted line. Only
polar hydrogen atoms are shown for clarity.

doi:10.1371/journal.pone.0147190.g009
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Table 5. The molecular interactions between the compounds and Btk protein.

Compound  Hydrogen bond (<3.0 A) Hydrophobic interaction Cation-mr o-Tr
interaction interaction
Inhibitor Lys430, Glu475, Met 477 Leu408, Gly411, GIn412, Phe413, Val416, Ala478, Asn479, Gly480, Lys430
Asn526, Leu528, Leu542, Ser543, Val546, Tyr551
Hit 1 GIn412, Phe413, Lys430, Leu408, Gly411, Ala428, Ala478, Gly480, Asp521, Leu528, Leu542, Phe413 Val416
Met 477, Asp539 Ser543, Tyr551
Hit 2 Lys430, Met 477, Ser538, Leu408, GIn412, Phe413, Val416, Ala428, Met477, Ala478, Gly480, Lys406, Lys430 Tyrd76
Asp539 Asn526, Leu528, Ser538, Asp539, Leu542, Ser543, Tyr551.
Hit 3 GIn412, Phe413, Lys430, Leu408, Gly411, Val416, Ala428, Tyrd76, Ala478, Asn479, Gly480,

Met 477, Asp539

Asn526, Leu528, Leu542, Ser543, Val546, Tyr551

doi:10.1371/journal.pone.0147190.1005

resulting in strong electrostatic potential in the binding interface of Btk active site. The bound
conformation of Btk and ligands shows that ligands get accommodate in the active site of the
enzyme through hydrogen bond and hydrophobic interactions.

Conclusion

Inhibition of Btk has emerged as a new promising target in the field of B cell malignancies and
autoimmunity or allergy/hypersensitivity as it is involved in several signaling pathways. Thus
as an attempt, a ligand based pharmacophore modeling was done to find the important chemi-
cal features which can inhibit the activity of Btk. The five feature pharmacophore model,
Hypol, was developed consisting of 1 HBAL, IHBD, 3HYP features. Hypol had the highest
correlation coefficient (0.98), cost difference (112.87), and low RMS (1.68). It was further vali-
dated by the Fisher’s randomization method (95%) and test set (r = 0.96). Hence, the best
hypothesis Hypo1l was used as a 3D structural query to screen the chemical databases for
retrieving new potent inhibitors of Btk. Fit value, Lipinski’s rule of five, and ADMET properties
screening assisted us to discard the non-drug-like compounds. Furthermore, the screened
drug-like compounds were identified and were subjected to molecular docking study. Finally,
molecular dynamic simulation was employed to study the stability of docked conformation

i
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Fig 10. The number of intermolecular hydrogen bonds between protein and compound during 20 ns
MD simulations. Blue, cyan, pink, and green colors represent Hit1, Hit2, Hit3, and Inhibitor respectively.

doi:10.1371/journal.pone.0147190.g010
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Fig 12. MM/PBSA estimated binding free energy of Btk and hit 1/hit 2/hit 3/ reference inhibitor
complex throughout simulation time. Color coding; Hit 1: Blue, Hit 2: cyan, Hit 3: pink and Inhibitor: green.

doi:10.1371/journal.pone.0147190.g012

and to investigate the binding interaction in details. Several important hydrogen bonds with
Btk were revealed, which includes the gatekeeper residues Glu475 and Met 477 at the hinge
region. The analyzed results suggested that the binding mode of hit compounds was similar to
the reference compounds. The hit compounds bound to the active site residues by forming
hydrogen bond, hydrophobic, o-n and cation-m interactions. Hence, we propose that the final
hit compounds as a possible virtual leads to design novel Btk inhibitors.

Supporting Information

S1 Fig. Co-crystal (Gray; PDB ID: 30CS) overlaped with its docked orientation (yellow).
(PNG)

S1 Table. Chemical structures of test set compounds with their respective ICs, values.
(DOC)
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