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Abstract: More than 50% of the HIV-1 latent reservoir is maintained by clonal expansion. The
clonally expanded HIV-1-infected cells can contribute to persistent nonsuppressible low-level viremia
and viral rebound. HIV-1 integration site and proviral genome landscape profiling reveals the
clonal expansion dynamics of HIV-1-infected cells. In individuals under long-term suppressive
antiretroviral therapy (ART), HIV-1 integration sites are enriched in specific locations in certain
cancer-related genes in the same orientation as the host transcription unit. Single-cell transcriptome
analysis revealed that HIV-1 drives aberrant cancer-related gene expression through HIV-1-to-host
RNA splicing. Furthermore, the HIV-1 promoter dominates over the host gene promoter and drives
high levels of cancer-related gene expression. When HIV-1 integrates into cancer-related genes and
causes gain of function of oncogenes or loss of function of tumor suppressor genes, HIV-1 insertional
mutagenesis drives the proliferation of HIV-1-infected cells and may cause cancer in rare cases.
HIV-1-driven aberrant cancer-related gene expression at the integration site can be suppressed by
CRISPR-mediated inhibition of the HIV-1 promoter or by HIV-1 suppressing agents. Given that ART
does not suppress HIV-1 promoter activity, therapeutic agents that suppress HIV-1 transcription and
halt the clonal expansion of HIV-1-infected cells should be explored to block the clonal expansion of
the HIV-1 latent reservoir.

Keywords: HIV-1 latent reservoir; HIV-1 cure; clonal expansion; HIV-1 insertional mutagenesis; HIV-
1 integration site-dependent proliferation; aberrant HIV-1 RNA splicing; persistent nonsuppressible
low-level viremia; HIV-1 proviral landscape; immune selection pressure; HIV-1 suppressing agents

1. Introduction

Antiretroviral therapy (ART) effectively blocks new rounds of HIV-1 infection and
suppresses HIV-1 plasma viral load to clinically undetectable levels. However, as early
as three days after infection, millions of HIV-1-infected cells establish the HIV-1 reservoir
in peripheral blood [1–3] and tissues, particularly lymphoid tissues such as lymph nodes
and gut-associated lymphoid tissues [4,5]. Despite decades of suppressive ART, the latent
reservoir [1–3] persists lifelong [6,7]. Whenever an HIV-1-infected individual stops ART,
viral rebound is inevitable. Unlike antibacterial agents that kill susceptible bacteria, ART
blocks HIV-1 enzyme function or viral entry but does not kill HIV-1-infected cells; in fact,
ART is not cytotoxic. Presumably, infected cells should be recognized and eliminated
by the host innate and adaptive immune system [8–11]. However, under effective ART,
HIV-1 evades innate and adaptive host immune clearance. For innate immune responses,
cytosolic viral RNA should induce recognition by cytosolic RIG-I-like receptors. However,
once HIV-1 integrates into the human genome, HIV-1 RNA transcribed from integrated
proviruses appears similar to cellular mRNA and thus does not induce innate sensing. For
adaptive immune responses, HIV-1-infected cells evade immune clearance by cytotoxic
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CD8+ T lymphocytes (CTLs) through different mechanisms, such as rapid development of
CTL escape mutations [12–14], inducing CTL exhaustion [15–17], downregulating MHC
I-mediated antigen presentation [18], and using defective HIV-1-infected cells as decoys to
distract CTLs from killing the latent reservoir [19]. Therefore, the HIV-1 latent reservoir
persists despite long-term suppressive ART.

2. The Clonally Expanding HIV-1-Infected Cells Are the Major Barrier to Cure

The half-life of the HIV-1 latent reservoir is estimated to be 44 months [6], despite
the improvement of ART into more potent and less toxic regimens [7]. The persistence of
HIV-1-infected cells is a dynamic process: they increase by clonal expansion and decrease
by immune clearance through cytotoxic T lymphocyte and natural killer cell killing. More
than 50% of the latent reservoir is maintained through clonal expansion [20–22], and the
frequency of clonally expanded cells increases over time [23]. These clonally expanding
HIV-1-infected cells are the major barrier to a cure.

HIV-1 infects cells that have CD4 receptor and CCR5 or CXCR4 coreceptors, such as
CD4+ T cells, macrophages, and dendritic cells. HIV-1 infection of CD4+ T cells significantly
helps the life-long persistence of the virus. This is because HIV-1 hides in memory CD4+ T
cells that (a) undergo clonal expansion upon antigen stimulation [24–27], (b) dynamically
switch from an activated state to a quiescent and transcriptionally inactive latent phase, and
(c) are maintained through homeostatic proliferation [28]. In normal immune responses,
naïve CD4+ T cells become activated following cognate antigen stimulation, differentiate
into memory T cells, and proliferate from one cell into many cells (creating a T cell clone).
This clonal expansion of memory CD4+ T cells is a normal immune response to antigen
stimulation. Of note, memory CD4+ T cells undergo homeostatic proliferation faster than
naïve CD4+ T cells [29]. The estimated proliferation rate is highest in effector memory CD4+

T cells (0.042/day) [29,30], followed by central memory CD4+ T cells (0.01/day) [29,30]
and naïve CD4+ T cells (0.004/day) [29]. For example, HIV-1-infected cells are more clonal
in the effector memory CD4+ T cells and are not clonal in the naïve CD4+ T cells [31]. T
cell memory resides in long-lived clones of T cells, not in long-lived individual cells. This
preferential proliferation of memory T cells confers an advantage to HIV-1 when integrated
into memory T cells.

Once the antigen is removed, memory CD4+ T cells will return to a quiescent memory
state that is transcriptionally inactive. Upon cognate antigen stimulation, these resting
memory CD4+ T cells become activated and proliferate into a T cell clone again. Although
many cells die of viral cytotoxic effects during productive HIV-1 infection, a substantial
number of HIV-1-infected cells survive and follow the clonal expansion and contraction
dynamics of CD4+ T cells. For example, upon antigen stimulation, one HIV-1-infected cell
can proliferate into many infected cells; upon cognate antigen removal, HIV-1-infected
CD4+ T cells return to the quiescent memory state. These transcriptionally inactive cells
do not have active transcription factors such as NF-κB and NFAT in the nucleus and
therefore do not induce effective HIV-1 transcription. By residing in these transcriptionally
inactive resting CD4+ T cells, HIV-1 does not make viral antigens and therefore cannot be
recognized by the immune system. Furthermore, these HIV-1-infected memory CD4+ T
cells undergo homeostatic replenishment through cytokines such as interleukin (IL)-7 [28].
These homeostatic cytokines induce T cell homeostatic proliferation without inducing
HIV-1 reactivation [32,33]. Therefore, during homeostatic proliferation, HIV-1-infected
cells proliferate but do not express antigens that can be recognized by the immune system.
Upon the next round of antigen stimulation, the HIV-1-infected memory CD4+ T cells are
activated and proliferate into a T cell clone. Antigen stimulation induces T cell activation
through NF-κB and NFAT signaling. Because the HIV-1 LTR promoter has NF-κB and
NFAT binding sites, antigen stimulation will presumably also activate HIV-1 and reverse
latency. However, antigen activation appears to be stochastic: T cell activation levels
follow a gradient, not an all-or-none on-off switch. This means that antigen stimulation,
which should presumably reactivate all HIV-1 and expose the infected cells to immune



Viruses 2021, 13, 1858 3 of 19

clearance, can only activate a subset of HIV-1-infected cells. Therefore, HIV-1-infected cells
persist over time by residing in CD4+ T cells, following the normal T cell expansion and
replenishment responses, and hiding in the quiescent state that cannot be fully reactivated
despite T cell activation.

3. HIV-1 Expression from Clonally Expanded HIV-1-Infected Cells Causes
Nonsuppressible and Persistent Low-Level Viremia of Predominant HIV-1
Plasma Clones

Despite effective ART and drug adherence, HIV-1-infected individuals can still have
intermittent low-level of viremia (or blips) [34,35] (Figure 1a). HIV-1 viral sequencing
analysis by the Siliciano group revealed that the plasma viruses during low-level viremia
are dominated by a few clones of HIV-1, known as the predominant plasma clones [36].
These predominant plasma clones wax and wane over time [33]. In a case report by
Simonetti et al., an HIV-1-infected individual developed nonsuppressible viremia of one
predominant plasma clone [25]. This virus was sensitive to the ART regimen but continued
to produce high levels of viremia despite ART. HIV-1 sequence analysis revealed that this
predominant plasma clone actually originated from a CD4+ T cell clone that expanded
in response to the squamous cell carcinoma in this HIV-1-infected individual [25]. The
predominant plasma clone decreased in number when the cancer was under control and
increased when the cancer progressed, suggesting that it is the tumor antigen response that
drives the T cell proliferation and HIV-1 expression [25]. With technology advancements
to track HIV-1 sequences and integration site simultaneously in higher throughput, the
Mellors group identified the plasma viral sequences in nonsuppressible viremia from
more HIV-1-infected individuals [37]. They identified the origin of these viral clones by
identifying identical HIV-1 sequences between the viruses in the plasma and the proviruses
in the CD4+ T cells in the blood. By tracking the integration sites of these HIV-1 proviruses,
Halvas et al. found that the nonsuppressible persistent low-level of viremia and the
predominant plasma clones actually originate from large T cell clones in the peripheral
blood [37]. Of note, the HIV-1 integration sites were not in cancer-related genes in these
clonal expansion events, suggesting that antigen stimulation alone is sufficient to drive
the proliferation of the infected cells regardless of integration site. Furthermore, near-
full length proviral sequencing in these case reports found that the proviruses in these
clonally expanded HIV-1-infected cells are likely replication competent. It remains unclear
why these HIV-1-infected cells do not die of viral cytopathic effects upon latency reversal.
Single-cell transcriptome analysis of clonally expanded HIV-1-infected cells suggested that
some infected cells may upregulate cellular factors that promote the survival of the infected
cells [38,39], but whether these factors mechanistically promote the survival of the infected
cells remains to be validated. Altogether, these results resolved the long-term question of
the source of nonsuppressible and persistent low-level viremia: the clonally expanding
HIV-1-infected cells undergo stochastic activation (presumably by antigen stimulation),
leading to intermittent HIV-1 expression and virion release into the plasma. Since activation
is based on stochastic antigen stimulation, these predominant plasma clones wax and wane
intermittently. While ART blocks new rounds of infection from these virions, ART does
not block HIV-1 expression or clonal expansion of the infected cells, and thus low-level
viremia is not suppressible by ART and persists over time. These findings reveal the need
for new therapeutic strategies to halt the ongoing proliferation of HIV-1-infected cells and
the chronic antigen presentation from these infected cells.
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Figure 1. The clonal expansion dynamics of HIV-1-infected cells. (a) Clonally expanded cells as a source of persistent
nonsuppressible low-level viremia and viral rebound. (1) HIV-1 integration into specific locations of cancer-related genes is
present during acute infection but not yet enriched. (2) Persistent nonsuppressible low-level viremia of predominant plasma
clones originate from clonally expanded cells. (3) Antigen stimulation causes clonal expansion of CD4+ T cells regardless
of integration sites, but these clones wax and wane. (4) HIV-1 integration into specific locations of cancer-related genes
persistently drives the proliferation of HIV-1-infected cells. (5) In rare cases, HIV-1 integration into cancer-related genes may
cause cancer in the infected cells. (6) Clonally expanding HIV-1-infected cells can contribute to viral rebound. (b) Unlike
antigen-driven proliferation and homeostatic proliferation, which are under host control, HIV-1 insertional mutagenesis
may induce uncontrolled proliferation of infected cells.
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4. Clonally Expanded HIV-1-Infected Cells Serve as a Source of Viral Rebound after
Treatment Interruptions

The absence of an immediate viral rebound after treatment interruption indicates
long-term ART-free remission and a clinically significant reduction in the HIV-1 latent
reservoir. Thus, identifying the source of viral rebound after treatment interruptions is a
top priority in HIV cure research. The finding that clonally expanded cells are a source for
persistent low-level viremia [25,37] under ART suggests that clonally expanded cells can
likely be a source of viral rebound. Blood sampling before and after analytical treatment
interruptions (ATIs) in therapeutic intervention clinical trials may provide more clues
regarding the origin of viral rebound. The Chomont group developed the simultaneous T
cell receptor sequence (TCR), integration site, and provirus sequencing (STIP-Seq) method
that captures HIV-1 clonal expansion dynamics [40]. Briefly, STIP-seq involves sorting
HIV-1 p24+ single-cells for genomic DNA extraction and phi29-mediated whole-genome
amplification. The amplified DNA is then split into separate aliquots for TCR sequencing,
integration site sequencing, and HIV-1 near full-length proviral genome sequencing. Some
HIV-1 proviruses in clonally expanded CD4+ T cells captured during viral suppression
are identical to plasma viruses captured during ATIs, suggesting that clonally expanded
HIV-1-infected CD4+ T cells can contribute to viral rebound [40] (Figure 1a).

In some cases, phylogenetic analysis of HIV-1 sequences before and after ATI suggests
that the rebound virus after ATI does not always match the sequences of the HIV-1 latent
reservoir before ATI [41,42]. Additional studies revealed the reasons why the latent reser-
voir (captured by limiting dilution viral outgrowth cultures) and the rebound virus do not
always match. First, since blood sampling typically only takes ~100 mL to 500 mL out of
~5 L peripheral blood (0.2–1% of total blood volume), matching sequences between viral
rebound and the latent reservoir may not be found in all studies due to under-sampling.
Second, upon latency reversal, cells harboring HIV-1 proviruses can be killed by CTLs
and NK cells in vivo, but this immune selection pressure is not measured in standard viral
outgrowth cultures (in which CD4+ T cells are cultured without CTLs and NK cells). Third,
HIV-1 viruses that caused rebound need to survive in vivo immune selection pressures
that do not exist in ex vivo viral outgrowth cultures, such as autologous immunoglobulins
G (IgGs) [43] and type I interferon responses [44]. Fourth, HIV-1-infected cells may hide
in anatomical sanctuaries (such as the central nervous system) [45] or immune sanctu-
aries (such as B cell follicles in the lymph node) [46] that may cause viral rebound but
are not captured by peripheral blood sampling [46]. For example, HIV-1 sequence and
integration site analysis identified the same sequences between the blood and lymph node
compartments in some studies [47,48] but not all [49], indicating that blood sampling can
reflect HIV-1 reservoir in both blood and lymphoid compartments in some cases; however,
under-sampling of the heterogeneous HIV-1 reservoir remains an issue. Nevertheless, these
results suggest that HIV-1 proviruses in the clonally expanded HIV-1-infected cells need to
be resistant to both type I interferon responses and antibodies in the plasma for a successful
exponential outgrowth and viral rebound. Blood samples from HIV-1-infected individuals
remain the most accessible clinical samples for long-term follow-ups, while HIV-1-infected
cells in tissues may encounter a different immune selection microenvironment. Therefore,
mechanisms of HIV-1 persistence in tissues require further investigation.

5. Near Full-Length HIV-1 Proviral Genome Profiling Distinguishes Intact versus
Defective HIV-1 Proviruses and Identifies Clonally Expanded HIV-1-Infected Cells
5.1. HIV-1 Proviral Sequencing Provides an Indirect Method for Identifying Clonal Expansion of
the Infected Cells

Because of the high error rate of HIV-1 reverse transcriptase [4.1 × 10−3 (~1/244) [50]
to 5.9 × 10−4 (~1/1700)(error per number of base pairs) [51]], two proviruses having the ex-
act same proviral sequence indicate that the two proviruses come from clonally expanded
HIV-1-infected cells, as opposed to independent infection events from the same virus.
However, the HIV-1 proviral sequence was challenging to capture: only ~1000 per million
CD4+ T cells (~0.1%) have HIV-1-infected cells [52]. Bulk HIV-1 DNA sequencing mixes
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different HIV-1 genomes and cannot capture individual HIV-1 proviral sequences. Ho et al.
developed a near full-length HIV-1 proviral genome profiling method in 2013 [53]: briefly,
DNA from clinical samples is diluted into 96 well plates for near full-length nested HIV-1
PCR, capturing ~9 kb of the HIV-1 proviral genome. Under limiting dilution, meaning that
<20% of the 96 well plate wells are positive for HIV-1 PCR signal, Poisson statistics indi-
cates that each of these HIV-1 PCR positive wells contains only one HIV-1 provirus (single
proviral genome), as opposed to a mixture of gene fragments from different proviruses
(with >90% confidence). This method allows us to examine the HIV-1 proviral landscape.
In particular, only <12% of HIV-1 proviruses are intact; the remaining ~90% of the HIV-1
proviruses are defective due to large internal deletions (45.5%), APOBEC3G-mediated
hypermutations (32.4%), packaging signal and major splice donor defects (6.5%), and point
mutations (3.8%) [53]. Of note, only cells harboring intact HIV-1 proviruses are defined as
the HIV-1 latent reservoir; cells harboring defective HIV-1 proviruses are HIV-1-infected
cells but do not produce infectious virions and are not the latent reservoir. In this study,
reconstructed intact proviruses demonstrated replication fitness comparable to NL4-3
references, suggesting that intact HIV-1 near-full length proviral sequences confer replica-
tion competence [53]. Capturing the same HIV-1 near full-length proviral genomes from
different cells identifies clonal expansion of HIV-1-infected cells [54]. Follow-up studies
characterizing HIV-1 near-full length proviral genomes using next-generation sequencing
[as Full-Length Individual Provirus Sequencing (FLIPS) by the Sarah Palmer group [55]
and full-length HIV-1 sequencing assay by the Lichterfeld Group] [56] captured clonal
expansion of HIV-1-infected cells at higher throughput. Overall, these near-full length
proviral sequencing methods enable capturing the clonal expansion of intact versus defec-
tive HIV-1 proviruses, providing HIV-1 full-length genome information that integration
site methods cannot offer.

5.2. The Highly Diverse HIV-1 Pol and Env Sequences from Limiting Dilution Viral Outgrowth
Culture Serve as Proxies for Measuring Clonally Expanded HIV-1-Infected Cells

While near full-length proviral sequencing provides the genome landscape of both
intact and defective HIV-1 proviruses, this labor- and resource-intensive method captures
very few intact HIV-1 proviruses, given that the majority (>90%) of HIV-1 proviruses are
defective [53,54,57]. Consequently, after sequencing > 100 HIV-1 full-length proviruses
researchers are only able to capture < 10 HIV-1 intact proviruses. Methods that can enrich
the capture efficiency of cells harboring intact HIV-1 proviruses can better visualize the
clonal expansion dynamics of the latent reservoir. By sequencing highly diverse HIV-1
regions in env (C2-V4 [22] or gp160) [21] or gag-pol (p6-PR-RT) [20] of positive wells from
limiting dilution viral outgrowth cultures (suggesting that the supernatant from each
positive well contains only one virus) and mapping out their phylogenetic trees, three
independent studies found that >50% of the latent reservoir undergo the clonal expansion.
These studies identified understanding the clonal expansion of the latent reservoir as a top
priority in HIV-1 cure research.

6. Integration Site Analysis Provides a Definite Proof of the Clonal Expansion of
Infected Cells

The chance of two HIV-1 integration events into the same chromosome location among
the three billion base pairs of the human genome is extremely unlikely. Therefore, cells
harboring HIV-1 proviruses that are integrated into the same nucleotide in the human
chromosome come from clonal expansion of the same infected cell, not two independent
infections. Many integration site analysis methods have been developed over the years,
including enzymatic fragmentation followed by inverse PCR [58–60] and sonication frag-
mentation followed by ligation-mediated PCR (LM-PCR) [61]. Yet it was not until 2014,
when large scale integration site analysis was performed on HIV-1 clinical samples, that
researchers appreciated integration site-dependent clonal expansion.
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6.1. Lessons from HTLV-1: High-Throughput Integration Site Analysis Captures the Clonal
Expansion Dynamics of Infected Cells

Earlier, in 2011, the Bangham group first found that human T lymphotropic virus type
1 (HTLV-1)-infected cells undergo clonal expansion [61]. This discovery was made by an
elegant method that captures almost 100,000 HTLV-1 integration sites using blood samples
from HTLV-1-infected individuals. HTLV-1-infected cells with the same integration site are
“clones”. They arise from clonal expansion (or proliferation) from the same cell. Although
researchers were able to capture HTLV-1 integration sites, it was challenging to distinguish
whether detection of many copies of the same integration sites came from one integration
site that was PCR amplified in vitro or from many different HTLV-1-infected cells that had
clonally expanded. To solve this problem, the Bangham group sheared the DNA from
blood samples by sonication. This shearing creates unique breakpoints of DNA fragments.
After adaptor ligation and HTLV-1-specific PCR amplification, both the HTLV-1 integration
site and the unique breakpoint are captured. Therefore, using the unique breakpoints as
barcodes, HTLV-1 integration sites from different cells will have unique breakpoints. By
counting the number of HTLV-1 integration sites with different breakpoints, the number of
clonally expanded HTLV-1-infected cells can be accurately measured [61]. This method
was later termed “sonic abundance” by the Bushman group in 2012 [62].

6.2. The Discovery of Clonally Expanded HIV-1-Infected Cells by Mapping HIV-1
Integration Sites

Although HIV-1 integration site analysis captures the clonal expansion dynamics
of HIV-1-infected cells, both methods profiling HIV-1 integration sites can only capture
a small proportion of the HIV-1 genome and therefore cannot distinguish intact HIV-1
proviruses from defective proviruses. Several HIV researchers developed different methods
to capture clonally expanded HIV-1-infected cells. In 2014, two back-to-back studies at
Science by Maldarelli et al. [63] and Wagner et al. [23] captured hundreds to thousands
of HIV-1 integration sites. The Maldarelli study applied the sonic abundance method
to HIV-1, while the Wagner study developed a novel integration site loop amplification
(ISLA) to capture the unique HIV-1 integration sites. Among their findings were that
up to 43% of HIV-1-infected cells are clonally expanded [63], and clonally expanded
cells can persist for more than 11 years [63] and increase over time [23] (Figure 1b). Of
note, there is an enrichment of HIV-1 integration into cancer-related genes [23], such as
BACH2, MKL2, and STAT5B [23,63]. For example, while cancer-related genes constitute
5.19% of the human genome, 12.5% of the HIV-1 integration sites are in cancer-related
genes [23]. Strikingly, integration sites observed in vivo are distinct from those observed
during in vitro infections: both studies found that HIV-1 integration is enriched in two
cancer-related genes BACH2 and MKL2 in introns near the translation start site, and in
the same orientation as the transcription unit [23]. In contrast, HIV-1 infection in vitro
shows integration sites throughout the BACH2 and MKL2 genes, with no enrichment of
integration located near the translation start site and no enrichment of integration in the
same orientation [63] (Figure 2). These breakthrough studies shifted the paradigm that
the expansion of HIV-1-infected cells arises from new rounds of infection; instead, despite
effective ART, HIV-1-infected cells proliferate and increase over time. Overall, studying
HIV-1 integration site and clonal expansion dynamics provides critical insights into HIV-1
persistence in vivo.
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Figure 2. Mechanisms of HIV-1 insertional mutagenesis and HIV-1 integration site-dependent proliferation.

6.3. Simultaneous Integration Site Profiling and Proviral Sequencing Captures HIV-1 Clonal
Expansion Dynamics of Intact versus Defective Proviruses

In 2019, two groups [64,65] developed novel methods to capture the HIV-1 integration
site and near-full length HIV-1 proviral genome of the same provirus: the matched inte-
gration site and proviral sequencing (MIP-seq) by the Lichterfeld group [65] and whole
genome amplification-single genome sequencing (WGA-SGS) by the Kearney and Coffin
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groups [64]. These methods allowed for mapping of the clonal expansion dynamics of
intact and defective HIV-1 proviruses, and interrogation of the impact of HIV-1 integration
into cancer-related genes on HIV-1 persistence. Both groups used multiple displacement
amplification (MDA, also called whole genome amplification) mediated by the phage
phi29 polymerase to amplify DNA to multiple copies and then separated the amplified
DNA into two aliquots for integration site and near-full length HIV-1 proviral genome
sequencing, respectively. Briefly, DNA from clinical samples is plated at limiting dilution
(each well contains only one HIV-1-infected cell out of many uninfected cells). The bulk
DNA in each well is universally amplified by phi29 polymerase, resulting in many copies
of the genome in the well. The amplified DNA is then separated for near-full length HIV-1
proviral genome sequencing and integration site analysis [65]. This method has recently
been expanded to capture HIV-1 RNA in addition to HIV-1 integration site and proviral
DNA genome by the Lichterfeld group [66], and termed Parallel HIV RNA, Integration
Site and Proviral Sequencing (PRIP-Seq). Briefly, cells from HIV-1-infected individuals
are plated at limiting dilution (such as thousands of cells per well, but no more than one
HIV-1-infected cell per well, based on Poisson distribution). Then, cellular DNA and RNA
are extracted into different aliquots. The cellular DNA aliquots are used for MIP-seq to
capture HIV-1 integration site and near full-length proviral genome, while the matched
cellular RNA aliquots are used for targeted HIV-1 RNA amplification. PRIP-seq allows
understanding not only HIV-1 clonal expansion dynamics but also whether HIV-1 integra-
tion site affects HIV-1 expression levels. By mapping HIV-1 integration sites to chromatin
accessibility data obtained from separate aliquots of cells, Einkauf et al. found that that ac-
tively transcribed genes have open chromatin accessibility and activating chromatin marks,
and less transcribed genes have closed chromatin accessibility and repressive chromatin
marks, consistent with normal human gene expression control [66]. HIV-1 proviruses that
are integrated in highly transcribed genes, some of which are highly expanded clones,
have higher HIV-1 RNA expression levels, and HIV-1 proviruses that are integrated into
less transcribed genes have lower HIV-1 RNA expression level [66]. These results show
that HIV-1 expression level is impacted by local human gene expression control at the
integration site.

6.4. The Enrichment of HIV-1 Integration into Heterochromatin Reflects Immune Selection
Pressure against Actively Transcribed HIV-1

Using MIP-seq to profile HIV-1 integration site and proviral landscape in specific
clinical cohorts of interest, such as a group of elite controllers, Jiang et al. found that
clonally expanded HIV-1 proviruses in elite controllers are located in transcriptionally
inactive sites with lower chromatin accessibility, with some even in heterochromatin
regions such as the centromere [67]. Interestingly, the Bangham group has observed
a similar pattern for HTLV-1 in 2011: they noted that the immune negative selection
dominates during chronic HTLV-1 infection, favoring the survival of proviruses integrated
in transcriptionally silenced DNA, particularly in asymptomatic HTLV-1 carriers [61].
Given that elite controllers have strong CTL responses, the enrichment of intact HIV-1
proviruses in heterochromatin regions in elite controllers is not caused by preferential
integration into these regions or specific silencing mechanisms in these individuals; instead,
this is a result of strong CTL pressure that eliminated cells harboring HIV-1 proviruses not
integrated into heterochromatin. Cells harboring intact HIV-1 proviruses that are integrated
into transcriptionally unfavorable heterochromatin locations are the survivors under the
strong CTL responses. Cells harboring intact HIV-1 proviruses that are integrated into open
chromatin regions were eliminated by CTLs during the course of long-term infection [67].
Nevertheless, intact HIV-1 proviruses that are integrated into heterochromatin are extreme
and rare cases; elite controllers may have clonally expanded replication-competent HIV-
1 [68] and HIV-1 integration into actively transcribed genes, as reported previously by the
Blankson group [69].
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7. HIV-1 Insertional Mutagenesis: The Location-and Orientation-Dependent Impact of
HIV-1 Integration into Cancer-Related Genes on HIV-1 Persistence

Multiple studies have identified the enrichment of HIV-1 integration sites in various
genes, but some genes, such as BACH2, have been independently and repeatedly iden-
tified in different cohorts by a wide variety of methods [23,53,63,70–72]. Similar to the
heterogeneity of oncogenic mutations in cancer, HIV-1 insertional mutagenesis provides
survival benefit to the infected cells depending not only on whether the gene is a cancer-
related gene or not, but also how HIV-1 integration affects the function of the gene. HIV-1
integration that leads to the gain of function of an oncogene or the loss of function of a
tumor suppressor gene provides the survival benefit to the infected cell, and proliferation
after prolonged infection. Therefore, this effect is location- and orientation-dependent: the
impact of HIV-1 integration site on HIV-1 persistence requires integration into a 5′ intron
and in the same orientation as the transcription unit [23,39,63] (Figure 2).

The question then becomes: is this enrichment in certain cancer-related genes caused
by preferential integration during acute infection or by preferential persistence and expan-
sion after long-term infection? HIV-1 integration sites are enriched in the introns of actively
transcribed genes [59,70]. Although HIV-1 integration can be found in all chromosomes,
there is a preferential enrichment in chromosomes 16, 17, and 19 both in HIV-1-infected
individuals [70,73], cell line models [74] and animal models [75], since these chromosomes
have high gene density [70,73]. During acute infections HIV-1 integration into certain
cancer-related genes such as BACH2 is observed; however, it is not enriched. Therefore,
rather than preferential integration into these genes during acute infection, the enrichment
into certain cancer-related genes such as BACH2 is more likely caused by the survival
benefit and preferential proliferation of these cells after long-term infection.

7.1. Lessons from Acute versus Chronic Infections: Clonal Expansion of HIV-1-Infected Cells
Established during Acute Infection Persists after Viral Suppression

Given that more than 50% of the HIV-1 latent reservoir undergoes clonal expan-
sion [20–22], it is critical to study when these clonally expanded HIV-1-infected cells were
first established. By analyzing HIV-1 proviral sequences before and after ART, Coffin
et al. identified clonally expanded cells during acute infection (as early as four weeks after
infection) and persisted for years after viral suppression [76]. Separately, von Stockenstrom
et al. found that the HIV-1 sequences are highly diverse before ART and highly clonal
after suppressive ART [77]. In some cases, the HIV-1 proviruses in the clonally expanded
HIV-1-infected cells after long-term ART are found to be phylogenetically identical to the
HIV-1 plasma sequences before ART [77]. These results suggest that during acute infection,
HIV-1-infected cells are highly diverse and are not clonal. Furthermore, HIV-1 integration
into cancer-related genes such as BACH2 and MKL2 was identified during acute infection.
During untreated infection, the ongoing battle between the host immune selection pres-
sure and viral replication and mutation continues to change the HIV-1 proviral landscape.
However, upon initiation of ART, new rounds of infection are blocked. Infected cells that
survived immune selection pressure before ART [78] or had survival benefits by integrating
into cancer-related genes [23,63] gradually dominate the HIV-1 latent reservoir, undergo
clonal expansion, and persist over time. Of note, in comparing the polyclonal nature of
HIV-1-infected cells in acute infection with the oligoclonality seen during treatment with
ART, it is essential to ensure that the sample depth is adequate in the sequencing in each
case. The danger is that oligoclonal proliferation during acute infection might be missed
because the number of infected cells (of diverse clones) is so large that repeated detection
of an expanded clone is unlikely. More studies are needed to compare the clonal expansion
dynamics during viremia and after viral suppression.

7.2. Lessons from Pediatric versus Adult Infections: Clonal Expansion of HIV-1-Infected Cells in
Children Is Comparable to That in Adults

Despite discrepancies between the pediatric and adult immune landscapes–such as
the higher proportion of memory cells, the gradual decline of T cell repertoire diversity,
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and the level of immune aging in adults–little evidence suggests that the HIV-1 latent
reservoir is significantly different in children. Katusiime et al. used near full-length
proviral amplification and sequencing (NFL-PAS) to analyze proviral sequences extracted
from peripheral blood mononuclear cells (PBMCs) of eight children who had been treated
with ART for 6–9 years. Seven of 733 sequences identified were intact; these seven provirus
sequences came from children who had initiated ART after 2.3 months of age, proving that
intact proviruses can be identified in children treated with ART [79]. Furthermore, two
identical proviral sequences were discovered in one individual, suggesting clonal expansion
(although no integration site analysis was performed) [79]. In a separate study, Bale et al.
examined the PBMCs of 11 children who initiated ART between 1.8 and 17.4 months
of age [80]. Using integration site analysis on samples before and during ART samples,
this study identified evidence of clonal expansion in 10 out of 11 children. In 8 out of 11
children, clones identified pre-ART persisted throughout the 6–9 years of ART, suggesting
that clonally expanded cells are established before ART [80]. The HIV-1 integration site
patterns are similar to those observed in adults [80], including enrichment of integration
into cancer-related genes BACH2 and STAT5B with the same orientation to the transcription
units [23,63]. Thus, as in adults, the latent reservoir is established early in children and
may be maintained via HIV-1-integration site-dependent proliferation, similar to infections
in adults.

7.3. Lessons from Primary Cell Models Support the Location-and Orientation-Dependent Impact of
HIV-1 Integration into Cancer-Related Genes on HIV-1 Persistence

By examining HIV-1 integration site datasets, the Hughes and Coffin group found
that six genes (BACH2, STAT5B, MKL2, IL2RB, POU2F1, and MYB) are enriched in the
HIV-1-integration sites in clonally expanded HIV-1-infected cells [81]. Indeed, HIV-1
integration into these genes, particularly BACH2, STAT5B, and MKL2, are repeatedly
seen in multiple studies from different cohorts using different methods [23,63,72]. In
particular, HIV-1 integration into these genes shares the same characteristics of location
and orientation dependent enrichment (Figure 2): (a) enrichment of integration sites in 5′

introns, and (b) a preference for the proviruses to integrate in the same orientation as the
host gene’s transcription units. Yet, HIV-1 integration into genes other than these six can
also contribute to clonal expansion. For example, HIV-1 integration into STAT3, a gene
that has been linked to uncontrolled cell growth and oncogenesis, is found to be enriched
in primary cell models [82]. In this primary cell model, HIV-1 integration into STAT3 is
also enriched in a location and orientation dependent manner—there is an enrichment
of HIV-1 integration in the same orientation as STAT3 and in the 5′ introns (upstream
of exon 2). In another example, HIV-1 integration into an oncogene VAV1, which has
been identified in virally suppressed individuals [63], creates HIV-1-driven aberrant VAV1
protein expression, obliterates the N-terminal regulatory region of this oncogene, and
provides survival benefit to the infected cells [39]. Therefore, HIV-1 integration sites that
are enriched in long-term in vitro culture support the findings on how HIV-1-infected cells
persist by having proviruses integrate in cancer-related genes in a location- and orientation-
dependent manner, although the exact HIV-1 integration site may be different from those
observed in vivo (i.e., STAT3 identified in vitro [82] is not one of the six enriched genes
identified in vivo [81]).

7.4. Lessons from Animal Models Support the Location-and Orientation-Dependent Impact of
HIV-1 Integration into Cancer-Related Genes on HIV-1 Persistence

Studying HIV-1 integration events in animal models is an alternative method of track-
ing HIV-1 integration sites in vivo. Two studies examined HIV-1 integration in humanized
mouse models. Briefly, immunodeficient mice (such as nonobese diabetic–SCID common
γ–/– (NSG) neonatal mice) were engrafted with human fetal liver CD34+ hematopoietic
stem and progenitor cells to establish human CD4+ T cells in mice that allowed for HIV-1
infection in the peripheral blood and tissues [75,83]. HIV-1 integration sites in humanized
mouse models after 12 weeks of HIV-1 infection seem to be similar to those observed in
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human infections, with an enrichment of HIV-1 integration in the gene-dense chromosomes
16, 17, and 19. In these animal models without ART treatment, Haworth et al. found enrich-
ment of HIV-1 integration into JAK2 and SEPT9 in clonally expanded cells [75], indicating
that clonal expansion occurs during acute infection. Pathway analysis of HIV-1 integration
sites in clonally expanded cells are enriched in viral process-related genes [75,83]. This is
potentially because viral process-related genes during acute HIV-1 infection are actively
transcribed, have open chromatin, and have a higher chance for HIV-1 pre-integration
complex to access. When comparing HIV-1 integration sites during early (2 weeks) versus
late (15 weeks) infection, they found enrichment of integration into genes that are involved
in cellular proliferation at later time points [83]. The strength of HIV-1-infected humanized
mouse models is the ability to capture early infection events and profile HIV-1 infection
at tissue sites, which is typically hard in human studies. The weakness of humanized
mouse models is that it is difficult to recapitulate long-term viral suppression (>6 months
of undetectable viral load) given the short lifespan of mice (~1 year). Nonetheless, HIV-1-
infected humanized mouse models can recapitulate the enrichment of HIV-1 integration
into cancer-related genes in a location- and orientation-dependent manner, although the
exact HIV-1 integration sites may be different from those observed in vivo.

8. HIV-1 Insertional Mutagenesis Can Cause Aberrant HIV-1-Driven Proliferation
That is out of Control from the Host

The dogma-shifting discovery of clonal expansion of HIV-1-infected cells harboring
HIV-1 integration into specific sites of certain cancer-related genes [23,63] raises questions
that are mechanistically intriguing and clinically important: what does HIV-1 do at the
integration site and why is it important? HIV-1 integration into host introns is known to
cause transcriptional interference on the host gene through promoter occlusion or read-
through transcription from the 3′ LTR [84,85]. Using PCR primers targeting the HIV-1 and
the two HIV-1 integration enriched genes BACH2 and STAT5B, Cesana et al. found HIV-1
RNA splicing into the RNA of BACH2 and STAT5B, creating HIV-1-BACH2 and HIV-1-
STAT5B chimeric RNA, respectively [72]. These findings suggest that HIV-1 integration and
aberrant splicing alters the host transcriptional landscape of the genes into which HIV-1
is integrated.

8.1. HIV-1 Integration Changes the Host Gene Transcriptional Landscape at the Integration Site
through Aberrant Splicing and Read-through Transcription

To examine HIV-1-host interactions beyond the known enrichment in BACH2 and
STAT5B, our group developed HIV-1 SortSeq to capture HIV-1 RNA+ cells from virally
suppressed individuals [39]. HIV-1 SortSeq uses HIV-1 RNA expression as a surrogate to
capture HIV-1-infected cells using fluorescent in situ hybridization (FISH)-based HIV-1
RNA staining and flow cytometric sorting to capture HIV-1-infected cells for total RNA
sequencing. As opposed to high-throughput droplet-based or microwell-based platforms,
which only capture short (50–100 bp) RNA near the 3′ poly-A tail (in cases of polyT-based
capture) or 5′ transcripts (in cases of template switching by Moloney murine leukemia virus
reverse transcriptase), total RNA sequencing (after ribosomal RNA removal) of 2 × 150 bp
RNA fragments allows us to capture the junction between HIV-1 and host RNA genome.
Therefore, in addition to capturing HIV-to-host RNA splicing between HIV-1 and BACH2,
we captured different types of aberrant splicing between HIV-1 and the host RNA in CD4+

T cells from virally suppressed, HIV-1-infected individuals: (a) HIV-1-driven read-through
transcription from the 3′ LTR into host RNA in the same orientation (MTOR, KANSL3,
TTN, NUB1, and NSFL1C) or convergent orientation (SIK3, STARD9, FBXL5, DPYD, and
UMAD1), (b) host-driven read-through transcription from host intron into HIV-1 5′ LTR
(NBPF3), (c) HIV-1-driven splicing from HIV-1 major splice donor (MSD) into the host exons
(BACH2 and NFATC3), and (d) host-driven splicing from host exon into HIV-1 acceptors
A4a (from MIR155HG) or A5 (from SMARCC1 and PYHIN1). This HIV-1-to-host RNA
splicing event was also found in primary cell models (STAT3) [82] and cell line models
(VAV1, RAP1B, and SPECC1) [39]. Our findings indicate HIV-1 integration can change the
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host gene transcription landscape at the integration site by readthrough transcription and
splicing, both from HIV-1 to host gene RNA and from host gene to HIV-1.

8.2. HIV-1 Promoter Dominates over the Host Promoter and Drives High Levels of Cancer Gene
Expression at the Integration Site

HIV-1 integration changes the transcriptional landscape beyond readthrough tran-
scription or splicing. Using RNA sequencing (as opposed to targeted PCR), we found that
HIV-1 LTR promoter dominates over the host promoter and determines the expression
level of the host gene in which HIV-1 is integrated. Using CRISPR-mediated activation and
inhibition of HIV-1 LTR, we found that activation of HIV-1 LTR induces higher levels of
HIV-1-driven aberrant cancer gene expression at the integration site, whereas inhibition
of HIV-1 LTR suppresses HIV-1-driven aberrant cancer gene expression [39] (Figure 2).
Drugs that induce HIV-1 gene expression (such as PMA/ionomycin) increase HIV-1-driven
aberrant cancer gene expression, while drugs that suppress HIV-1 expression (such as
JAK inhibitor filgotinib) also suppress HIV-1-driven aberrant cancer gene expression [86].
Taken together, HIV-1 drives aberrant and high levels of host gene expression during HIV-1
reactivation. When HIV-1 is integrated in specific locations of cancer-related genes, HIV-1
drives aberrant proliferation and provides survival benefit to the cells during long-term
infection.

8.3. HIV-1 Insertional Mutagenesis May Cause Cancer Transformation in the Infected Cells in
Rare Cases

HTLV-1 causes adult T cell leukemia/lymphoma (ATL) in the infected cells. However,
although HTLV-1 is well-known to be oncogenic, it takes more than 50 years for HTLV-1 to
induce cancer of the infected cells in around 5% of infected individuals [87]. HIV-1 infection
does not cause cancer in the infected cells themselves, except for one case report [88]. In
this unique case, a defective HIV-1 provirus integrated upstream of the first exon of STAT3.
The HIV-1 3′ LTR promoter drives high levels of STAT3 expression, which is associated
with cellular proliferation [88]. To understand whether HIV-1 insertional mutagenesis
would cause cancer in HIV-1-infected individuals, Hughes et al. took cutaneous T cell
lymphoma tissues and examined HIV-1 integration sites in these cancers [89]. Strikingly,
they found HIV-1 integration immediately upstream of the first intron of STAT3 (in five
cancer tissues from three participants) and LCK (in three tissues from two participants), in
the same transcriptional orientation as the host gene [89]. These HIV-1 proviruses were
defective, with a large internal deletion in gag and pol. We have previously showed that
defective HIV-1 proviruses can have functional HIV-1 promoter, can be readily transcribed
and translated, and can activate cryptic splice sites for RNA splicing if canonical splice
sites are deleted [19]. Indeed, the intact HIV-1 3′ LTR of these defective proviruses drives
the expression of HIV-1-STAT3 chimeric RNA [89]. Aberrant RNA splicing from upstream
host RNA into HIV-1 tat allows Tat expression and efficient HIV-1 expression [89]. The
3′ LTR driven HIV-1-STAT3 chimeric RNA was expressed at a rate thirty times greater
than endogenous STAT3 RNA driven by the STAT3 promoter [89]. Overall, these striking
findings suggest that HIV-1 insertional mutagenesis, HIV-1-driven cancer-related gene
expression, and aberrant RNA splicing between HIV-1 and host gene not only serve as
mechanisms for clonal expansion and HIV-1 persistence, but also induce cancer formation
in the infected cells in rare cases.

8.4. Why Does HIV-1 Infection Cause Cancer in the Infected Cells Only in Extremely Rare Cases?

It remains unclear why HIV-1 causes cancer in the infected cells only in very rare
cases, compared with a much higher frequency of malignant transformation in HTLV-1-
infected cells. First, HTLV-1 can cause cancer by several mechanisms [87]. For example,
HTLV-1 proteins Tax and HBZ promote cellular proliferation through canonical and non-
canonical NF-κB activation [90]. HTLV-1 HBZ mRNA increases cellular proliferation
through transcription factor E2F1 expression [91]. HTLV-1 alters host gene expression by
changing the CTCF-mediated chromatin looping landscape through the CTCF binding



Viruses 2021, 13, 1858 14 of 19

site within the HTLV-1 genome [92]. In contrast, HIV-1 viral proteins are not known to
cause cancer. HIV-1 Tat may induce NF-κB activation [93], but HIV-1 Tat expression is
fluctuating [94] (as opposed to persistent HBZ expression in HTLV-1 infection [91]). HIV-
1-driven aberrant cancer gene expression is the only known mechanism that may induce
malignant transformation. Given that malignant transformation requires multi-hits [95],
HIV-1 integration into cancer genes is not sufficient to cause cancer. Other pre-existing
cancer mutations in the infected cells are likely required to transform the infected cells into
cancer. Since HIV-1 only integrates into one allele in the chromosome, HIV-1 integration
into cancer genes can induce malignant transformation only if this mutation is dominant,
if the gene is haplo-insufficient, or if the other allele has intrinsic inactivating mutations.
Finally, even for HTLV-1 infection, it takes more than 50 years for a small proportion (5%)
of infected individuals to develop cancer [87]. Since humans acquired HIV-1 infection
relatively recently [96], with the first cases identified around 40 years ago in the 1980s [97],
it may take more time to know the incidence of HIV-1-induced cancer in infected cells in
infected individuals.

9. Conclusions

Uncontrolled gene expression is a hallmark of cancer. When HIV-1 integrates into
specific locations of cancer-related genes and causes a gain of function in oncogenes or a
loss of function in tumor suppressor genes, HIV-1 can drive aberrant proliferation of the
infected cells. Unlike antigen-driven proliferation and homeostatic proliferation, which are
under host control, HIV-1 insertional mutagenesis may induce uncontrolled proliferation
of the infected cells and eventually–after decades of infection in rare cases–cause cancer
transformation of the infected cells. While ART effectively suppresses new rounds of
infection, the HIV-1 LTR in the existing infected cells remains active and functional. HIV-
1 LTR promoter continues to drive the proliferation of infected cells despite long-term
suppressive ART. Drugs that can suppress HIV-1 LTR promoter activity, which are not yet
available, should be considered as a therapeutic strategy in addition to current ART to halt
the proliferation of HIV-1-infected cells.
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