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Gene expression of functionally-related
genes coevolves across fungal species:
detecting coevolution of gene expression
using phylogenetic comparative methods
Alexander L. Cope1,2* , Brian C. O’Meara3,4 and Michael A. Gilchrist1,3,4

Abstract

Background: Researchers often measure changes in gene expression across conditions to better understand the
shared functional roles and regulatory mechanisms of different genes. Analogous to this is comparing gene
expression across species, which can improve our understanding of the evolutionary processes shaping the evolution
of both individual genes and functional pathways. One area of interest is determining genes showing signals of
coevolution, which can also indicate potential functional similarity, analogous to co-expression analysis often
performed across conditions for a single species. However, as with any trait, comparing gene expression across
species can be confounded by the non-independence of species due to shared ancestry, making standard hypothesis
testing inappropriate.

Results: We compared RNA-Seq data across 18 fungal species using a multivariate Brownian Motion phylogenetic
comparative method (PCM), which allowed us to quantify coevolution between protein pairs while directly
accounting for the shared ancestry of the species. Our work indicates proteins which physically-interact show
stronger signals of coevolution than randomly-generated pairs. Interactions with stronger empirical and
computational evidence also showing stronger signals of coevolution. We examined the effects of number of protein
interactions and gene expression levels on coevolution, finding both factors are overall poor predictors of the
strength of coevolution between a protein pair. Simulations further demonstrate the potential issues of analyzing
gene expression coevolution without accounting for shared ancestry in a standard hypothesis testing framework.
Furthermore, our simulations indicate the use of a randomly-generated null distribution as a means of determining
statistical significance for detecting coevolving genes with phylogenetically-uncorrected correlations, as has
previously been done, is less accurate than PCMs, although is a significant improvement over standard hypothesis
testing. These methods are further improved by using a phylogenetically-corrected correlation metric.

Conclusions: Our work highlights potential benefits of using PCMs to detect gene expression coevolution from
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high-throughput omics scale data. This framework can be built upon to investigate other evolutionary hypotheses,
such as changes in transcription regulatory mechanisms across species.

Keywords: Gene expression, Coevolution, Phylogenetic comparative methods

Background
Analysis of high-throughput transcriptomics and pro-
teomics data often focuses on how changes in envi-
ronment (e.g. nutrient availability) result in changes in
mRNA or protein abundances [1]. Through the con-
cept of "guilt-by-association," genes which show similar
gene expression patterns across conditions are hypothe-
sized to be functionally-related [2–5]. For example, in S.
cerevisiae, there is significant overlap between the pro-
teins which physically interact and the proteins which
are co-expressed [6]. Such observations have naturally
led researchers to ask if functionally-related genes show
coordinated changes in expression across conditions, do
they also show coordinated changes, or coevolve, across
species.
Previous work supports the hypothesis that gene expres-

sion of functionally-related genes shows stronger signals
of coevolution than randomly-generated gene pairs in
both unicellular yeasts and a diverse set of prokaryotes.
[7–9]. Interestingly, the strength of this signal appeared
to vary based on the functional groupings of the genes
in question [7]. Fraser et. al. [8] proposed gene expres-
sion coevolution could be a useful method for predicting
proteins which are functionally-related.
Most of the previous work examining coevolution of

gene expression relied upon the Codon Adaptation Index
(CAI) [10] as a proxy for gene expression. CAI and
other codon-usage metrics often correlate well with gene
expression in many species, but this is often not the case
in species with a strong mutational bias or low effec-
tive population sizes, as is the case in many multicellular
eukaryotes [11]. In fact, Lithwick and Margalit [9] were
forced to eliminate organisms from their analysis which
showed little adaptive codon usage. This makes detecting
signals from empirical measures of gene expression, such
as from RNA-Seq or mass spectrometry data, particularly
useful for many species where codon usage metrics are
a poor proxy for gene expression. Recent work by Mar-
tin and Fraser [12] demonstrated a method for examining
coevolution of gene expression within sets of functionally-
related genes using RNA-Seq data measured from the
Marine Microbial Eukaryotic Transcriptome Project [13].
While it may seem appropriate to simply assess the cor-

relation (e.g. Pearson or Spearman) between gene expres-
sion estimates across species, much like one might do in
a co-expression analysis across conditions, an issue that
arises is the non-independence of species due to shared

ancestry [14]. This can result in biases in correlation coef-
ficients and lead to an inflation of the degrees of freedom,
making standard hypothesis testing inappropriate [14,
15]. Recent work concluded comparative analysis of gene
expression data across species can be confounded by the
phylogeny, leading potentially to incorrect inferences [16].
Previous work examining coevolution of gene expression
did not directly account for the phylogeny when esti-
mating correlation coefficients of gene expression across
species, which is thought to reflect the strength of coevo-
lution between gene pairs. With the exception of Clark
et. al. [7], who applied a transformation to their correla-
tion coefficients originally developed to eliminate phylo-
genetic signal from sequence coevolution data [17], much
of the previous work used a randomly-generated null dis-
tribution created from genes not thought to coevolve
as a means of determining a statistical significance cut-
off. Although the use of a randomly-generated null is
likely a better alternative than standard hypothesis test-
ing, a direct assessment of these approaches’ abilities to
adequately control for the phylogeny have not been deter-
mined, to the best of our knowledge.
An alternative solution is to directly account for the phy-

logeny when assessing coevolution between pairs of genes
using phylogenetic comparative methods (PCMs). Previ-
ous efforts have developed PCMs for examining coevo-
lution of functionally-related genes based on the pres-
ence/absence of genes across species. Barker and Pagel
[18] developed what is essentially a phylogenetically-
corrected version of phylogenetic profiling, which looks at
the correlated presence/absence of genes across species.
Looking across a set of fungal species and using protein-
protein interaction data to determine functionally-related
genes, they found incorporating the phylogeny reduced
the false positive rate compared to a Fisher’s exact test.
Of course, this method is not applicable if the genes are
present in all species under consideration, making gene
expression a valuable trait for investigating coevolution of
functionally-related genes.
Many PCMs have been developed for studying the

evolution of gene expression, although this work has
not focused on detecting coevolution of gene expression
Bedford et al. [19–27]. Much of this work relies on model-
ing gene expression evolution as an Ornstein-Uhlenbeck
(OU) process [28, 29]. Modeling trait evolution as an
OU process assumes the trait is evolving around an opti-
mal value. A multivariate version of the OU model exists
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[30], but the additional parameters used in the model
often requires a greater amount of species-level data to
make accurate parameter estimates. Here, we present an
approach which models the coevolution of gene expres-
sion, as estimated via RNA-Seq, for pairs of proteins using
the simpler multivariate Brownian Motion (BM) model
[31, 32]. This approach allows us to estimate the degree
of correlation between two traits over evolutionary time
while accounting for the shared ancestry of the considered
species.
We find physically-interacting proteins show, on aver-

age, stronger gene expression coevolution than randomly-
generated pairs of proteins using the multivariate BM
approach. We also find phylogenetically-uncorrected
correlations tend to inflate estimates of gene expression
coevolution. Unsurprisingly, simulations reveal standard
hypothesis testing (i.e. p < 0.05) using phylogenetically-
uncorrected correlations inflates the false discovery rate.
We find determing statistical significance via a randomly-
generated null distribution, as described in Fraser et. al.
[8] is a significant improvement over standard hypoth-
esis testing, but still performs worse than the PCM
approach. The method recently described by Martin
and Fraser [12] was able to obtain a low false dis-
covery rate, but this came at the expense of sta-
tistical power to detect coevolving genes relative to
the PCM, which had a comparable false discovery
rate.
We expand upon previous work by looking for potential

predictors reflecting the strength of coevolution between
two pairs of proteins. As expected, we find protein pairs
with stronger evidence of functional-relatedness show
stronger coevolution at the gene expression level. We
also find gene expression level and the number of pro-
tein interactions, which are considered good predictors of
evolutionary rate of a gene [33], are poor predictors of
the strength of coevolution between protein pairs. Con-
sistent with previous results, we also find coevolution of
gene expression is an overall weak predictor of protein
sequence coevolution.

Results
The phylogenetic tree used in our analysis is shown in
Fig. 1. Overall, the normalized gene expression data are
moderately to strongly correlated between all species
(Additional file 1, Figure S1). Clearly, species which are
more closely-related tend to show stronger correlations
between normalized gene expression values, consistent
with expectations. The Candida species appear to be
exceptions, but these yeast demonstrate pathogenic traits,
which could partially explain some of these differences, as
well as why two of these species (C. glabrata andC. parap-
silosis) appear to be better correlated with the pathogenic
Aspergillus species.

After filtering proteins based on missing data or vio-
lation of the Brownian Motion assumption, our binding
(proteins with evidence of physically interacting, which
we expect to show signals of coevolution) and control
datasets (randomly-generated pairs not expected to show
signals of coevolution) contained 3,091 and 13,936 pro-
tein pairs respectively, consisting of 648 unique proteins.
We note similar patterns are observed if not excluding
genes which violate the BM assumption, although the sig-
nal appears weaker (Additional file 1, Figure S6 – S9). Our
results are also robust to our use of the time-calibrated
ultrametric tree output from treePL or the non-calibrated
tree output from RAxML (Additional file 1, Figure S11).

Interacting proteins demonstrate clear coevolution of
gene expression
To broadly examine coevolution of gene expres-
sion between physically-interacting proteins, a
phylogenetically-corrected Covariance Ratio test (as
implemented in the R package geomorph [34–36]) was
applied to protein modules found within the protein-
protein interaction network (see Methods). We found
covariance between gene expression was, on average,
greater within protein interaction modules compared
to between modules (Covariance Ratio score = 0.8672,
p = 0.001). This indicates gene expression within tightly-
linked groups of physically-interacting proteins show
greater signals of coevolution than between proteins
which spuriously interact.
Gene expression evolution was modeled as a multivari-

ate Brownian Motion (BM) process using the R package
mvMORPH [37] in order to estimate coevolution of gene
expression between pairs of proteins. This approach pro-
vides an estimate of the degree of correlation between
two traits (in this case, our estimates of gene expres-
sion) across species that accounts for the phylogeny (see
Methods for more details). We will refer to this corre-
lation estimate as the phylogenetically-corrected corre-
lation ρC . The phylogenetically-corrected correlation ρC
distributions for the binding and control groups show
striking differences (Fig. 2). Binding proteins have a mean
phylogenetically-corrected correlation of ρ̄C = 0.45,
which is significantly different from the expected value of
0.0 if there was no coevolution of gene expression (One-
sample t-test, 95% CI: 0.436 – 0.464, p < 10−200). In
contrast, the randomly-generated control group, which
is not expected to show signals of coevolution, had a
much lower (but still significant) mean phylogenetically-
corrected correlation of ρ̄C = 0.03 (One-sample t-test,
95% CI: 0.025 – 0.037, p < 10−23). Although the
mean phylogenetically-corrected correlation for the con-
trol group is significantly different from 0.0, it is important
to note two things: (1) even though we did our best to
eliminate possible false negatives in the control group, it
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Fig. 1 Phylogenetic Tree. Dated phylogenetic tree with RAxML bootstrap support. Branch lengths are in millions of years

is unlikely all false negatives were eliminated and (2) this
is consistent with previous work by Fraser et. al. [8], who
also had random control groups which were not centered
around 0. As is clear from the 95% confidence inter-
vals, the difference between the mean phylogenetically-
corrected correlations for the binding and control dis-
tributions is statistically significant (Welch’s t-test, p <

10−200). Despite the small, but statistically significant,
deviation from 0 of the control group, the binding group
shows a clear skew towards stronger coevolution between
protein pairs than is observed in the control group, as
expected.
We find a weak, but significant, positive corre-

lation between the STRING confidence scores and

phylogenetically-corrected correlations ρC (Weighted
Spearman Rank Correlation ρS = 0.32, 95% CI: 0.274
– 0.371, p < 10−37, see Methods), indicating interac-
tions which are more likely to be true and conserved show
stronger coevolution of gene expression (Fig. 3). A sim-
ilar result is obtained when using a metric of functional
similarity between proteins based on overlapping Gene
Ontology terms (Additional file 1, Figure S2).
We also compared our phylogentically-corrected

approach to a phylogenetically-uncorrected approach
ρU (the Pearson correlation coefficient, Fig. 2). Qualita-
tively, a similar pattern to the phylogenetically-corrected
correlations ρC is observed: binding proteins show
correlations positively skewed away from 0, consistent
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Fig. 2 Comparing phylogenetically-corrected and uncorrected
correlations. Comparing the distributions of the (Left)
phylogenetically-corrected correlation ρC and the (Right)
phylogenetically-uncorrected correlation ρU for the binding (purple)
and control (yellow) groups. (Left) Mean values for the binding and
control group phylogenetically-corrected correlation ρC distributions
are 0.45 (95% CI: 0.436 – 0.464) and 0.03 (95% CI: 0.025 – 0.037),
respectively. (Right) Mean values for the binding and control group
phylogenetically-uncorrected correlation ρU distributions are 0.51
(95% CI: 0.497 – 0.523) and 0.08 (95% CI: 0.074 – 0.086), respectively

with stronger coevolution of gene expression between
the interacting pairs. Interacting proteins had a mean
phylogenetically-uncorrected correlation of ρ̄U = 0.51
(One-sample t-test,95% CI: 0.497 – 0.523, p < 10−200). In
contrast, randomly-generated protein pairs had a mean
phylogenetically-uncorrected correlation ρ̄U = 0.08
(One-sample t-test, 95% CI: 0.074 – 0.086, p < 10−141).
As with the phylogenetically-corrected correlations, the
control group deviates significantly from the null expec-
tation of 0.0; however, the phylogenetically-uncorrected
correlation deviates further from the expectation than
the phylogenetically-corrected correlations. This is
consistent with potential biasing of correlation estimates
due to treatment of non-independent species data as
independent [14, 15].
Simulations were performed to confirm potential prob-

lems with the use of non-phylogenetic methods for com-
paring gene expression across species (see Additional file
1). Results show failure to account for the phylogeny on
data simulated under the null hypothesis of no coevolu-
tion between gene expression results in an increase in the
false discovery rate (FDR, Table 1), consistent with expec-
tations. However, the distribution of ρU simulated under
no coevolution differs from the distribution of ρU from
the real data (Additional file 1, Figure S5). In the case of
simulated data in which no coevolution was allowed, the
distribution of phylogenetically-uncorrected correlations
ρU is centered around 0.0, unlike in the real data, but

Fig. 3 Effects of functional-relatedness on phylogenetically-corrected correlation ρC . Positive weighted Spearman rank correlation (ρS = 0.32,
p < 10−37) between the STRING score and phylogenetically-corrected correlation ρC indicates more confident and/or conserved interactions tend
to have higher ρC , indicating stronger coevolution at the gene expression level
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Table 1 Highlighting issues with not correcting for phylogeny

Method Correlation TPR (S.D) FPR (S.D) FDR (S.D) Overall Accuracy (S.D)

multivariate BM PCM (p < 0.05) ρC 0.476 (0.0004) 0.026 (0.0030) 0.053 (0.0056) 0.725 (0.0013)

cor.test() (p < 0.05) ρU 0.574 (0.0006) 0.209 (0.0075) 0.267 (0.0068) 0.682 (0.0035)

Fraser et. al. [8] ρC 0.567 (0.0363) 0.053 (0.0152) 0.084 (0.0212) 0.757 (0.0148)

ρU 0.511 (0.0432) 0.097 (0.0285) 0.156 (0.0316) 0.708 (0.0144)

Martin and Fraser [12] ρC 0.476 (0.0108) 0.025 (0.0008) 0.050 (0.0010) 0.726 (0.0051)

ρU 0.305 (0.0155) 0.016 (0.0010) 0.050 (0.0015) 0.644 (0.0073)

Comparison of 4 methods for detecting coevolution of gene expression using data simulated under Brownian Motion. The 4 methods represent the multivariate Brownian
Motion (BM) PCM described in this manuscript, hypothesis testing with the phylogenetically-uncorrected correlation, the method described in Fraser et. al. [8], and the
method described in Martin and Fraser [12]. Mean and standard deviations for true positive rates (TPR), false positive rates (FPR), false discovery rate (FDR), and overall
accuracy are reported

shows a broadening of the distribution compared to the
phylogenetically-corrected correlations ρC .
Instead of determining statistical significance for the

phylogenetically-uncorrected correlations ρU using p <

0.05, we used approaches similar to those described by
Fraser et. al [8] and Martin and Fraser [12]. We found
the method described in Fraser et. al. to have a greater
true positive rate (TPR) compared to the PCM (0.511
compared to 0.476), but still had an inflated false discov-
ery rate (FDR) of 0.156, although this was a significant
improvement over standard hypothesis testing (Table 1).
An approach similar to Martin and Fraser [12] was actu-
ally underpowered compared to the PCM, with a true
positive rate (TPR) of 0.305, when controlling the FDR to
be 0.05. This method had the overall worst accuracy of
0.644. Unsurprisingly, both methods described by Fraser
et. al. and Martin and Fraser are improved when using the
phylogenetically-corrected correlation ρC . When the data
is consistent with a Brownian Motion process, methods
based on ρC are superior to the methods based on ρU .
We note these methods all have fairly low true positive

rates (TPR). We hypothesized part of this could be due
to the presence of false positives in the binding group,
which are unlikely to show much coevolution of gene
expression, resulting in protein pairs in the simulated data
with potentially small effects unlikely to be detected with
only 18 species. After excluding potential false positives
in the binding group (i.e. protein pairs with a STRING
Score <400), the TPR and overall accuracy of all meth-
ods increased (Additional file 1, Table S2). However, the
general pattern remained the same: when data is consis-
tent with a phylogenetic model of trait evolution (which
is the case for our simulations), the methods based on
correcting for the phylogeny are superior.

Gene expression and number of interactions are poor
predictors of coevolution of gene expression
It is well-established both gene expression and loca-
tion in a protein-protein interaction network significantly
impact the evolutionary behavior of a protein [38–42].

One might expect an imbalance in the number of pro-
teins involved in a greater number of interactions or more
highly expressed interactions to have a more negative
impact on fitness, leading to greater constraints on the
evolution of gene expression. However, we find both the
number of interactions and the gene expression to be
weak predictors of the strength of coevolution of gene
expression. Based on the number of interactions for each
protein in our binding dataset, the weighted Spearman
rank correlation between the number of interactions and
the phylogenetically-corrected correlations ρC is ρS =
0.26 (Fig. 4a, 95% CI: 0.196 – 0.315, p < 10−16), indicating
protein pairs involved in more interactions tend to show
stronger constraint on the evolution of gene expression.
Surprisingly, the mean ancestral gene expression esti-
mates are negatively correlated with the phylogenetically-
corrected correlations ρC , with ρS = −0.09 (Fig. 4b, 95%
CI: - 0.143 – -0.035, p = 0.00131).
Given phylogenetically-corrected correlations ρC corre-

late with the number of interactions and mean ancestral
gene expression, differences between the binding and
control groups in terms of number of interactions and
gene expression could introduce small biases when com-
paring the ρC distributions. The average mean ancestral
gene expression estimate distributions for the binding
and control group are extremely similar (0.414 vs. 0.416,
respectively, Welch’s t-test, p = 0.8316). This makes dif-
ferences in the gene expression distributions an unlikely
source of bias when comparing the binding and con-
trol groups. To determine if protein membership causes
biases in the results, 200 subsets of the binding and con-
trol groups were sampled, restricting a protein appearing
in each group a maximum of 1 time. The 200 subsets
resulted in distributions of the mean phylogenetically-
corrected correlations ρ̄C , which were qualitatively con-
sistent with the full datasets. We do note there appears
to be less of a difference between the binding and control
group ρ̄C distributions compared to ρ̄C estimated from
the full dataset (Additional file 1, Figure S3). This could
be due to the representation of certain proteins in the
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Fig. 4 Effects of number of interactions and gene expression on strength of coevolution. The relationship of a the mean degree (average number of
interactions between a protein pair) and bmean ancestral gene expression estimate with the phylogenetically-corrected correlation ρC for the
binding group. Both protein pair metrics are weakly, but significantly correlated with the phylogenetically-corrected correlation ρC : weighted
Spearman rank correlation ρS = 0.26 (p < 10−16) for mean degree and ρS = −0.09 (p = 0.00131) for mean ancestral gene expression. This
suggests both metrics are poor predictors of the strength of coevolution of gene expression between protein pairs

binding group inflating the correlation, or could be due
to decreased power to detect differences due to the sig-
nificantly reduced dataset. Despite this, the overall inter-
pretation is the same: interacting proteins show greater
coevolution at the gene expression level than randomly
generated pairs of proteins.

Coevolution of gene expression weakly reflects
coevolution of protein sequences
Previous work found an overall weak correlation between
coevolution at the protein sequence level and coevolu-

tion at the gene expression level based on CAI [7, 8].
Using estimates of protein sequence coevolution across
a yeast phylogeny taken from Clark et. al. [7], we found
protein sequence coevolution and the phylogenetically-
corrected correlations ρC were weakly, but significantly
correlated (Weighted Spearman Rank correlation ρS =
0.10, 95% CI: 0.037 – 0.155, p = 0.0015, Fig. 5a).
We also found a significant correlation between our
phylogenetically-corrected correlation ρC and the mea-
sure of gene expression coevolution from Clark et. al. [7]
(Weighted Spearman Rank correlation ρS = 0.22, 95% CI:
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Fig. 5 Comparison to other coevolution metrics. a Comparing coevolution of gene expression, represented by the phylogenetically-corrected
correlation ρC , and protein sequences, taken from Clark et al [7]. There is a weak but significant correlation (Weighted Spearman Rank Correlation
ρS = 0.10, p = 0.0015) between the measures of gene expressions and protein sequence coevolution. b A similar comparison using the measures
of CAI coevolution from [7]. Again, there is a weak, but significant correlation (Weighted Spearman Rank correlation ρS = 0.22, p < 10−16)

0.171 – 0.275, p < 10−16, Fig. 5b). We find overall better
agreement between CAI and empirical-based measures
of coevolution for protein pairs which are, on average,
more highly expressed (Weighted Spearman Rank cor-
relation ρS = −0.12, 95% CI: -0.176 – -0.065, p <

10−4, Additional file 1, Figure S4). This is unsurprising,
given that many highly expressed genes are likely to be
housekeeping genes, such as ribosomal proteins, and thus
highly expressed across most conditions and evolutionary

time, making CAI a reliable proxy for gene expression in
these cases.

Discussion
A broad-scale analysis based on the Covariance Ratio
test [34, 35] found coevolution of gene expression
was stronger within groups of tightly-linked protein
interactions compared to coevolution between proteins
with weaker or no interactions (Covariance Score =
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0.8672, p = 0.001). Consistent with this, we find
physically-interacting proteins show a clear signal of gene
expression coevolution compared to randomly-generated
pairs of proteins, with mean phylogenetically-corrected
correlations ρ̄C of 0.45 vs. 0.03, respectively. We find
interacting proteins are correlated with the STRING
confidence score (weighted Spearman rank correlation
ρS = 0.32), indicating protein-protein interactions with
stronger evidence of being true and conserved show
stronger coevolution of gene expression, on average. We
also find the number of protein-protein interactions a pro-
tein is involved in and its gene expression level – two
common metrics known to affect the evolution of protein
sequence – are overall weak predictors of gene expression
coevolution. Protein pairs involved in more interactions
do tend to show stronger gene expression coevolution
(weighted Spearman rank correlations ρS = 0.26), consis-
tent with the idea that proteins involved in more interac-
tions in a protein-protein interaction network have more
constraints on the evolution of their gene expression. Sur-
prisingly, highly expressed protein pairs actually tended
to show weaker coevolution of gene expression (weighted
Spearman rank correlation ρS = −0.09). We also find an
overall weak correlation between gene expression coevo-
lution and protein sequence coevolution (weighted Spear-
man rank correlation ρS = 0.10), consistent with previous
work [7, 8]. We speculate this is because relatively small
regions of two protein sequencesmay be important for the
proteins to be able to bind, forcing strong sequence coevo-
lution at the binding sites, but weaker coevolution for the
remainder of the protein sequences.
Surprisingly, there was overall poor agreement between

CAI coevolution from Clark et. al. [7] and our mea-
sure of gene expression coevolution based on empiri-
cal RNA-Seq data (weighted Spearman Rank correlation
ρS = 0.22). The stronger correlation between ρC and
CAI coevolution compared to protein sequence coevolu-
tion is unsurprising. CAI and similar codon usage metrics
often show moderate to strong correlations with empir-
ical gene expression estimates [7, 8, 42–44]. However,
the correlation between ρC and CAI coevolution is still
very weak, indicating these measures of gene expression
coevolution can give radically different interpretations
about the degree of gene expression coevolution at the
individual protein-pair level. It is worth noting that our
estimates of gene expression coevolution and the esti-
mates from [7] do not come from the same 18 species.
Clark et. al. [7] also used 18 fungal species, 11 of which are
from the Saccharomyces or Candida genera, of which 7
overlap with the species used in this study. This undoubt-
edly introduced noise into these comparisons, but there
are additional reasons to expect discrepancies between
coevolution estimates based on CAI and empirical gene
expression measurements. CAI, as well as other proxies

for gene expression based on codon usage, reflect the evo-
lutionary average expression level for a given gene (assum-
ing strength of selection on codon usage scales with gene
expression), but this may not reflect expression of a gene
for a given experimental treatment [7, 8, 42, 43, 45, 46].
Additionally, empirical gene expression is subject to mea-
surement error, which will also increase the discrepancy
between CAI and gene expression, particularly for low
to moderate expression genes [42, 47]. Fortunately, many
PCMs allow for the incorporation of measurement error
of a trait, which can be estimated via experimental repli-
cates. Furthermore, using multivariate PCMs allows for
the treatment of gene expression measured under various
conditions as separate traits [1].
Unlike previous approaches, our results are based on

both a multivariate PCM and empirical gene expres-
sion data. This offers two clear advantages. One advan-
tage is our approach directly accounts for the phylogeny,
recognizing the non-independence of species, allow-
ing for standard hypothesis testing. Although previous
efforts attempted to control for the phylogeny by using
randomly-generated null distributions to determine sta-
tistical significance for phylogenetically-uncorrected cor-
relations, our simulations indicate these approaches are
generally worse than phylogenetic-based approaches if the
underlying model of gene expression evolution is consis-
tent with the BM model (Table 1). The second advantage
is while CAI often correlates well with gene expression in
organisms with a high effective population size [11], low
effective population size species often show little adap-
tive codon usage bias, making CAI a poor proxy for gene
expression. As a result, the use of empirical gene expres-
sion measurements are highly valuable for studying the
evolution of gene expression, as others have noted [1].
Our results indicate this multivariate PCM could be

used to identify functionally-related proteins. However,
simulations indicate more species might be needed to
have sufficient statistical power (see Table 1), although
this could vary depending on the tree and data in ques-
tion. In theory, it is possible to expand this approach to
test for gene expression coevolution in larger gene sets or
correlate changes in gene expression with changes in other
phenotypes, such as body size (see [37] for more details
on using mvMORPH). With that in mind, recent work
finds multivariate PCMs are in need of improvement, as
parameter estimation accuracy decreases quickly as the
number of traits (i.e. parameters) increases [48]. For now,
it appears best to restrict the analysis to as few traits as
possible when using approaches like mvMORPH. Alter-
native approaches to examine coevolution of gene expres-
sion with more than 2 genes include the Covariance Ratio
test [34, 35] and the approach described by Adams and
Felice using partial least squares [49]. Unlike the Covari-
ance Ratio test, which reflects the degree of coevolution
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withinmodules of traits (in this case, gene expression), the
approach described by Adams and Felice tests for coevolu-
tion between modules. Another alternative is the method
developed by Martin and Fraser [12].
We note very few traits in biology likely evolve in a

true Brownian Motion manner [14]. Consistent with this,
most of the genes in our dataset violated the BM assump-
tion based on the test proposed by Garland et. al. [50].
Although the Ornstein-Uhlenbeck (OU) model may be a
more appropriate model, and is used in many other PCMs
for examining gene expression evolution, it often requires
more species to make accurate parameter estimates. As
we only used 18 fungal species, we opted to use the sim-
pler BM model combined with filtering of genes which
significantly deviated from the assumptions of BM [50].
Based on our results, inclusion of genes which violate
the BM assumption does not change overall conclusions
of this work, but it does appear to weaken some of the
observed patterns (Additional file 1 Figure S6 – S9). These
analyses are exactly the same as described above, but
includes genes for which gene expression evolution is bet-
ter described by other models of trait evolution, such as
the OU process. Given these models often incorporate
additional parameters to describe trait evolution across
species, incorrectly using the BM model likely results in
inaccurate estimates of ρC and a weakening of the some
of the patterns we observe when filtering out genes vio-
lating the BM assumption. Future work should focus on
the examination of coevolution of gene expression using
the OU model. A major advantage of PCMs is other mod-
els can easily be incorporated into the analysis of the trait,
with the best model being determined via a hypothesis
testing (e.g. Likelihood ratio test) or model comparison
(e.g. AIC) framework.
We also note comparison of RNA-Seq data across

species presents its own challenges [1, 51, 52]. For our
analysis, we transformed species-level data to a standard
lognormal distribution, consistent with previous work
using microarray data [19]. While other methods for nor-
malizing RNA-Seq measurements for across species exist,
our results indicate transformation to the standard log-
normal was suitable for the purpose of determining if
functionally-related genes show stronger coevolution of
gene expression than randomly-generated pairs. To the
best of our knowledge, there is no current consensus on
the best approach for comparing RNA-Seq measurements
across species. Brawand et. al. [20] developed a method
for normalizing gene expression by identifying the genes
with the most conserved ranks across samples, calculat-
ing species-specific scaling factors to make the median
expression of these conserved rank genes equal across all
species, and using those scaling factors to re-scale all gene
expression estimates. Dunn et. al. [1] proposed a method
based on comparing fold-changes (differential expression)

across species-specific samples, which assumes a clear
control and experimental condition and these measure-
ments exists for all species under consideration. Muesser
and Wagner [52] proposed a method for re-scaling the
TPM metric based on the largest genome in the dataset,
but this assumes the genes represented in the smaller
genomes are subsets of the genes in the larger genome,
which was not the case for our data based on the orthologs
we identified.
The RNA-Seq data used in this study were pulled from

various non-related experiments which differed in terms
of protocols, sequencers, sequencing depth, read type
(single vs. paired), experimental conditions, and other fac-
tors which could impact the quantifications. It cannot be
understated that this also introduces large amounts of
variability to the quantified RNA-Seq data, making com-
parisons across species even more difficult. We attempted
to control for this by using Salmon’s abilities to automat-
ically adjust quantifications based on biases its detects
within the RNA-Seq reads, as well as using the control
conditions for each species for our analysis. Undoubtedly,
this did not control for all of the variability introduced
by pulling data from different experiments. Despite this,
we were still able to pick up evolutionary signals indi-
cating coevolution of gene expression. Additionally, the
normalized gene expression data used here were moder-
ately to strongly correlated across species (Additional file
1, Figure S1) and species which were more closely related
tended to show higher correlations, consistent with expec-
tations. However, analyses attempting to make more pre-
cise conclusions about the evolution or coevolution of
gene expression should ideally use measurements pro-
duced under better controlled conditions. Future efforts
in this area may consider using proteomics data instead of
transcriptomics data. Previous work finds protein abun-
dances appear to be more conserved between species
compared to mRNA abundances, which could indicate
stronger selection on maintaining the former [53].
Finally, our analysis does not directly account for pos-

sible discordance between the species tree and the gene
trees of the protein pairs used. This was done out of
practicality, as mvMORPH only takes into account one
phylogenetic tree. Although we eliminate one possible
source of discordance by removing genes with evidence
of gene duplications, other possible sources include intro-
gression, incomplete lineage sorting (ILS), and horizontal
gene transfer (HGT) [54]. Removal of protein pairs with
genes marked as possible introgression or HGT events
from a population genomics study on 1,011 S. cerevisiae
isolates [55] had little impact on the phylogenetically-
corrected correlation ρC distributions for the binding and
control sets (Additional file 1, Figure S10). Although this
does not exclude ILS as a source of discordance, previous
work found ILS reduced phylogenetic signal as estimated
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by Pagel’s λ, which reflects similarity to a BM process
[56, 57]. Based on this, we speculate many genes subject
to ILS may have been eliminated by filtering out genes
inconsistent with the BM process. Further work is needed
to understand the effects of ILS and other sources of gene
tree discordance on multivariate trait evolution.

Conclusion
Given our results and the ease of use of many tools imple-
menting PCMs, we strongly recommend the use of PCM
approaches when performing interspecies analysis. The
phylogenetic research community has databases where
phylogenetic trees can be easily accessed, such as Tree-
Base [58]. If a phylogenetic tree is not available for the
species of interest, multiple sequence alignment tools and
phylogenetic tree estimation tools have made building a
reasonable phylogenetic tree efficient and easy, even for
non-computational researchers. The phylogenetics com-
munity has made access to complex phylogenetic param-
eter estimation accessible via open-source, easy-to-use R
packages, such asmvMORPH [37]. Although we strongly
recommend the use of PCMs for interspecies data analy-
sis, we emphasize that such approaches come with their
own challenges and, in some cases, the PCM may not
perform better than standard statistical approaches (see
[59] for more details). Even so, approaches for assessing
the impact of shared ancestry on the data still requires
the generation of a phylogenetic tree and analysis of the
trait in a phylogenetic context. Rohlfs et. al. also suggested
PCMs likely will not provide different results from non-
PCMs if analyzing gene expression for a small number
of species, with a larger number of species resulting in
more complex phylogenetic patterns and complicating the
downstream data analyses [26]. Researchers should assess
the impact of phylogeny of their data and make the appro-
priate decisions on what tools best answer the questions
at hand.

Methods
Protein interaction data
18 fungal species were chosen due to availability of
RNA-Seq data and for comparability to previous stud-
ies examining the evolution of functionally-related pro-
teins [7, 8, 18]. Consistent with [8] and [18], we use
physically-interacting proteins as our test case for exam-
ining functionally-related proteins. The STRING database
was used to identify empirically-determined protein-
protein interactions in species for which data was avail-
able [60]. We assume these protein-protein interactions
are conserved across all species under consideration.
This dataset will be referred to as the “binding group”.
Randomly-generated protein pairs followed by removal of
any pairs which were annotated in the STRING database

for the species under consideration, even if the annota-
tion did not specify a “binding” interaction. Any proteins
with overlapping Gene Ontology terms were removed to
control for potential false negatives. This dataset will be
referred to as the “control group”.

Gene expression data
Gene expression levels were estimated from publicly
available RNA-Seq datasets taken from SRA using the
pseudo-alignment tool, Salmon [61]. Reads for each
species were mapped against their respective protein-
coding sequences taken from NCBI Refseq/Genbank [62,
63], ENSEMBL [64], the Joint Genome Institute [65], the
Broad Institute (https://portals.broadinstitute.org/regev/
orthogroups/), the Aspergillus Genome Database [66],
or http://www.saccharomycessensustricto.org/cgi-bin/s3.
cgi?data=Annotations&version=current [67]. FASTQC
was used to assess the quality of the RNA-Seq reads.
If necessary, TrimGalore was used to remove adap-
tor sequences (https://www.bioinformatics.babraham.ac.
uk/projects/trim_galore/). Gene expression counts were
obtained using Salmon’s built-in ability to control for
GC and position-specific biases, and these counts were
converted to the transcripts per million (TPM) metric
[51]. For single-end reads, mean and standard deviation
for fragment lengths were specified to be 200 and 80,
respectively, except for S. mikatae, S. paradoxus, S. para-
doxus, for which mean fragment length was specified to
be 250 [68].
Given the RNA-Seq experiments are often measured

different conditions, we only selected samples from the
control conditions, as these are more likely to reflect natu-
ral or standard conditions for a species. For datasets which
were time course experiments, we randomly selected 3
time-points which were well-correlated in gene expres-
sion estimates (Pearson correlation ρ > 0.98). Each RNA-
Seq sample/replicate for each species was transformed to
a standard lognormal distribution (i.e. ln(X) ∼ N(0, 1),
where X is the gene expression vector for a species), con-
sistent with the transformation used by [19]. Notably,
the log-transformation removes the 0 boundary from the
data, which better reflects the assumptions of Brownian
Motion [50]. A mean and standard error of normal-
ized TPM values were calculated for each gene across all
samples/replicates used. Genes with missing data, which
could be because no ortholog was identified between
species or no gene expression estimate was obtained, were
excluded from further analysis.
We note some of the RNA-Seq datasets did not indicate

replicates, making it impossible to estimate a standard
error measurement for the analysis. It is generally rec-
ommend measurement error be provided for the analysis
of continuous traits during phylogenetic analysis. As a

https://portals.broadinstitute.org/regev/orthogroups/
https://portals.broadinstitute.org/regev/orthogroups/
http://www.saccharomycessensustricto.org/cgi-bin/s3.cgi?data=Annotations&version=current
http://www.saccharomycessensustricto.org/cgi-bin/s3.cgi?data=Annotations&version=current
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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proxy for the species missing replicates, we used a closely-
related species to provides estimates of the standard
error. This included S. paradoxus (proxy: S. cerevisiae), S.
mikatae (proxy: S. bayanus), and N. tetrasperma and N.
discreta (proxy: N. crassa).

Ortholog identification
Orthologs for fungal species were taken from FungiDB
[69], previous publications [67, 70], or the Reciprocal Best
Hits BLAST approach, which was only used for N. castel-
lii. Proteins with an annotated paralog in the FungiDB
or previous literature were excluded from the analysis, as
introduction of a paralog could impact the gene expres-
sion of the original gene. This eliminated 3669 possible
genes.

Phylogenetic tree construction
Codon alignments of 59 complete, randomly chosen
nuclear ORF were performed using TranslatorX using the
MAFFT option followed by GBlocks filtering to remove
poorly aligned regions [71]. These alignments were con-
catenated, followed by phylogenetic tree estimation using
RAxMLwith a partitionedGTR-� fit allowing rate param-
eters for the third codon position to vary from the first
and second codon position.C. neoformanswas designated
as an outgroup. The Brownian Motion model assumes
branch lengths of the phylogenetic tree are proportional
to time [50, 72]. To convert the RAxML phylogenetic tree
to an ultrametric tree with branch lengths in millions of
years, treePL [73] was used to date the tree, taking the
divergence time of S. cerevisiae and C. neoformans (723
millions of years ago (MYA), from TimeTree [74]) as a
calibration point. The final phylogenetic tree used for all
analyses can be observed in Fig. 1. A summary of the
species used, the RNA-Seq data used, and the availability
of protein-protein interaction data from STRING can be
found in Additional file 1, Table S1.

Analysis of gene expression data
Analyses and visualizations were performed using the R
programming language.
Coevolution of gene expression was broadly examined

using the Covariance Ratio test implemented in geo-
morph [34–36]. Briefly, this test compares the degree
of covariation between traits within predefined modules
to covariation between modules. In this case, modules
were defined as groups of tightly-linked proteins within a
protein-protein interaction network. Modules were deter-
mined by applying the Markov Clustering algorithm (as
implemented in the clusterMaker2 Cytoscape plug-in
[75]) to the protein-protein interaction data using the
STRING confidence scores as edge weights. The Covari-
ance Ratio test was applied to all modules with at least 15

proteins. A covariance ratio score of 1 indicates covari-
ance of a trait between modules is equal to the covariance
within modules. The closer the covariance ratio is to 0, the
more modular the data (i.e. the greater the covariance of a
trait within modules is relative to between modules).
Gene expression evolution was modeled as a multi-

variate Brownian Motion process using the R package
mvMORPH [37] in order to examine the strength of
coevolution between pairs of proteins (as opposed to
coevolution within modules). Briefly, the evolutionary
rate matrix for multivariate Brownian Motion repre-
sents both the trait variances on the diagonal for the
individual gene expression values, as well as the trait
covariance between the gene expression estimates on the
off-diagonal. The evolutionary correlation coefficient ρC
reflects the degree to which gene expression estimates are
correlated over evolutionary time and can be calculated
from the evolutionary rate matrix [31, 32, 37]. The evo-
lutionary correlation coefficient ρC will from here on out
be referred to as the “phylogenetically-corrected correla-
tion” to emphasize this statistic accounts for the shared
ancestry of the species. Likewise, we will refer to the Pear-
son correlation coefficient ρU (estimated via the R built-in
function cor.test()) as the “phylogenetically-uncorrected
correlation”, as this statistic ignores shared ancestry and
uses variances and covariances estimated from the data at
the tips of the tree.
Appropriateness of the Brownian Motion for modeling

trait evolution was assessed as described in [59]. Briefly,
phylogenetic independent contrasts (PICs) and standard-
ized variances [14] were calculated from gene expression
data for each ortholog set using the pic() function from
the ape R package [76]. Pairs of genes containing a sig-
nificant correlation (i.e. p < 0.05) between PICs and
standardized variances, which indicates violation of Brow-
nian Motion assumptions [50, 59], were excluded from
further analyses.
Under no coevolution of gene expression, the expected

value for the phylogenetically-corrected correlation ρC is
0.0. A one-sample t-test was performed to assess if the
mean value of ρC for the binding and control groups
were significantly different from 0.0. Under the hypothe-
sis that gene expression coevolves between proteins which
physically-interact, we expect the mean value of ρC for the
binding group to be significantly different from 0. In con-
trast, we do not expect the mean value of ρC for the con-
trol group to be significantly different from 0. A Welch’s
t-test was also used to assess if the mean values of ρC were
significantly different from each other. Similar tests were
performed for the phylogenetically-uncorrected correla-
tions ρU .
The phylogenetically-corrected correlation ρC , which

reflects the strength of gene expression coevolution



Cope et al. BMC Genomics          (2020) 21:370 Page 13 of 17

between two genes, was compared to metrics associ-
ated with functional-relatedness of two genes. We expect
stronger coevolution of gene expression between pro-
teins which are more functionally-related. As a metric of
functional-relatedness for each interaction, we used the
STRING confidence score, which factors in both empir-
ical/computational evidence supporting an interaction,
as well as evidence from closely-related species. Simi-
larly, one might expect proteins sharing a greater number
of overlapping Gene Ontology (GO) terms to be more
functionally-related.
It is well-established both gene expression and number

of interactions in a protein-protein interaction network
impact the evolutionary behavior of a protein [38, 45];
thus, we also tested if such protein-level properties also
impact the strength of coevolution between two proteins.
We hypothesized proteins pairs which are, on average,
more highly expressed and involved in more interactions
would show stronger coevolution of gene expression. For
each protein pair in the binding group, the mean degree
(i.e. the average number of interactions for each protein)
and the mean phylogenetically-corrected average gene
expression value were calculated. The phylogenetically-
corrected average gene expression value for a protein is
taken as the ancestral state value estimated at the root of
the tree bymvMORPH.
Furthermore, previous studies have examined the rela-

tionship between sequence evolution and gene expression
evolution [7, 8]. We compared our estimates of gene
expression coevolution to measures of sequence evolu-
tion taken from Clark et al. [7]. Clark et. al. also examined
gene expression coevolution using the Codon Adaptation
Index (CAI), which allowed us to compare our results
based on empirical estimates of gene expression with a
commonly-used proxy based on codon usage [10].
To determine if functional-relatedness, gene expression,

number of protein interactions, and sequence coevolu-
tion have an impact on the strength of gene expression
coevolution, a weighted rank-based (i.e. robust to non-
normality in data) Spearman correlation ρS was used to
reduce the impact of proteins found in multiple pairs.
Weights for the weighted Spearman correlation ρS for
each protein pair were calculated as

Weight = 1
2

(
1
N1

+ 1
N2

)

where Ni is the number of times protein i appears in the
binding group. Confidence intervals and p-values for the
weighted Spearman correlations were calculated using the
R package boot [77, 78].
To assess the impact of proteins found in multiple

pairs on differences observed between the binding and
control groups, we generated 200 subsets of the bind-
ing and control datasets in which a protein was only

allowed to appear, at maximum, in one protein pair
per dataset. Each subset was restricted to a maximum
size of 200 protein pairs. For each subset, the mean
was calculated for ρC and ρU , creating a distribution
of means. Scripts and for performing phylogenetic anal-
ysis and post-analysis of the results can be found at
https://github.com/acope3/GeneExpression_coevolution.

Assessing accuracy of methods for detecting coevolution
of gene expression
Data simulated under Brownian Motion were used to
assess the ability to detect coevolution of gene expres-
sion (see Additional file 1 for details). Briefly, protein pairs
from the binding set were simulated allowing for coevo-
lution (i.e. the covariance term for the simulations was
allowed to be non-zero), forming the simulated binding
set. On the other hand, protein pairs from the control
set were simulated forcing independent evolution of gene
expression (i.e. the covariance term between them was set
to 0 in the simulations), forming the simulated control set.
The number of true positives (significant result from sim-
ulated binding set), true negatives (non-significant result
from simulated control set), false positives (significant
result from simulated control set), and false negatives
(non-significant result from simulated binding set) were
determined using the statistical tests described below.
From these, a true positive rate (TPR, proportion of sig-
nificant results from the simulated binding set) and a false
positive rate (FPR, proportion of significant results from
the simulated control set) were calculated to assess sta-
tistical power and specificity of each method. Similarly, a
false discovery rate (FDR, proportion of false positives out
of all significant results from both the simulated binding
and simulated control sets) to determine potential trade-
offs between statistical power and specificity for each
method. Finally, an overall accuracy score (proportion
of true positives and true negatives out of all simulated
protein pairs) was calculated for each method.
For the PCM approach, protein pairs were consid-

ered coevolving if a Likelihood Ratio test (as imple-
mented in mvMORPH) comparing the model allow-
ing coevolution of gene expression to a null model
forcing independent evolution of gene expression had
a Benjamini-Hochberg corrected p-value <0.05. Sim-
ilarly, for the non-PCM approach (cor.test() func-
tion in R), protein pairs were considered signifi-
cantly coevolving if the phylogenetically-uncorrected
correlation ρU had a Benjamini-Hochberg corrected
p-value <0.05
Previous work proposed using randomly-generated null

distributions (i.e. the control group) as a means of deter-
mining statistically significant gene expression coevo-
lution using phylogenetically-uncorrected correlations.
This approach is thought to be an adequate approach to

https://github.com/acope3/GeneExpression_coevolution
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control for the phylogeny when the phylogeny is unknown
[12].We implement approaches similar to those described
in Fraser et. al. [8] and Martin and Fraser [12] using both
the phylogenetically-uncorrected and phylogenetically-
corrected correlations.
Fraser et. al. [8] compared the relative histograms

of correlations from a binding and a control group to
determine the bin at which the relative frequencies of
the binding group were greater than the control group
for all subsequent bins. Pairs of proteins were consid-
ered significantly coevolving if they had a correlation
greater than this point. To assess the accuracy of this
method, we split both the binding and control groups
into training and test sets (80% and 20% of the data,
respectively). The binding and control training sets were
used to determine the significance cutoff, while the
test sets were then used to assess the accuracy of this
approach.
Martin and Fraser [12] presented an approach to deter-

mine if gene sets (i.e. more than 2 genes) showed sig-
nificant coevolution of gene expression by comparing
the median phylogenetically-uncorrected correlation to
the median correlations from 10,000 randomly-generated
gene sets. As we only deal with protein pairs, we compared
the number of times (out of 1000) a randomly-generated
protein pair had a correlation greater than the correlation
of the target protein pair. This procedure was repeated for
each protein pair in the binding and control groups. A p-
value for each pair was calculated as described in Martin
and Fraser [12], and a p-value cutoff was empirically-
determined such that the false discovery rate was
approximately 5%.
We note accuracy scores can be skewed by large dif-

ferences in the size of the binding and control groups.
For example, if a method is underpowered and the size
of the control group is much larger than the bind-
ing group, then failure to detect significant differences
in the binding group is heavily outweighed by success-
fully not detecting significant differences in the control
group. This results in a higher, and potentially mis-
leading, accuracy score for the method. To account for
this, each method was assessed using a subsample of
the control group which is the same size as the bind-
ing group. Model assessments were made 100 times
to obtain mean TPR, FPR, FDR, and overall accuracy
scores.
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of Energy Joint Genome Institute http://www.jgi.doe.gov/ in collaboration with
the user community. All other protein-coding sequences were downloaded
from the NCBI RefSeq/GenBank database with the following genome
assembly accessions: GCF_000146045.2 (S. cerevisiae), GCF_000149245.1 (C.
neoformans), GCF_000237345.1 (N. castellii), GCF_000002545.3 (C. glabrata),
GCF_000182965.3 (C. albicans), GCA_000182765.2 (C. parapsilosis),
GCF_000002495.2 (M. oryzae), GCF_000182925.2 (N. crassa), GCF_000213175.1
(N. tetrasperma). Protein interaction data was downloaded from the STRING
database version 11.0 (https://string-db.org/) with the following species
identification numbers: 5476 (C. albicans), 5480 (C. parapsilosis), 318829 (M.
oryzae), 5141 (N. crassa), 4932 (S. cerevisiae), 162425 (A. nidulans), 5478 (C.
glabrata), 5518 (F. graminearum), 27288 (N. castellii). Protein-protein interaction
data from the STRING database used in this study can be found in the file
<species identification number>.protein.actions.v11.0.txt.gz under the
Downloads page of the STRING Database website (https://string-db.org/) after
filtering by species name or species identification number. All raw RNA
sequencing reads can be found in the NCBI Sequence Read Archive (SRA) or
the EMBL Nucleotide Sequence Database (ENA) with the following accession
numbers: SRA PRJNA319029 (S. cerevisiae, C. neoformans), SRA PRJNA320926 (S.
paradoxus, S. mikatae), SRA PRJNA278671 (S. bayanus, S. kudriavzevii, N. castellii),
ENA PRJEB10946 (L. kluyverii), SRA PRJNA261678 (C. glabrata), SRA
PRJNA485524 (C. albicans), SRA PRJNA429457 (C. parapsilosis), SRA
PRJNA326901 (F. graminearum), SRA PRJNA223667 (M. oryzae), SRA
PRJNA381768 (A. fumigatus), SRA PRJNA481968 (A. nidulans), SRA
PRJNA177178 (N. crassa), SRA PRJNA257829 (N. discreta), SRA PRJNA257828 (N.
tetrasperma). Other references for raw sequencing data (including publication
citations) can be found in Additional file 1, Table S1.
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