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ABSTRACT:
Mutations in the TP53 gene commonly result in the expression of a full-length protein 
that drives cancer cell invasion and metastasis. Herein, we have deciphered the global 
landscape of transcriptional regulation by mutant p53 through the application of a 
panel of isogenic H1299 derivatives with inducible expression of several common 
cancer-associated p53 mutants. We found that the ability of mutant p53 to alter the 
transcriptional profile of cancer cells is remarkably conserved across different p53 
mutants. The mutant p53 transcriptional landscape was nested within a small subset of 
wild-type p53 responsive genes, suggesting that the oncogenic properties of mutant 
p53 are conferred by retaining its ability to regulate a defined set of p53 target genes. 
These mutant p53 target genes were shown to converge upon a p63 signalling axis. 
Both mutant p53 and wild-type p63 were co-recruited to the promoters of these target 
genes, thus providing a molecular basis for their selective regulation by mutant p53. 
We demonstrate that mutant p53 manipulates the gene expression pattern of cancer 
cells to facilitate invasion through the release of a pro-invasive secretome into the 
tumor microenvironment. Collectively, this study provides mechanistic insight into 
the complex nature of transcriptional regulation by mutant p53 and implicates a role 
for tumor-derived p53 mutations in the manipulation of the cancer cell secretome.

INTRODUCTION

The p53 tumor suppressor plays a critical role in 
the prevention of oncogenic transformation through the 
elimination or permanent growth arrest of potentially 
malignant cells. Upon cellular insults, p53 is activated 
and functions as a sequence-specific transcription factor 
to regulate the expression of specific genes, thereby 
inducing DNA repair, cell-cycle arrest, apoptosis, and 
senescence [1, 2]. However, approximately 50% of all 
human cancers harbour mutations in the TP53 gene, 
commonly resulting in expression of a full-length protein 
with a single amino acid substitution [3]. These tumors 
typically have mutations at specific residues (R175, G245, 

R248, R249, R273 and R282) within their DNA-binding 
domain, and express high levels of the mutated p53 
proteins [4]. In contrast to the tumor suppressive effects 
of wild-type p53, mutant p53 proteins have been shown 
to promote cancer progression by enhancing the ability 
of cancer cells to invade and metastasize [5-10], confer 
resistance to chemotherapies [11, 12], promote genomic 
instability [13, 14] and drive multinucleation [15]. These 
observations strongly indicate that mutant p53 possesses 
gain-of-function properties that promote oncogenesis. 

A diverse array of molecular mechanisms have 
been proposed to explain the oncogenic influence of 
mutant p53 during cancer development and progression. 
A widely accepted gain-of-function mechanism is 
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the ability of mutant p53 to both physically interact 
with and inactivate the p53 family member, p63 [5, 6]. 
p63 is a transcription factor that plays a pivotal role in 
development and can be expressed as two isoforms that 
either have an intact (TAp63) or deleted (∆Np63) amino-
terminal transactivation domain [16]. The full length 
isoform, TAp63, has genuine tumor suppressor traits as 
it can activate genes to inhibit metastasis and promote 
apoptosis or cell cycle arrest [17, 18]. Mutant p53 has been 

shown to bind and sequester TAp63 away from its target 
genes, thereby hampering its anti-metastatic capacity 
[5, 16, 19]. Our current understanding of this complex 
relationship between mutant p53 and p63 is restricted to 
this antagonistic model.

In this study, we discover an unprecedented role of 
p63 in the gene regulation network of mutant p53 through 
global gene profiling analyses. For the first time, we show 
that mutant p53 uses p63 as a molecular chaperone to 

Figure 1: Expression microarray analysis of inducible wild-type and mutant p53 in H1299 cells. (A) The EI-H1299 cell 
lines expressing wild-type or mutant p53 show inducible expression of p53 protein following 24 hours induction with 0, 0.5 or 2.5 μg/mL of 
the inducing agent (PonA). (B) EI-H1299 cells with inducible p53 R273H were cultured with the indicated concentration of PonA. Western 
blot analysis was used to determine the total p53 R273H levels in comparison with endogenous p53 R273H expressed in the MDA-MB-468 
breast cancer cell line. β-actin was used as a loading control. (C) Scatterplot of expression array data including genes regulated by >1.6 
fold by either wild-type p53 or across all six p53 mutants. (D) Hierarchical clustering of transcriptional regulation by each p53 mutant, 
as determined using Gene Pattern 2.0 [45]. (E) Venn diagram illustrating the overlap between genes regulated by wild-type p53 in this 
expression microarray analysis as compared with known bone fide direct p53 target genes [20]. (F) Venn diagram illustrating the overlap 
between genes regulated by mutant p53 (Table 1) and wild-type p53 in this expression microarray analysis. 
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tether to the promoters of its target genes. Through p63, 
mutant p53 aberrantly alters the gene expression pattern 
of cancer cells to promote oncogenesis. In addition, we 
also reveal the capability of mutant p53 to manipulate the 
secretome of cancer cells as a novel mechanism to drive 
invasion.

RESULTS

Inducible cell lines as a tool to study the oncogenic 
functions of mutant p53

The study of the precise function of mutant p53 
in cancer is generally hampered by the broad spectrum 
of different TP53 mutations and the diverse genetic 
backgrounds of mutant p53-expressing cancer cell lines. 
To overcome these challenges, we have used the H1299 
cell line with a p53 null background for the inducible 
expression of six common p53 hot spot mutants (R175H, 
R248Q, R248W, R249S, R273H and R282W) and the wild-
type p53 as a control (Fig. 1A). Initial phenotypic analysis 
of these inducible p53 cell lines showed that the induction 
of wild-type p53 resulted in a growth arrest at the G1 
phase of the cell cycle, while induction of the p53 mutants 
did not influence proliferation (Fig. S1). Our previously 
published data demonstrated that inducible expression 
of p53 mutants, but not the wild-type counterpart, 
endowed the cells with oncogenic properties, including 
the ability to drive invasion, epithelial-to-mesenchymal 
transition (EMT) and centrosomal abnormalities [15]. 
Importantly, the relative levels of induced mutant p53 
expression were comparable to the levels of endogenous 

p53 R273H observed in the MDA-MB-468 breast cancer 
cell line, suggesting that the inducible system produces 
physiologically relevant amounts of mutant p53 (Fig. 1B). 
Collectively, these results indicated that the inducible 
mutant p53 cell lines generated in this study are highly 
physiologically-relevant and can be used as a sensitive 
expression platform to capture the oncogenic events 
during transcriptional reprogramming by mutant p53.

Deciphering the global landscape of 
transcriptional regulation by mutant p53

In order to decipher the global gene regulation 
network of mutant p53, expression microarrays were 
performed on the inducible mutant p53 cell lines after 
24 hours of induction (Fig. 1C). The gene expression 
profiles for each p53 mutant were determined using 
paired induced and un-induced cultures, thus providing 
a sensitive assessment of genes specifically expressed in 
the presence of the induced mutant p53. Gene profiling 
analysis revealed that the ability of mutant p53 to alter 
the transcriptional profile of cancer cells is remarkably 
conserved across different mutants, as R175H, R248Q, 
R248W, R249S, R273H and R282W all regulated a core 
set of 59 genes (Table 1). Surprisingly, the hierarchical 
clustering of the expression profiles for the hot spot p53 
mutants studied did not correlate with their previously 
attributed ‘DNA contact’ or ‘structural’ properties. In fact, 
there was no relationship between the tertiary structure of 
the p53 mutant and its transcriptional regulation (Fig. 1D). 

To ascertain if the regulation of the core set of 59 
genes is a unique property of mutant p53, expression 
microarray analysis of the wild-type p53 inducible cell 
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Figure 2: Validation of target genes identified in EMA. Ten target genes identified as regulated by >1.6-fold in the inducible 
p53 mutant cell lines were validated in the inducible cell lines. EI-H1299 p53-WT, R175H, R248Q or R282W cell lines were cultured in 
the presence of PonA (2.5 μg/mL) or vehicle control for 24 hours and the expression of genes determined by specific real-time RT PCR 
analysis. Fold induction of target genes is presented relative to the uninduced control for each cell line (uninduced = 1).
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NM_002560 P2RX4 Purinergic receptor P2X, ligand-gated ion channel, 4 4.81 6.02
NM_006528 TFPI2 Tissue factor pathw ay inhibitor 2 4.08 3.88
NM_001002236 SERPINA1 Serpin peptidase inhibitor, clade A 3.99 3.21
NM_002905 RDH5 Retinol dehydrogenase 5 3.95 3.81
NM_025181 SLC35F5 Solute carrier family 35, member F5 3.50 4.28
NM_199511 CCDC80 Coiled-coil domain containing 80 3.25 3.29
NM_001902 CTH Cystathionase 3.05 4.04
NM_003764 STX11 Syntaxin 11 2.95 2.05
NM_002599 PDE2A Phosphodiesterase 2A 2.81 3.48
NM_012242 DKK1 Dickkopf homolog 1 2.74 5.49
NM_000358 TGFBI Transforming grow th factor, beta-induced 2.51 2.43
BC071561 LRIG1 Leucine-rich repeats and immunoglobulin-like domains 1 2.43 2.03
NM_032169 ACAD11 Acyl-Coenzyme A dehydrogenase family, member 11 2.42 2.90
NM_021947 SRR Serine racemase 2.28 2.26
NM_019058 DDIT4 DNA-damage-inducible transcript 4 2.19 6.35
NM_000332 ATXN1 Ataxin 1 2.17 2.53
NM_006622 PLK2 Polo-like kinase 2 2.15 11.34
BC025968 BHLHB3 Basic helix-loop-helix domain containing, class B, 3 2.12 2.21
NM_020946 DENND1A DENN/MADD domain containing 1A 2.10 2.33
NM_001957 EDNRA Endothelin receptor type A 2.01 3.19
NM_002756 MAP2K3 Mitogen-activated protein kinase kinase 3 1.98 2.43
NM_015310 PSD3 Pleckstrin and Sec7 domain containing 3 1.95 2.32
NM_003012 SFRP1 Secreted frizzled-related protein 1 1.94 2.69
NM_021021 SNTB1 Syntrophin, beta 1 1.88 2.20
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NM_003155 STC1 Stanniocalcin 1 1.81 1.72
NM_001966 EHHADH Enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase 1.81 3.73
NM_015046 SETX Senataxin 1.79 1.88
BC004121 OCEL1 Occludin/ELL domain containing 1 1.77 2.13
AY358949 TMEM205 Transmembrane protein 205 1.75 1.88
NM_033446 FAM125B Family w ith sequence similarity 125, member B 1.74 4.83
NM_006762 LAPTM5 Lysosomal associated multispanning membrane protein 5 1.73 4.57
NM_004780 TCEAL1 Transcription elongation factor A (SII)-like 1 1.72 2.08
NM_005100 AKAP12 A kinase (PRKA) anchor protein (gravin) 12 1.72 1.88
NM_139314 ANGPTL4 Angiopoietin-like 4 1.68 2.62
NM_015990 KLHL5 Kelch-like 5 1.67 1.75
NM_003619 PRSS12 Protease, serine, 12 1.66 1.84
NM_003326 TNFSF4 Tumor necrosis factor (ligand) superfamily, member 4 1.66 2.03
NM_006621 AHCYL1 S-adenosylhomocysteine hydrolase-like 1 1.66 1.70
NM_005347 HSPA5 Heat shock 70kDa protein 5 1.65 2.02
NM_006226 PLCL1 Phospholipase C-like 1 1.65 3.23
NM_153268 PLCXD2 Phosphatidylinositol-specif ic phospholipase C, X domain containing 2 1.64 3.18
NM_021623 PLEKHA2 Pleckstrin homology domain containing, family A 1.63 1.94
NM_138578 BCL2L1 BCL2-like 1 1.62 1.89
NM_006379 SEMA3C Sema domain, immunoglobulin domain (Ig), short basic domain, secreted 3C 1.62 3.65
NM_016303 WBP5 WW domain binding protein 5 1.62 2.09
NM_000960 PTGIR Prostaglandin I2 (prostacyclin) receptor 1.61 2.00
NM_001083899 GP6 Glycoprotein VI 1.61 2.65
NM_001080503 CCDC159 Coiled-coil domain containing 159 1.61 2.57
NM_002204 ITGA3 Integrin, alpha 3 1.60 2.62
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Table 1: Genes regulated by wild-type or mutant p53.
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line was performed in parallel. It was found that 1952 
genes were regulated by wild-type p53 in this system 
and there was a considerable overlap between these 
genes with the published bone fide targets of wild-type 
p53 [20] (Fig. 1E). Interestingly, the majority of the core 
genes (54/59) identified from the gene profiling of p53 
mutants were also modulated by wild-type p53, although 
this represents only 3% of the total wild-type targets 
(54/1952) (Fig. 1F). To validate our observations from the 
expression microarrays, we subsequently determined the 
expression of ten putative targets of wild-type and mutant 
p53 through quantitative real-time PCR analysis (Fig. 
2). Indeed, all ten genes were significantly upregulated 
upon induction of either wild-type p53 or the p53 R175H, 
R248Q or R282W mutants, albeit to differing extents. 
Importantly, the inducing agent (PonA) did not up-
regulate the expression of these genes in the parental (p53 
deficient) H1299 cell inducible line (Fig. S2). In order 
to prove that the H1299 inducible system utilized in this 
study was indeed a genuine representation of the wild-
type p53 response, we showed that inducible expression 
of wild-type p53, but not the mutant form, was able to 
transactivate the classical “tumor suppressor” targets 
including p21, FAS, GADD45A and MDM2 (Fig. S3). 
Thus, we concluded that these core targets transactivated 
by both wild-type and mutant p53 may represent a set of 
genes that are functionally distinct from the majority of 
tumour suppressor target genes transactivated by wild-
type p53. 

Our global gene expression profiling of mutant p53 
in H1299 cells revealed five genes, METTL7B, GPR17, 
TMCC3, NR2F2 and INO80C, that are specifically up-
regulated by all p53 mutants, but not wild-type p53 (Table 
1). We investigated if these genes (plus the previously 
validated mutant p53 target genes from Fig. 2) were also 
regulated by endogenous mutant p53. Knockdown of 

endogenous p53 R273H in MDA-MB-468 cells resulted 
in a reduction of expression of METTL7B, GPR17, 
SERPINA1, STX11, DKK1, INO80C, BCL2L1, LAMC2 
and NR2F2, thus implicating these genes as constitutively 
activated targets of an endogenously-expressed mutant 
p53 (Fig. 3). 

We next assessed the kinetics of target gene 
transactivation by mutant p53 over an extended time 
course using real-time PCR. The five mutant p53-
specific targets were selected for this study (Fig 4A). 
Transactivation kinetics were also examined following 
wild-type p53 induction to ensure that these genes were 
genuine mutant p53-specific targets. Surprisingly, wild-
type p53 could also significantly increase the expression 
of all of these genes, albeit to a lesser extent and with 
altered kinetics (Fig. 4B). Collectively, these studies have 
revealed that the mutant p53 transcriptional landscape is 
nested within a small subset of wild-type p53 responsive 
genes. We propose that the shared wild-type and mutant 
p53 target genes identified through gene expression 
profiling represent the oncogenic transcriptional activities 
of p53. Indeed, none of these 59 genes are present in the 
list of bone fide p53 target genes responsible for its tumor 
suppression activities [21]. 

Mutant p53 target genes involve the canonical 
p63 signalling network

We next explored if the altered expression levels 
of the 59 common targets of wild-type and mutant p53 
were mediated through a direct or indirect mechanism. 
Intriguingly, the novel mutant p53 target genes identified 
from expression profiling included genes previously 
published as direct targets of p53 (PLK2, DKK1 and 
DDIT4) [22-24]. We therefore employed an in silico 
approach to further explore a possible involvement of 

Figure 3: Endogenous mutant p53 regulates gene expression. Silencing of endogenous mutant p53 R273H expression in MDA-
MB-468 cells by a specific short hairpin RNA (sh-p53) resulted in a decrease in the basal expression of the indicated mutant p53 target 
genes.
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canonical p53 regulation of the 59 novel mutant p53 target 
genes listed in Table 1. Indeed, p53scan revealed that 54% 
(32/59) of these mutant p53 targets contained at least one 
putative p53 response element (RE) in their upstream 
promoter region, first intron or 3’UTR (Table S1A). To 
experimentally validate this in silico analysis, we selected 
six genes (PLK2, DKK1, METTL7B, OCEL1, TMEM205 
and TFPI2) for chromatin immunoprecipitation (ChIP) 
with wild-type p53. Indeed, ChIP analyses subsequently 
confirmed the recruitment of wild-type p53 to putative 
p53-REs identified in all six of these gene promoter 
regions (Fig. 5). 

Interestingly, we observed that the p53 consensus 
binding sequence derived from the promoters of the mutant 
p53 target genes differs subtly from that of the published 
p53-RE [25] (Fig. 6A). Furthermore, this mutant p53-RE 
sequence also deviated subtly from the p53-REs identified 
in genes uniquely transactivated by wild-type p53 in our 
expression profiling (Fig. 6A; Table S1B). In fact, these 
identified p53 binding sites in the promoters of the mutant 
p53 target genes resembled more closely the published 
p63-RE [26] (Fig. 6A). Therefore, we speculated that 
these genes may also represent direct p63 target genes. 
We performed p63scan and identified a similar frequency 
of putative p63-REs in the regulatory elements of these 
59 mutant p53 target genes (Table S1C). Next, we 
investigated if endogenous p63 could associate with the 
putative p63 binding sites in the six mutant p53 targets 
with validated p53-REs. ChIP analyses demonstrated 
that silencing of endogenous p63 significantly reduced 
the amount of p63 bound to the p63-REs in the promoter 
regions in all six genes tested (PLK2, DKK1, METTL7B, 
OCEL1, TMEM205 and TFPI2) in the non-malignant 
MCF10A breast epithelial cell line (Fig. 6B). We also 
examined if p63 constitutively regulated the expression 
of these genes. Silencing of p63 in MCF10A cells resulted 
in a 10 fold and 3.5 fold increase in the expression of 
DKK1 and METTL7B, respectively (Fig. 6C). These 
findings provide evidence that DKK1 and METTL7B are 
direct targets of p63-mediated repression. In contrast, 

knockdown of p63 was associated with a decrease in the 
expression of PLK2, OCEL1, TMEM205 and TFPI2 (Fig. 
6C), implicating these genes as targets for constitutive up-
regulation by p63. 

Mutant p53 is co-recruited with p63 to the 
promoters of its target genes

Our findings thus far suggest that the global targets 
of mutant p53 are also direct targets of p63. Furthermore, 
we also observed constitutive regulation of these genes 
by p63. Based on these results, we speculated that mutant 
p53 may be directly recruited to the promoters of its target 
genes with p63. Data from ChIP analyses were consistent 
with this hypothesis, as induced mutant p53 was found 
to be associated with these p63-REs in the promoters of 
PLK2, DKK1, METTL7B, OCEL1, TMEM205 and TFPI2 
in H1299 cells (Fig. 7A). These observations were not 
restricted to the inducible system, as in MDA-MB-468 
cells the endogenous p53 R273H mutant was also bound 
to these p63-REs (Fig. 7B). Further confirmation of 
mutant p53 recruitment to these sites was demonstrated 
using another endogenous p53 mutant (R280K) expressed 
in MDA-MB-231 (Fig. 7C). Thus, these results provide 
firm evidence that mutant p53 and p63 are co-recruited 
to these p63-REs. Silencing of p63 in MDA-MB-231 
cells resulted in complete dissociation of the endogenous 
p53 mutant from the promoter of TFPI2, suggesting that 
mutant p53 uses p63 as a molecular chaperone to tether 
to these promoter regions (Fig. 7D). Collectively, these 
data support a model where a small subset of wild-type 
p53 transactivated targets are also the targets that drive 
mutant p53 gain-of-function. Transactivation by mutant 
p53 is achieved by the recruitment of p63 as a molecular 
chaperone that enables mutant p53 to bind to the promoters 
of these target genes.
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Mutant p53 induces a pro-invasive secretome

An assessment of the predicted cellular localization 
of the 59 identified mutant p53 target genes revealed 
a remarkable enrichment of secreted (31%) or 
transmembrane (29%) proteins (Table S2). Thus, we 
speculated that the oncogenic transcriptional activities of 
mutant p53 are manifested through aberrant control of the 
cancer cell secretome. Using the inducible mutant p53 cell 
lines, we examined if the expression of p53 mutants could 
drive the release of pro-invasive factors. Conditioned 
medium was collected from either un-induced or induced 
p53 R248Q mutant cells following 96 hours of induction. 
These conditioned media were separately added in a 
50:50 dilution to the primary ZR-75-1 breast epithelial 
cancer cells and incubated for an additional 96 hours. 
The capacity of these conditioned ZR-75-1 cells to invade 
through matrigel was subsequently assessed. ZR-75-1 
cells cultured in the presence of ‘un-induced’ conditioned 

medium lacked the ability to invade, consistent with the 
epithelial characteristics of this cell line [27]. However, 
exposure of ZR-75-1 cells to conditioned medium 
from H1299 cells with induced expression of the p53 
R248Q mutant enabled the cells to acquire the capacity 
to invade through matrigel (Fig. 8, right panel). These 
results suggest that the expression of mutant p53 can 
induce the secretion of pro-invasive factors into the 
surrounding microenvironment. Importantly, the pro-
invasive secretome induced by the p53 R248Q mutant 
was not restricted to driving invasion of only the ZR-75-1 
cells, as similar conditioned media also drove invasion of 
the parental unmodified H1299 cells (Fig. 8, left panel). 
Lastly, these findings were confirmed using a different 
p53 mutant, as conditioned media produced following 
induction of the p53 R175H mutant in H1299 cells could 
also drive the release of a pro-invasive secretome (Fig. 
S4). These observations implicate a role for mutant p53 
in the induction of a pro-invasive cancer cell secretome.
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Figure 8: Mutant p53 induces a pro-invasive secretome. EI-H1299 cells with inducible expression of the p53 R248Q mutant were 
cultured in the presence of PonA (2.5 µg/mL) or vehicle control for 96 hours. Independent cultures of H1299 or ZR-75-1 were grown in a 
dilution (50:50) of this conditioned media for 96 hours (supplemented to 10% FCS) and their invasive potential subsequently assessed in 
real-time using xCelligence (Roche).
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DISCUSSION

The broad range of cancer-associated p53 mutations 
and the variant genetic background of commonly used 
cancer cell lines have largely hampered the ability to gain a 
complete understanding of the global oncogenic activities 
of mutant p53. We have overcome this challenge through 
the generation of a panel of isogenic H1299 derivatives 
with the inducible expression of six common p53 hot 
spot mutants. This inducible expression system provides 
a sensitive platform to capture the direct transcriptional 
events driven by mutant p53. The expression profiling of 
this comprehensive panel of cell lines demonstrated that all 
p53 mutants share a common core set of 59 target genes. 
Surprisingly, the transcriptional reprogramming by mutant 
p53 was not related to the variant biophysical properties of 
the mutated protein. Such findings question the relevance 
of the ‘DNA contact’ or ‘structural’ classification of p53 
mutants in relation to their oncogenic activities. Rather 
they are consistent with recent work demonstrating the 
critical role of the conserved aggregation signal in p53 
contributing to the activity of mutant p53 proteins [28]. 
Furthermore, the transcriptional regulation of these 59 
genes cannot be considered as a feature specific to mutant 
p53, as these genes were also demonstrated to represent 
a small (3%) proportion of the direct transcriptional 
activities of wild-type p53 in the H1299 inducible system. 
Thus it is tempting to speculate that these 59 genes 
represent the oncogenic ‘dark side’ of p53. This notion 
is supported by a previous report that one of these genes, 
PLK2, is an oncogenic direct target of wild-type p53 [29]. 

This study is the first to demonstrate that the gain-
of-function of mutant p53 during tumorigenesis involves 
a collaborative approach with the p63 transcription factor 
to aberrantly reprogram the cancer cell transcriptome. 
Over half of the 59 mutant p53 target genes contained 
at least one putative p63 response element (Table S1C), 
suggesting that p63 is a critical molecular chaperone 
for mutant p53. Existing evidence suggests that mutant 
p53 also aberrantly modulates target gene expression by 
interacting with the NF-Y and VDR transcription factors 
[30, 31]. Thus, findings from this study implicate p63 as 
another key transcription factor utilized by mutant p53 to 
drive its target gene expression. 

Recent insights into the global binding sites of 
p63 revealed that this transcription factor controls a 
remarkably complex downstream transcriptional network. 
A genome-wide tiling array identified approximately 
5,800 promoters as direct putative targets of p63 [32]. The 
prolific DNA binding properties of the p63 transcription 
factor were further highlighted through a recent ChIP-seq 
approach which revealed 11,369 binding sites throughout 
the genome, with 94% of these sites containing a 
consensus p63-RE [26]. If mutant p53 was associated 
with p63 at each of its target promoters across the entire 
genome, then one would expect mutant p53 to drive the 

aberrant expression of a plethora of genes. However, our 
expression profiling of six different inducible mutant 
p53 cell lines and in silico analysis revealed a restricted 
set of genes that are regulated by both mutant p53 and 
p63, indicating that the co-recruitment of p63 and mutant 
p53 might require stringent tertiary binding structure. 
Alternatively, additional transcription factors might 
present within the complex to assist with the adaptation 
of a protein scaffold capable of recruiting mutant p53 and 
p63 onto the target gene promoter.

A widely accepted gain-of-function mechanism of 
mutant p53 involves its ability to sequester the TAp63 
isoform from its canonical DNA response element 
and thereby disrupt its downstream anti-metastatic 
transcriptional networks [5, 19]. However, it is unclear if 
the ∆Np63 isoform shares a similar fate in the presence 
of mutant p53. Our understanding of the regulation of 
∆Np63 by mutant p53 is largely limited by the absence 
of an antibody that can specifically detect endogenous 
∆Np63. Previous studies have circumvented this limitation 
through the use of cell lines that highly express ∆Np63. 
The p63 ChIP analyses within this study were performed 
using the MCF-10A breast epithelial line which expresses 
abundant levels of the ∆Np63 isoform, thus it is tempting to 
speculate that ∆Np63 is the molecular chaperone used by 
mutant p53 to tether to its target promoters. Nevertheless, 
a role for the TAp63 isoform in this model cannot be 
excluded, as our quantitative expression analysis of p63 
isoforms suggests that H1299, MB-468 and MB-231 cells 
almost exclusively express the TAp63 isoform (data not 
shown).

Our expression profiling analysis has revealed that 
MAP2K3 is amongst the mutant p53 transcriptional 
landscape. This kinase possesses biological functions 
consistent with a role in oncogenesis, as up-regulation 
of MAP2K3 is associated with the invasion and 
progression of breast tumors and gliomas [33]. Although 
we demonstrated that MAP2K3 is a direct target for 
mutant p53 transactivation (Fig. 2), in silico analysis of 
the MAP2K3 promoter region did not detect a consensus 
p63 response element, suggesting that mutant p53 may 
regulate this gene through a p63-independent mechanism. 
Indeed, mutant p53 was recently shown to associate 
with the MAP2K3 promoter through the use of NF-Y 
as a molecular chaperone [34]. Ectopic expression of 
MAP2K3 was able to rescue the proliferative defect 
associated with knockdown of an endogenous p53 
mutant, thus demonstrating that MAP2K3 transactivation 
contributes significantly to the oncogenic functions of 
mutant p53 [34]. 

The downstream effectors of the 59 wild-type 
and mutant p53 target genes were highly enriched with 
genes that encode secreted protein products (Table S2). 
We have directly demonstrated that mutant p53 induces 
a pro-invasive secretomes, thus providing insight into 
the mechanism underlying the widely established role 
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for mutant p53 in cancer cell invasion [5, 6, 9, 15]. Such 
observations are reminiscent of the hyper-secretory 
phenotype released from senescent cells referred to as 
the senescence-associated secretory phenotype (SASP) 
[35]. The SASP contains a plethora of biologically active 
molecules that collectively remodel the local and systemic 
tissue microenvironment [36]. Surprisingly, wild-type p53 
was shown to suppress the SASP [36]. This observation 
is conflicting with the widely accepted role of p53 in the 
induction of cellular senescence, albeit in some cell types. 
Although we are yet to understand the complex role of 
p53 in the regulation of senescence and the SASP, recent 
evidence suggests that the activity of the mTOR pathway 
is the major factor influencing the senescent outcome upon 
p53 induction [37-40]. It is evident from this study that 
mutant p53 has not retained these traits of its wild-type 
counterpart, as it induced a pro-invasive secretome in this 
cell-based system. As such, our findings highlighting the 
divergent nature between wild-type and mutant p53 in the 
regulation of the secretome, thus identifying exciting new 
avenues to therapeutically target mutant p53-expressing 
tumors.

MATERIALS AND METHODS

Cell lines and inducible expression system

MCF10A, MDA-MB-231 and MDA-MB-468 
cell lines were purchased from American Type Culture 
Collection (ATCC) and cultured in the recommended 
media supplemented with 10% FCS. The generation of 
ponasterone A (PonA) inducible H1299 derivatives has 
been previously described [15, 41]. Using p53 expression 
constructs encoding either wild-type p53 or the R175H, 
R248Q, R248W, R249S, R273H or R282W mutants 
(kind gifts from Dr Chikashi Ishioka, Dr Sumitra Deb 
and Dr Maria Lung), a panel of ecdysone-inducible 
H1299 cell lines were generated. Cell lines with silenced 
expression of p53 or p63 were generated using a pGIPZ 
lentiviral shRNAmir system (Open BioSystems). Briefly, 
HEK-293T cells were seeded at 50% confluence in a 6 
well- format and transfected using the indicated pGIPZ 
lentiviral shRNAmir construct and the translentiviral 
pGIPZ packaging system (Open BioSystems) following 
the manusfacturer’s protocol. Following 48 hours, growth 
medium containing viral particles was filtered and added 
to recipient cells seeded at 50% confluence for a further 
48 hours. Growth medium was subsequently changed and 
cells were selected in puromycin. Polyclonal populations 
of selected cells were used for the necessary experiments.

Western blot analysis and antibodies

Western blot analysis was performed as previously 
described [42]. Antibodies used were: mouse anti-p53 
DO-1 (Santa Cruz Biotechnology, Santa Cruz, CA), 
mouse anti-β-actin (Sigma Aldrich), mouse anti-p21 
(Thermo Scientific), mouse anti-MDM2 (clone SMP14; 
Santa Cruz), mouse anti-p63 H-129 (Santa Cruz) or anti-
mouse IgG HRP-conjugated (GE Healthcare). 

Expression microarray analysis

The H1299 p53-WT, R175H, R248Q, R248W, 
R249S, R273H and R282W inducible cell lines were 
treated in the presence of 2.5 μg/mL PonA (or vehicle 
control) for 24 hours. Cells were collected and total RNA 
extracted using RNeasy mini kit (Qiagen) according to 
the manufacturer’s protocol. Expression profiling was 
performed using Affymetrix Human Gene 1.0 ST array as 
per manufacturer’s protocol. Two independent biological 
replicates of either PonA induced or vehicle control 
treated cultures were performed per cell line.

Real time PCR analysis

The mRNA expression levels of specific genes of 
interest were determined by real time RT-PCR analysis 
using specific forward and reverse primers. Briefly, total 
RNA was extracted from cells using the RNeasy mini kit 
(Qiagen) according to the manufacturer’s protocol. cDNA 
was synthesized from 1 μg RNA using random primers 
(Promega) and RNase H- reverse transcriptase (Promega) 
as per manufacturer’s protocol. Primers used for specified 
genes are listed in Supplementary Table 3 (Table S3). Real-
time PCR reactions were performed on a BioRad iCycler 
(BioRad) using IQ SYBR Green Supermix (BioRad) 
as previously described [43]. Relative target mRNA 
expression of specific genes was subsequently determined 
by the ΔΔCT method, with the levels of gene expression 
normalised to the average Ct value of the peptidylpolyl 
isomerise G (PPIG) housekeeping gene.

Chromatin immunoprecipitation (ChIP)

The indicated H1299 p53 inducible cell lines were 
treated with or without 2.5μg/mL PonA for 24 hours to 
induce wild-type or mutant p53 expression. Cells were 
collected and DNA and proteins were cross-linked by 
addition of 1% formaldehyde for 9 min with rotation 
at RT. Cold glycine (625mM final concentration) was 
added to stop cross-linking, mixed and centrifuged for 5 
minutes at 300g. Cells were subsequently washed twice 
with 50 mL cold PBS. Cell pellets were lysed in 400 
μL SDS Lysis buffer (1% SDS, 10mM EDTA, 50mM 
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Tris-HCl pH 8.1) with protease inhibitors, followed by 
sonication (6 × 15 sec; 30% amplitude, 3mm tip, Sonics 
Vibra Cell sonicator). Following clarification, lysates 
were diluted 10-fold in dilution buffer (0.01% SDS, 1.1% 
Triton X-100, 1.2mM EDTA, 16.7mM Tris-HCl pH 8.1, 
167mM NaCl) and inputs taken. Lysates were precleared 
with Protein A sepharose beads with BSA and sonicated 
salmon sperm DNA (ssDNA) at 4ºC with rotation for 2 
hours. Lysates were subsequently incubated with 4 μg 
of anti-p53, anti-p63 or mouse IgG at 4ºC with rotation 
overnight. Immune complexes were precipitated with 
Protein A sepharose with ssDNA at 4ºC with rotation 
for 2 hours. Beads were washed once each with low 
salt immune complex wash buffer (20mM Tris-HCl pH 
8, 150mM NaCl, 2mM EDTA, 1% Triton X-100, 0.1% 
SDS), high salt immune complex wash buffer (20mM 
Tris-HCl pH 8, 500mM NaCl, 2mM EDTA, 1% Triton 
X-100, 0.1% SDS), LiCl immune complex wash buffer 
(10mM Tris-HCl pH 8, 1mM EDTA, 0.25M LiCl, 1% NP-
40, 1% sodium deoxycholate) and twice with TE buffer 
(10mM Tris-HCl pH 8, 1mM EDTA). Specific immune 
complexes were eluted in 250μL SDS Elution Buffer 
(1% SDS, 0.1M NaHCO3). Cross-links were reversed 
by addition of 10μL 5M NaCl and heating at 65ºC for 16 
hours, followed by addition of 10μL 0.5M EDTA, 20μL 
1M Tris-HCl pH 6.5 and 4μL 10mg/mL Proteinase K 
and heating at 45ºC for 1 hour. DNA was purified using 
a PCR Purification kit following the manufacturers 
protocol (Qiagen). Levels of gene specific promoter 
DNAs were determined by real-time PCR using primers 
spanning the p53 response elements (Table S3). Relative 
binding was normalised against two independent negative 
control regions of non-related genomic DNA (adjacent to 
β-GLOBIN and CDC25B genes). ChIP data is presented 
as the mean ± SE of between two and four independent 
biological replicates.

Cell proliferation assays 

Proliferation assays were performed in real-time 
through collection of phase contrast images at 30 minute 
intervals using Incucyte (Essen). The indicated H1299 p53 
inducible cells were seeded at ~10% confluence, induced 
with PonA (2.5µg/mL) and their proliferation monitored 
through the acquisition of phase contrast images at 15 
minute intervals and analysed using Incucyte software 
(Essen). 

Cell cycle analysis

Both adherent and detached cells in the growth media 
were harvested, washed twice with cold PBS, fixed in ice-
cold 70% ethanol and incubated overnight at 4°C. Cells 
were stained with 50 μg/mL propidium iodide solution 
(Sigma Aldrich) and 100 μg/mL RNase A (Sigma Aldrich) 

for 45 minutes at 37°C. DNA content was determined with 
the use of a FACSCalibur™ flow cytometer (BD, CA, 
USA) with cell cycle profiles analyzed using WinMDI 
v2.8 software (Scripps Research Institute).

In silico analysis of p53 and p63 response elements

p53scan or p63scan [44] were used to identify 
putative p53-REs or p63-REs. Gene sequences were 
derived from NCBI, with Aceview used to define the 
classical promoter region (10kB upstream from the 
initiation site), 1st intron or 3’UTR. 
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