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Utilizing DeepSqueak 
for automatic detection 
and classification of mammalian 
vocalizations: a case study 
on primate vocalizations
Daniel Romero‑Mujalli1*, Tjard Bergmann1, Axel Zimmermann2 & Marina Scheumann1

Bioacoustic analyses of animal vocalizations are predominantly accomplished through manual 
scanning, a highly subjective and time-consuming process. Thus, validated automated analyses 
are needed that are usable for a variety of animal species and easy to handle by non-programing 
specialists. This study tested and validated whether DeepSqueak, a user-friendly software, developed 
for rodent ultrasonic vocalizations, can be generalized to automate the detection/segmentation, 
clustering and classification of high-frequency/ultrasonic vocalizations of a primate species. Our 
validation procedure showed that the trained detectors for vocalizations of the gray mouse lemur 
(Microcebus murinus) can deal with different call types, individual variation and different recording 
quality. Implementing additional filters drastically reduced noise signals (4225 events) and call 
fragments (637 events), resulting in 91% correct detections (Ntotal = 3040). Additionally, the detectors 
could be used to detect the vocalizations of an evolutionary closely related species, the Goodman’s 
mouse lemur (M. lehilahytsara). An integrated supervised classifier classified 93% of the 2683 calls 
correctly to the respective call type, and the unsupervised clustering model grouped the calls into 
clusters matching the published human-made categories. This study shows that DeepSqueak can 
be successfully utilized to detect, cluster and classify high-frequency/ultrasonic vocalizations of 
other taxa than rodents, and suggests a validation procedure usable to evaluate further bioacoustics 
software.

Animal bioacoustics is a growing field in basic and applied research. One central research topic is the develop-
ment of bioacoustic monitoring systems (e.g., Refs.1–5) to improve animal management by monitoring animal 
welfare, animal health, animal behavior and animal reproductive state (e.g., Refs.6–12) or to monitor animal abun-
dance for animal conservation (e.g., Refs.13–18). In the last decades, animal bioacoustic research especially in the 
ultrasonic range has been largely limited by technical issues such as frequency characteristics of the microphone, 
sampling rates, working memory of the recorder or storage capacity. However, these technical hurdles have been 
overcome by recent technological advancement. Thus, today, researchers are able to record animal vocalizations, 
even in the ultrasonic range, 24 h per day for several days per week (e.g., Song Meter model SM4/SM4BAT-FS 
(Wildlife Acoustics Inc., Maynard, MA, USA), AURITA19). Therefore, today in animal vocalization research, 
bioacoustic analysis of vocal recordings is the limiting factor and not technical limitations of the recording.

The traditional method used for screening vocal recordings is visual scanning and classification of vocali-
zations based on the sonogram20,21. However, manual scanning and classification are unfeasible for collecting 
thousands of vocalizations. Additionally, the success of this approach often depends on the knowledge and expe-
rience of the analyst21. Thus, we need new automatic analysis tools to speed up the screening of these large data 
streams, and to detect and classify call types independently from the experience of the human observer. Animal 
bioacoustics researchers have developed several detection systems for animal vocalizations using mathematical 
algorithms (e.g., Refs.3,4,11,22). Although the usage of these systems is widespread in specific subgroups of the 
bioacoustic community depending on the animal group of interest (e.g., PAMGuard in the marine mammal 
community22, Kaleidoscope in the bat community23, MUPET in the rodent community4), these rarely overcome 
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the taxa boundaries so that they can be used by the whole bioacoustic community including small and large bod-
ied terrestrial, aquatic mammals and birds. One reason is that animal vocalizations vary largely in the frequency 
range (from infrasound to ultrasound) and in their acoustic structure (harmonic to noisy calls), making it difficult 
to develop a general animal vocalization recognition system. Thus, most tools were designed for a specific animal 
species and/or vocalization types (e.g., birds1,24, rodents2,25, primates26–31, cetacea3,32,33, elephants34,35, pigs9,11,12, 
bats36,37). Another reason is that these programs are difficult to master for non-specialists because some of these 
tools require a fundamental understanding of bioacoustics and programing. Thus, software is needed which can 
be used for a wide variety of animal species and is easy to handle for non-specialists.

In 2019, DeepSqueak25, a promising new software suited for automatic detection, classification and clustering 
of ultrasonic vocalizations (USV) was introduced to the animal bioacoustic community. While originally built 
with focus on ultrasonic mice and rat vocalizations ranging from 20 to 115 kHz, the DeepSqueak GUI (graphi-
cal user interface) is intuitive and parameters can be adjusted for other species without pre-required skills in 
programing. The core feature of DeepSqueak is its state of the art application of a machine-learning algorithm. 
The algorithm is similar to convolutional neural networks (CNN) used for automatic speech recognition sys-
tems such as Alexa, Siri or Cortana38,39. Using faster regional-convolutional neural networks (Faster-RCNN)40, 
DeepSqueak has an increased call detection rate, a reduction in the number of false positives, a reduction in 
analysis time compared to older detection software (such as Ultravox (Noldus, Wageneing, NL)5, MUPET4 or 
Xbat41). DeepSqueak allows multiple Faster-RCNN centered approaches for automatic USV detection. In addi-
tion, DeepSqueak has a GUI that enables users to conduct manual reviewing, editing and labeling of detection 
files. It also integrates supervised classification networks and unsupervised clustering models that can be trained 
and used for further analyses of data. Supervised classification networks can be trained based on detections 
labeled according to, for example, user pre-defined clusters (call types). In the unsupervised approach, these 
clusters are created based on frequency, shape parameters and duration of vocalizations either by the k-means 
or by dynamic time-warping (experimental algorithm) method. The supervised approach has the advantage to 
automate, and therefore speed up the identification of the vocal repertoire of a species based on information from 
previously described call categories27. The unsupervised model has a less controllable outcome but is unbiased 
to priori assumptions of the observer.

In the present study, we tested whether DeepSqueak can be utilized to analyze high-frequency to ultrasonic 
vocalizations in a primate species, the gray mouse lemur (Microcebus murinus), and whether the detector’s abil-
ity is sufficiently general to be used for other mouse lemur species. Mouse lemurs are nocturnal strepsirrhine 
primates endemic to the dry forest of Madagascar42. They are able to produce calls and to perceive acoustic infor-
mation from audible to ultrasonic frequency range (auditory frequency range: 800 Hz to 50 kHz43,44; voice pro-
duction range: 400 Hz to 30 kHz of the fundamental frequency45–47). The best studied species is the gray mouse 
lemur for which to date ten call types are described (e.g., Refs.48–50). Seven call types (Grunts, Croaks, Tsaks, Long 
whistles, Short whistles, Zips and Trills, Fig. 1) are typical for the adult vocal repertoire. Thereby, Grunts and 
Croaks are low-frequency noisy calls, whereas Tsaks, Short whistles, Long whistles, Trills and Zips are harmonic 
calls uttered in the high-frequency to ultrasonic range and differ in the contour of the fundamental frequency. 
Tsaks and Short whistles are uttered in series of variable duration during agonistic or alarm situations, whereas 
Long whistles, Trills and Zips are uttered singly. Long whistles are uttered during sleeping group formation and 
mating mainly by females. Trill is the acoustically most complex call consisting of several syllables, uttered during 
various social interactions (e.g., mating51, mother-infant reunions52 and sleeping group formation53). Zips are 
soft calls often associated with Trills, whose social function remains uncertain. Mouse lemur calls carry indexical 
cues encoding kinship54,55, familiarity (dialects56), individual identity47,57 and hormonal status58.

The aim of our study was to test whether DeepSqueak developed for mouse and rat vocalizations can be uti-
lized to detect, cluster and classify vocalizations of a primate, the gray mouse lemur, uttered in the high-frequency 
to ultrasonic range. Additionally, we investigated whether detectors trained for M. murinus can also be used 
to detect vocalizations of a closely related mouse lemur species, M. lehilahytsara. Defining call types through 
visual inspection is especially difficult when differences among call types are not discrete but continuous59,60 (e.g., 
transitions from Short whistle to Tsak). Thus, we tested whether supervised classifier can be used to objectively 
label mouse lemur vocalization. Additionally, we explored to which extent clusters of mouse lemur vocalization 
defined by the algorithm (unsupervised model) match the already established human-based call type categories 
reported in the literature48–50.

Methods
Data sets and preparation.  The data sets used in this study originated from the sound archives of the 
Institute of Zoology, University of Veterinary Medicine Hannover, Germany storing sound recordings from 
the captive self-sustaining mouse lemur breeding colony of the institute (license: AZ 33. 12-42502-04-14/1454; 
AZ33. 19-42502-11A117). All recordings were made in a sound-attenuated room at the Institute of Zoology. 
The sound recordings were obtained during various independent behavioral studies (e.g., social encounter 
paradigm, playback study43,47) conducted between 2003 and 2012 using recording equipment sensitive to the 
high-frequency to ultrasonic range (see Supplementary Table S1 for details on the experimental paradigms and 
recording equipment). We used only vocalizations from adult animals, since these vocalizations are well stud-
ied (e.g., Refs.49,50). Details on the acoustic parameters of the studied call types can be found in Supplementary 
Tables S2 and S3.

For the training data set, we used 2123 vocalizations belonging to the five most common call types to repre-
sent the high-frequency/ultrasonic adult vocal repertoire49,50. The chosen types range from short to long calls, 
from unmodulated to highly modulated calls, as well as weak to strong amplitude vocalizations providing a great 
insight into the general performance of DeepSqueak to identify diverse syllable structures as well as detection 
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performance on amplitude variation rich syllable regions and calls. The training data set was obtained from 27 
preselected recording sessions and recorded from 24 individuals or groups (in the case where the sender could 
not be reliably determined, because the observer could not hear and spatially locate the sender of the ultrasonic 
call). The recording sessions originated from the social encounter, the handling and the mother-infant reunion 
paradigm (Supplementary Table S1) and included different recording qualities to increase the robustness of the 
detector against individual variation in the call structure and differences in the recording quality. To validate the 
detectors, we used the standardized and experimental data sets (evaluation data sets; Table 1).

Figure 1.   Vocal repertoire of the gray mouse lemur (M. murinus) based on Zimmermann (2018)49,50.

Table 1.   Description of the training, standardized and experimental data sets used in this study. The table 
represents the number of calls for each call type included in the respective data set. Ncalls number of calls, 
NInd/groups number of individuals or groups from which the calls were emitted. a Zips occur rarely in a sufficient 
signal-to-noise ratio. However, because they are highly stereotyped, this low number of Zips turned out to be 
sufficient to train the detector.

Data set

Trill Long whistle Short whistle Tsak Zip

Ncalls NInd/groups Ncalls NInd/groups Ncalls NInd/groups Ncalls NInd/groups Ncalls NInd/groups

Training data set

Detection (2123 calls) 326 12 159 4 1109 6 519 5 10 1a

Classification and clustering (2257 calls) 302 52 186 24 1158 46 541 34 70 20

Standardized data set

Good-quality (450 calls) 50 42 50 22 150 40 150 29 50 19

Clipped (80 calls) 10 9 10 8 30 9 30 10 – –

Low-amplitude (80 calls) 10 7 10 10 30 10 30 10 – –

Overlaid (80 calls) 10 8 10 8 30 8 30 9 – –

Original experimental data set

M. murinus (3040 calls) 76 7 157 5 2582 8 195 6 30 7

M. lehilahytsara (1115 calls) 48 5 526 5 240 1 193 3 108 4
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The standardized data sets were used to test for the robustness of individual variation and recording quality 
(Fig. 2: 1b; for detailed information, see Supplementary Methods: Additional information on the preparation 
of the standardized data sets). The term standardized refers to the fact that we combined single vocalizations 
(not used in the training data set) of the sound archive to a single audio file to maximize the number of differ-
ent individuals/groups for the five trained call types (Long whistle, Trill, Zip, Short whistle, Tsak) and to test 
four different recording quality scenarios: good-quality, clipped, low-amplitude, overlaid calls (Table 1; for the 
definition of the quality scenarios, see Supplementary Methods: Additional information on the preparation of 
the standardized data sets). Whereas Long whistles, Trills and Zips are emitted singly, Tsaks and Short whistles 
are emitted in a series, ranging from five up to multiple hundred calls. To represent the natural structure of Tsaks 
and Short Whistles three continuous calls of a series were selected (as a compromise between real life occurrence 
and data evaluation) to test whether the detectors could detect the single calls within a series, which are separated 
by a short intercall-interval (< 200 ms)61. For each call type, the single calls/series were combined to a single 
audio file to test whether performance was consistent across different call types, using PRAAT (www.​praat.​org)62 
combined with GSUPraatTool 1.963 (for detailed information, see Supplementary Methods: Additional informa-
tion on the preparation of the standardized data sets). As original audio data contained intercall-intervals of 
background noise between calls, we added three seconds of white noise with an amplitude of 28 db between two 
consecutive calls that were combined into standardized data sets to simulate real life noise. For the good-quality 
standardized data set, 50 single calls/series were combined for each call type. For the clipped, low-amplitude 
and overlaid standardized data sets, ten single calls/series were used for each call type (Table 1). For Zips, there 
were only data available for the good-quality standardized data set.

The experimental data set was used to investigate the performance of the detector on original experi-
mental audio data (Fig. 2: 1c) recorded in social encounter experiments of M. murinus (ten recording ses-
sions = 140.11 min), which can contain multiple call types and background noise. To investigate whether the 
detectors can also be used to detect calls of an evolutionary closely related mouse lemur species, we selected 
ten recording sessions (50 min) recorded during social encounter experiments from M. lehlilahytsara (Table 1).

Procedures in the DeepSqueak program.  DeepSqueak25 (version 2.0; download link https://​github.​
com/​DrCof​fey/​DeepS​queak) was used on MATLAB (version 2018a). DeepSqueak mainly integrates three 
machine-learning models: Model (1) Faster regional convolutional neural network (Faster-RCNN), which 
detects signals of interest from filtered sonograms after applying a series of convolutions and filters (Detection 
task), Model (2) An acoustic-based classification neural network that classifies unlabeled data based on the 
spectral structure and duration of the calls (Classification task) and Model (3) An acoustic-based k-means unsu-
pervised clustering algorithm (Clustering task). The program integrates a method of robust contour detection, 
which consists in finding the frequency at maximum amplitude for each time point, and then cleaning the spec-
trogram by removing non-tonal features based on the concept of tonality (for more details see Ref.25). Based on 
the contour detection, temporal, spectral and tonality-related acoustic parameters were extracted automatically 
from the respective contour (see definition of the acoustic parameters in Supplementary Table S2).

In the following, we performed three different models (Fig. 2): Using model 1 we trained the detectors with 
the training data set. For the training procedure, DeepSqueak automatically generated two sub data sets a learn-
ing sub set and a testing sub set in a ratio of 8:2. When the detector reached high identification accuracy within 
the learning sub set, the detectors were tested on the testing subset (Fig. 2: 1a). Only when both subsets reached 
highest identification accuracy with the appropriate detectors, these detectors were tested using the evaluation 
data set (standardized and experimental data set, Fig. 2: 1b + 1c). Using model 2, we tested the acoustic-based 
supervised classification of call types and using model 3 we explored to which extent the unsupervised classifi-
cation matches the already published call type categories49,50. Thereby, model 1 is using a convoluted neuronal 
network based on image data (Fig. 2: 1a) to create Faster-RCNN-based detectors. In contrast, model 2 and 3 use 
only audio parameters to create a classifier and an unsupervised model (Fig. 2: 2 + 3). The supervised classifier 
creates an acoustic-based neural network using the spectral structure and duration of reference calls, while the 
unsupervised model creates audio-based clusters calculated by the k-mean algorithm. In both scenarios (super-
vised/unsupervised approach) all audio data is cumulatively analysed by DeepSqueak, therefore, using individual 
short audio files or merged audio data make no difference when creating audio-based networks in DeepSqueak.

Model 1: Detection task.  Training of the detectors.  The training of more than one detector was recommended 
by the DeepSqueak authors when call duration differs between call types25. In our test scenario, we manually 
sorted the calls in three duration-based groups (Long duration = Long Whistle & Trills; Short duration = Short 
Whistle & Tsak; Very Short duration = Zip; for detailed acoustic information, see Supplementary Tables S2 and 
S3). Therefore, we trained three detectors based on the training data: Long detector, Short detector, Very short 
detector (Fig. 2: 1a). The training of the faster RCNN detectors was based on a total of 4536 images (for detailed 
information, see Supplementary Method: Additional information on the settings of the training).

Evaluation of the detectors.  We validated the trained detectors by using the standardized and experimental 
data sets. The standardized data sets (Fig. 2: 1b) were used to test the robustness of the detector to individual 
variation in the acoustic structure of the calls as well as different recording problems affecting the quality in the 
audio recordings (good-quality, clipped, low-amplitude or overlaid calls). The experimental data sets (Fig. 2: 1c) 
were used to test how original data containing mixed call types were detected and to investigate the cross-taxa 
capacity of the detector. Thus, we investigated whether the detector can also be used to detect high-frequency to 
ultrasonic vocalizations of a closely related mouse lemur species, M. lehilahytsara.

http://www.praat.org
https://github.com/DrCoffey/DeepSqueak
https://github.com/DrCoffey/DeepSqueak
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Figure 2.   Scheme illustrating the three different models trained and evaluated in this study. Model (1) 
Detection task: (1a) Training the detectors using image-based CNN with the training data. Evaluation of 
the trained detectors with (1b) the standardized data and (1c) the experimental data. Model (2) Supervised 
classification: User defined call type network based on acoustic data. Model (3) Unsupervised model: k-means 
model based on acoustic data.
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All audio files of the standardized and the experimental data sets used in this study were screened by the 
algorithm in the frequency range of 5 to 50 kHz (for detailed information, see Supplementary Methods: Addi-
tional information on the procedure and setting of the detection task). To test whether the single detectors work 
as intended and can deal with individual variation of the calls, we tested the performance of the single detectors 
for all five call types using the good-quality standardized data set. We predicted that for Long whistles and Trills, 
the Long detector should show the best performance; for Short whistles and Tsaks, the Short detector; and for 
Zips, the Very short detector.

To estimate how robust the intended detectors are against variation in recording quality (clipped, low-ampli-
tude, overlaid calls), we compared the performance of the respective detectors between standardized data sets 
of the good-quality, clipped, low-amplitude and overlaid scenario.

The detectors could be selected individually (single detector) or simultaneously (multi-detector) within the 
DeepSqueak GUI if scientists are interested in detecting various call types at once. To test the performance of 
combined detectors using all three detectors simultaneously (multi-detector), we used the good-quality standard-
ized data sets. Preliminary analysis showed that the simultaneous use of multiple detectors increases the amount 
of false positives (personal observation). This occurs because the Short and the Very short detector identifies 
single syllables of the Trill or various call fragments of the same Long whistle as single calls. To filter these dou-
blet syllables and to merge fragments of a call, a function in R (v3.5.264; termed R-DS Filter) was developed and 
applied (for detailed information, see Supplementary Methods: Additional information on the R-DS Filter).

To test the detectors under real life condition, we used the experimental data set of M. murinus, which con-
tain various call types co-occurring in the same recording and which are often accompanied by background 
noise (e.g., scratching, digging of the animals). To reduce the effect of background noise, DeepSqueak offers the 
possibility to train a denoiser network (DS-Denoiser) to remove unwanted noise signals from detections. For 
this, 598 typical noise events (negative training samples) and 891 USV (positive training samples) were manu-
ally marked as correct or false detections in the DeepSqueak GUI and used to train the denoiser network. The 
confusion matrix based on a subsample of the training data showed that 62 of 63 noise events (98%) and 86 of 
86 USV events (100%) were correctly classified (Supplementary Fig. S1). After applying the DS-Denoiser, the 
output files were run through the R-DS Filter to minimize duplicates caused by simultaneously using the three 
detectors (see above).

Model 2: Supervised classification.  We trained an acoustic-based supervised network based on the training 
data and the standardized data set of good-quality calls, and tested the performance of the supervised network 
to classify gray mouse lemur vocalizations using real data obtained from social encounter experiments (experi-
mental data set; Fig. 2: 2). The data used to train the classifier network consisted of a total of 2257 representative 
calls (manually labeled by DRM) of good-quality selected from the previous detection training data set and the 
good-quality standardized data set (for detailed information, see Supplementary Methods: Additional informa-
tion on the procedure of the classification). The confusion matrix based on a subsample revealed that 20 of 21 
Long whistles (95%), 28 of 28 Trills (100%), 100 of 100 Short whistles (100%), 43 of 43 Tsaks (100%), four of four 
Zips (100%) were correctly classified (Supplementary Fig. S2).

To test the performance of the supervised network, the supervised classifier was applied to unlabeled detec-
tion files from the experimental data set of M. murinus.

Model 3: Unsupervised model—clustering task.  We explored the potential of a DeepSqueak built-in acoustic-
based unsupervised model to cluster mouse lemur vocalizations into categories defined by the algorithm inde-
pendently from human intervention. We tested the k-means model already implemented on DeepSqueak to 
automatically cluster the detected vocalizations into different categories65 (Fig. 2: 3). The unsupervised cluster-
ing was applied to the same detection files as the supervised classification. Thereby, we set the weighted inputs 
for the acoustic parameters characterizing the frequency, duration and contour of a call to 1 to have an equal 
contribution. Furthermore, we let the model automatically decide the optimal number of clusters based on the 
elbow method25 (setting: Max clusters: 50, replicate 100). Afterwards, we compared the obtained clusters (top 
categories) with the reported call types, already established in the literature for M. murinus49,50 based on the 
visual approach (Fig. 1).

Validation of the detection and classification.  For validation of the standardized data sets, we com-
pared the number of calls with the performance of the detectors. For all scenarios, the performance of the detec-
tor networks was scored based on their precision and recall, which are common metrics used to evaluate the 
performance of machine learning models66 (Fig. 3). Precision represents the ratio between correct call detection 
(true positives—tp) and mistakes (false positives—fp). It is calculated by dividing the number of true positives 
(hits) by the sum of true positives and false positives (pr = tp/(tp + fp). Thus, a value of 1 indicates the best perfor-
mance (i.e., no mistakes, fp = 0), whereas a value of 0 indicates no single correct detection. Recall represents the 
ratio between the true positives (tp) and the total number of target signals (total true—tt) calculated by dividing 
the true positives by the total number of target signals (r = tp/tt). Thus, a value of 1 indicates that all target calls 
were correctly detected, whereas a value of 0 indicates that no single target call was correctly detected.

There were three types of false positive detections: Noise—acoustic signals, which did not belong to any call, 
Call fragments—parts of the calls, which were detected but not the whole call and Cluster—two or three calls in 
a series, which were detected as one call. DeepSqueak’s GUI enables users to manually edit the measuring boxes 
during visual inspection of the detection files and thereby to correct incomplete detections. Thus, we split the 
assessment of the detection performance into an automated approach and a semi-automated approach. In the 
automated approach we counted only correctly detected calls as true positive hits without human intervention. 
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This aims at an end-to-end approach. In the semi-automated approach, we manually adjusted the measuring 
boxes, if possible, when parts of the call were missed (Call fragments) or when calls, typically two up to three 
elements of a series, were clustered (Cluster). These corrected detections were counted as true positive for the 
semi-automated approach. This distinction (semi- vs automated approach) allows to assess the potential drop 
in recall using the end-to-end approach.

To compare the different recording quality scenarios, we calculated the mean of the precision and recall using 
the respective detector over all call types for both the automated and semi-automated approach. In the overlaid 
scenario, overlaid calls, two calls of different call types, which were detected as one, were counted as false posi-
tive only for the automatic approach.

For the experimental data set of M. murinus, we investigated the impact of the DS-Denoiser and the R-DS 
Filter on the detection performance by calculating the precision and the recall of the detections for each process-
ing step. For validating the experimental data set, we calculated the recall for each recording session and each 
call type by dividing the number of target calls detected by the detector networks (verified by manual checking 
of the detection files using the semi-automatic approach) by the number of calls obtained by previous manual 
scanning of experts in bioacoustics (total true). Thereby, recall values could exceed a value of 1, indicating that the 
detectors detected more calls than detected by previous manual screening. We calculated the median detection 
precision and recall as well as the respective interquartile range67 (IQR) for the ten recording sessions.

For validating the supervised classifier, we applied the classifier network only to correctly detected target calls 
(automated approach). Afterwards, we checked the labeling of the supervised classifier manually. To calculate 
the classifier precision and recall, we used the number of calls, where the label of the detector matched manual 
labeling as true positives and the number of target signals where the labels did not match as true negatives; 
the total number of target signals was obtained from the previous manual scanning of bioacoustic experts. We 
calculated the median classifier precision and recall as well as the respective interquartile range (IQR) for the 
ten recording sessions.

Results
Robustness of individual variation and recording quality using standardized data sets (Model 
1).  Using the automated approach, the long calls, Long whistle and Trill, were better detected by the Long 
detector (Long whistle: precision = 1.0, recall = 0.92; Trill: precision = 0.80, recall = 0.80) than by the Short (Long 
whistle: precision = 0.66, recall = 0.80; Trill: precision = 0.35, recall = 0.58) and Very short detector (Long whis-
tle: precision = 0.07, recall = 0.22; Trill: precision = 0.02, recall = 0.10) (Supplementary Fig.  S3). For the short 
calls, Short whistle and Tsak, the Short detector performed better (Short whistle: precision = 0.80, recall = 0.57; 
Tsak: precision = 0.95, recall = 0.89) as compared to the Very short (Short whistle: precision = 0.60, recall = 0.43; 
Tsak: precision = 0.82, recall = 0.71) and Long detector (Short whistle: precision = 0.18, recall = 0.01; Tsak: preci-
sion = 0.75, recall = 0.02). The lower precision for the Short whistle using the Short detector could be explained 

Figure 3.   Definition of precision and recall. Metrics used to assess the performance of machine learning 
models.
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by the fact that Short whistles of the standardized data set were often clustered. Thus, using the semi-automated 
approach manually separating the calls into a cluster increased the precision and recall rate to 1.00. The Zip calls 
were well detected by both the Very short (precision = 0.94, recall = 0.94) and the Short detector (precision = 1.00, 
recall = 1.00) as compared to the Long detector (recall = 0.00). Thus, the three trained detector networks worked 
as expected and showed relatively high recall and precision for all call types even if calls of multiple individuals 
were used.

To investigate the robustness against quality scenarios, only the best performing detectors for each call type 
were used (i.e., Long detector for Long whistles and Trills; Short detector for Short whistles and Tsaks; and Very 
short detector, for Zips). When comparing the detection performance under different quality scenarios using 
the automated approach, we found a decrease in recall and precision for all scenarios (Fig. 4) compared to the 
good-quality standardized data set (mean precision = 0.90, mean recall = 0.83). Thereby, detection performance 
dropped dramatically for the overlaid calls (mean precision = 0.12, mean recall = 0.11), followed by the low-
amplitude calls (mean precision = 0.85, mean recall = 0.68) and the clipped calls (mean precision = 0.83, mean 
recall = 0.59). Under the overlaid scenario, Short whistles and Tsaks were only correctly identified as single 
detected elements when not all calls within a series were overlaid (Fig. 4). The dropping for the low-amplitude 
calls could be explained by the weak frequency contours, whereas under the overlaid scenario, target calls were 
detected mainly together (clustered) with the overlapping calls (Fig. 4). However, using the semi-automated 
approach, the recall and precision improved for all quality scenarios and were comparable to the good-quality 
data (mean precision = 0.98, mean recall = 0.96) for the clipped (mean precision = 1.00, mean recall = 0.88), the 
low amplitude (mean precision = 0.94, mean recall = 0.80) and overlaid scenarios (mean precision = 0.95, mean 
recall = 0.95).

Multi‑detection, improvement and generalization using standardized and experimental data 
sets (Model 1).  Using multiple detectors together (multi-detector) for the detection of the good-quality 
standardized data set, precision dropped dramatically for Long whistles (≤ 0.52) and Trills (≤ 0.28) using both 
the automated and semi-automated approach (Supplementary Fig.  S4). This drop could be explained by the 
Short and Very short detectors both recognizing call fragments as hits due to amplitude variation within a call, 
and syllables composing Trills. This problem was solved by applying the self-implemented R-DS Filter deleting 
overlaying call fragments. After applying the R-DS Filter, the precision increased considerably for Long whistles 
and Trills using both the automated and the semi-automated approach (Long whistles = 0.96; Trill ≥ 0.73) (Sup-
plementary Fig. S4). In contrast, using the automated approach, for Short whistles and Tsaks precision (≤ 0.77) 
and recall (≤ 0.57) dropped when using multi-detection combined with the R-DS Filter. This was due to the fact 
that the calls within a series were clustered. Editing the measuring boxes during the visual inspection (semi-
automated approach) improved the precision and recall for these two call types (precision ≥ 0.99, recall = 1.00).

Using the experimental data of M. murinus, the DS-Denoiser decreased the false-positive detections con-
siderably (98.55% of the noise was removed). Additionally, the application of the R-DS Filter resulted in a 

Figure 4.   Bar plots of precision and recall of the standardized data sets for each quality scenario (good-quality, 
clipped, low-amplitude and overlaid signals) for four call types; automated approach indicated in gray; semi-
automated approach indicated in black.
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further increase in the precision (median = 0.90, IQR = 0.16) and recall (median = 0.91, IQR = 0.10; Fig. 5a,b). This 
occurred because the detections contained not only single calls but also call fragments and clusters of more than 
one target call. Using the semi-automatic approach, the mean recall was comparable across call types, and for four 
of five call types median recall values greater than 0.96 were achieved (Long whistle: median = 1.03, IQR = 0.11; 
Trill: median = 1.00, IQR = 0.00; Short whistle: median = 0.98, IQR = 0.07, Tsak: median = 0.96, IQR = 0.18; Fig. 5c). 
The Zip call had the lowest recall (median = 0.45). This might be explained by the rare occurrence of this call 
type (0–8 Zip calls per recording). Thus, missing only a single detection can cause a large decrease in the recall 
value. Additionally, we realized that the detectors detected also 40% of low-frequency vocalizations (Croaks and 
Grunts counted as false positives in this study), for which they were not trained due to the fact that the ultrasonic 
recording device was not able to record below 5 kHz.

When testing whether the detector can also be generalized to evolutionary closely related sister species, the 
Goodman’s mouse lemur (M. lehilahytsara), we showed that the detector networks were able to detect most of 
the calls (recall: median = 0.96, IQR = 0.13; Fig. 5d). For the four call types, which have a similar spectral con-
tour to the respective call types in M. murinus, recall values were within the range found for M. murinus (Long 
whistle: median = 1.00, IQR = 0.03; Short whistle: median = 1.02, IQR = 0.00; Tsak: median = 0.96, IQR = 0.09; 
Zip: median = 0.60, IQR 0.09; Fig. 5c,d). Nonetheless, also the Trill, which differs in the spectral contour from 
M. murinus was well detected (Trill: median = 1.0, IQR = 0.33). However, in this case, the Trill was not detected 
as one call but as separate two syllables.

Supervised classification as a tool for automatic call labeling (Model 2).  The classifier net-
work automatically assigned the corresponding labels to each call detected in the audio files with a relatively 
high precision for Long whistles (median = 1.00, IQR = 0.00), Trills (median = 1.00, IQR = 0.05), Short whistle 
(median = 1.00, IQR = 0.02) and Tsak (median = 1.00, IQR = 0.04). Only for Zips median precision was relatively 
low (median = 0.14, IQR = 0.50) (Fig. 6a). It is important to notice that Zips were underrepresented compared to 
other call types in the experimental data set. All detection files had fewer than eight Zips each. Every true Zip was 
always correctly classified, whereas Short whistles were often misclassified as Zips (Supplementary Table S4). In 
some cases, the recall for Short whistles was lower than precision due to some misclassifications as Long whistle, 
Trill, Tsak or Zip (Supplementary Table S4). Similarly, Long whistles were in a few cases misclassified as Short 
whistles. Trills were correctly classified in all cases (Supplementary Table S4). The recall was high for all call 

Figure 5.   Boxplots of performance of the multi-detector using the experimental data set; (A) Performance 
during each step of the analysis (first step: detection; second step: application of the DS-Denoiser to remove 
undesired background noise; third step: application of the R script to remove fragments based on the 
experimental data set of M. murinus); (B) Overall precision and recall for gray mouse lemurs (M. murinus); (C) 
Detection recall for each call type of vocalizations of M. murinus and (D) evolutionary closely related species, M. 
lehilahytsara, respectively.
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types (Long whistles: median = 0.80, IQR = 0.23, Trill: median = 1.00, IQR = 0.00, Short whistles: median = 0.91, 
IQR = 0.36, Tsak: median = 0.98, IQR = 0.14, Zip: median: 1.00, IQR = 0.00; Fig. 6b).

Unsupervised clustering as a tool to automate the establishing of call categories (Model 
3).  The detected calls from M. murinus audio recordings were clustered by the k-means model into seven dif-
ferent clusters (Fig. 7, Supplementary Fig. S5). Cluster 1 matched the Long whistles predefined category; cluster 
2 and 3, Trills; cluster 4 partly matched Tsaks and Short whistles; cluster 5, Tsaks; cluster 6, Short whistles; and 
cluster 7 matched predefined Zip calls. Thus, according to the model, Long whistles and Zips had one cluster 
each; whereas Trills had two clusters (Fig. 7). In addition, the model grouped part of the predefined Short whistle 
and Tsak calls into one common cluster.

Discussion
This study shows that DeepSqueak can successfully detect primate vocalizations in the high-frequency and ultra-
sonic domain under different quality scenarios at least under laboratory conditions. Furthermore, automated 
labeling of the data set and clustering can follow up the detection process with minimal to no human intervention 
without running into considerable performance loss. Unwanted noise signals and fragments could be removed by 
the DS-Denoiser and R-DS Filter, respectively. The major drawback is the clustering of calls by the Short and Very 
short detectors, which can be fixed by a semi-automated approach. The unsupervised clustering distinguished 
more than five clusters. However, merging some of the clusters predicted by the model would result in categories 

Figure 6.   Boxplots of (A) precision and (B) recall of the supervised classifier labeling the experimental data set 
of M. murinus.

Figure 7.   Top categories identified by the clustering model. The white bars depict the time scale in 
milliseconds.
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representing the five human-made call types. Overall, DeepSqueak offers a user-friendly automated analysis for 
primate vocalizations and, thereby can be used as a cross-taxa tool to speed up animal communication analyses, 
and reduce subjectivity for the steps of detection, categorization and classification of vocalizations.

Effect of individual variation, recording quality and species on detection performance (Model 
1).  When using automated detection, DeepSqueak detected 91% of the gray mouse lemur vocalizations 
from the experimental data set recorded under laboratory conditions with high precision (median detection 
recall = 0.91, median detection precision = 0.90). This performance is comparable to other studies (rodents25: 
recall > 0.80, precision > 0.9; marmoset monkeys26: recall: 0.77–0.85; precision: 0.68–0.79). Thus, the sample of 
the training data was sufficient to achieve a good performance of the detector networks. Thereby, the three 
trained detector networks worked as intended: Long whistles and Trills were best detected by the Long detec-
tor, Short whistles and Tsaks by the Short detector. The Zips were detected by both, the Short and Very short 
detector. However, even if the Zips were detected by the Short detector using the standardized data set, using 
the experimental data set Zips were only detected by the Very short detector. Thus, bringing chunks from dif-
ferent audio recordings together into one file may produce an artifact that made the two Short detectors undis-
tinguishable from each other. Such an artifact might result from different background amplitude levels of the 
audio chunks, hampering the DeepSqueak’s filtering ability to set a general reference boundary condition to 
differentiate between signal and noise. This has to be taken into account when merging different audio record-
ings or single calls.

We further showed that the detectors are robust against both intraspecific variation in call structure and 
different recording quality scenarios. The results of the good-quality standardized data sets showed that the 
detector networks detected the calls even in the presence of intraspecific variation. This is important for stud-
ies on animal vocalizations when calls are naturally plastic, as is the case for the mouse lemur species. Animals 
usually modulate, to a certain extent, some components of their calls, which can be due to genetic, behavioral/
motivational, physiological, allometric and environmental reasons (e.g., Refs.43,47,48,54,60,61,68–71). In the presence 
of such modulations, over-fitted networks may often miss opportunities (i.e., increased false negatives) and yield 
low recall, even for good-quality recordings. Thus, the use of diverse training data—as done in this study—helps 
to obtain detector networks, which are generally sufficiently robust to perform well in the presence of intraspe-
cific variation.

In addition, all three detectors proved robust in a large range of audio quality conditions typical for animal 
recordings (clipped, low-amplitude, overlaid calls). Clipped calls were typically well detected (i.e., relatively high 
precision and recall), though many of the short calls were clustered. When the signals were of low-amplitude, the 
precision was still high, meaning that detections mainly hit the target sounds. However, low-amplitude signals 
were often overlooked by the detectors, yielding a relatively low recall. This can be expected, since amplitude 
variations in low-amplitude calls are barely different from the background noise of the recording. Overlaid 
calls were detected, clustering always with the overlapping calls. Thus, overlaid calls can still be counted but not 
measured, even when not using a manual scanning approach.

The performance of the detectors was comparable between the target species (M. murinus) and an evolu-
tionary closely related species (M. lehilahytsara Fig. 5c,d). This shows that the trained detectors can be used for 
detecting the vocalizations of other mouse lemur species, at least as starting points.

Recommendations for the use of DeepSqueak for experimental data (Model 1).  Signal recogni-
tion (detection task) is one of the most challenging steps in the process of automated vocalization analysis, since 
a high recall in the process of signal recognition (i.e., detection process) is accompanied by a drop in precision 
due to the presence of unwanted noise sources (e.g., researcher speaking, nearby machines, movement of ani-
mals, their interactions or other sources). In this study, the precision was still relatively high, even in the presence 
of unwanted noise and call fragments (automated approach), which is comparable to other studies (rodents25: 
precision > 0.9; marmoset monkeys26: maximum precision: 0.79). This was achieved by the implementation of 
two filtering processes: (1) a classification network removing unwanted noise (named DS-Denoiser), and (2) a 
custom R script fixing call fragments (the R-DS Filter).

The coupling of machine learning models (detectors + DS-Denoiser) has been useful to reduce the amount 
of false positives from audio recordings with high signal heterogeneity, typical for recordings in the wild72. 
Thus, whenever unwanted noise is expected or identified during visual inspection of detection files, the use of 
a denoiser is recommended.

Using all detectors simultaneously (multi-detector), the Short and the Very short detectors detect call frag-
ments of long calls as hits due to amplitude variation in the whole call. Such unwanted fragments cannot be used 
for measuring the whole call and would falsify call rates. Thus, we recommend using the R-DS Filter to merge 
call fragments and thereby considerably reduce misdetections (but if the researcher is interested in extracting 
single syllables of the Trill, the Short and Very short detectors can be used to extract these syllables). In addition, 
combining DeepSqueak with R has the advantage that the user can have more control over the measurement of 
relevant features from the calls by implementing additional analyses (e.g., when measuring syllables in R with 
PRAAT​73).

Though a good performance was achieved using the automated approach, the performance could be remarka-
bly improved by visual inspection of the detection files using the GUI in DeepSqueak (semi-automated approach) 
and thus proceed to edit the measuring box, reject/accept calls, if necessary. For instance, often in this study, short 
calls were detected as clusters instead of single call elements. This was observed when using the Short detector on 
the standardized data set, and, exceptionally, when using all three detectors simultaneously on the experimental 
data set. Whenever calls are detected in clusters, manual editing of the measuring boxes using the GUI can help 
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to detect each call independently. Thus, we recommend conducting a visual scanning of the detection files and 
edit the measuring boxes, if necessary (semi-automated approach). This is especially important when scientists 
are interested in call rates. However, if researchers are interested in specific call types, we recommend using the 
corresponding detector network based on the call duration. Using the semi-automatic approach, recall values 
sometimes exceed one, demonstrating that the detector detected more target calls than were detected by manual 
screening of bioacoustic experts. This was especially true for audio files which contained few low-amplitude short 
calls (duration up to 30 ms), that could be easily overseen from long audio files (in this study, audio files mean 
duration: 14 min) or several hundred vocalizations combined to a series (Short whistle and Tsak). This shows 
that even if the detector can make errors, the human observer makes errors as well, emphasizing the problem of 
reliably screening audio files, which contain thousands of vocalizations and/or are of long duration.

Supervised classification as a tool to automatically label call types (Model 2).  The supervised 
classifier network trained using DeepSqueak built-in routines had a good performance for most call types 
(median precision = 1.00; median recall > 0.80 for all call types except Zips) comparable to other studies (lemur27: 
precision > 0.90, marmosets31: median precision 0.84, median recall 0.81). Only for Zips the precision was very 
low (median precision = 0.14). This could be either explained by the rare occurrence of Zips combined with a 
high call rate of Short whistles, which were sometimes misclassified as Zips. For example, an audio file with two 
Zip calls (tt = 2) and 709 Short whistles had 12 misclassifications. All 12 misclassification were Short whistles 
misclassified as Zips, resulting in a precision of 0.14 for Zips. However, all true Zips were correctly classified in 
all cases, resulting in a recall of 1.0. Thus, in such cases where one call type occurred very rarely, we recommend 
using the semi-automated approach, which can considerably reduce the amount of false positives during the 
classification task (personal observation) due to manual adjustment of measuring boxes.

Unsupervised clustering as a tool to “objectively” categorize call types (Model 3).  The cluster-
ing model identified seven clusters (Supplementary Fig. S5), of which two matched the predefined Trills, and 
one consisted of predefined Short whistles and some Tsak calls. Thus, the resulting categories were fairly similar 
to human-made categories49,50. The small discrepancies between the clustering method and human-made cat-
egories can be expected, given the multi-dimensional space on which the algorithm based its decisions, which 
may not always match the features used by human observers. Moreover, transitions between different call types 
can be observed (e.g., Short whistle to Tsak, Short whistle to Long whistle). Thus, it is not surprising that clusters 
occurred containing Short whistles and Long whistles or Tsaks. Such transitions can make a manual human-
made approach less reliable and dependent on the experimenter’s experience. The unsupervised clustering model 
can help reduce this subjectivity28, and can potentially increase reproducibility of results across studies. This does 
not mean that the AI will be perfect. Rather, it means that it will at least be consistent with the “mistakes” it 
makes. Furthermore, the clustering models in DeepSqueak are based solely on acoustic parameters and therefore 
can result in arbitrary clusters which are not related to biologically relevant information. Therefore, it is recom-
mended to evaluate not only the consistency of the results from the clustering models but also to relate them to 
the animals behavior and the auditory skills (e.g., temporal and frequency resolution of the auditory system).

Conclusively, this study shows that DeepSqueak, initially developed for detection and analysis of mouse and 
rat ultrasonic vocalizations, can be successfully utilized to detect vocalizations of other taxa in the high-frequency 
to ultrasonic range with high precision and recall. The performance was robust against individual variation, and 
when using the semi-automated approach it can deal with different recording qualities. Unwanted noise signals 
and call fragments, typical problems of these kinds of approaches, were drastically reduced through the use of 
the DS-Denoiser (a classification network trained in DeepSqueak) and R-DS Filter developed in R. Thereby, the 
detector networks could also be used to detect vocalizations of an evolutionary closely related species. Thus, 
DeepSqueak seems to be a user-friendly tool, which can be utilized for different mammalian species. Its depend-
ence on MATLAB (The MathWorks, Inc., Natick, MA, USA) as an expensive source platform might be still a 
disadvantage, but we hope that our results can inspire future open-source end-to-end approaches using faster 
regional convolutional neural networks.

Data availability
The data, detector and classification networks, the DS-Denoiser network and filtering R-DS routine, and the 
clustering model used in this study are available in a GitHub repository (https://​github.​com/​M0rph​3u2x/​How-​
Deeps​queak-​can-​be-​utili​zed-​for-​mamma​lian-​vocal​izati​ons).
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