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Neuropeptides can mediate tumor cell proliferation and differentiation through autocrine, paracrine, neurosecretory, and
endocrine mechanisms. This study investigated the expression and prognostic significance of neuropeptide Y receptor Y6
(NPY6R) in uveal melanoma (UVM) and preliminarily investigated the biological function of NPY6R in UVM. NPY6R was
poorly expressed in most tumors and was associated with better prognosis in UVM. Among the clinicopathological features of
UVM, NPY6R expression was lower in male patients. The area under the curve (AUC) value of NPY6R for the diagnosis of
UVM was 0.676 (95% CI: 0.556–0.795). A nomogram including four clinical predictors was constructed. NPY6R expression
was significantly associated with features of the UVM immune microenvironment. ESTIMATE and CIBERSORT algorithms
were used to calculate the fraction of immune cells and the percentage of infiltration in each patient, respectively. NPY6R
expression-related gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analyses
were performed. GO and KEGG enrichment analyses revealed that NPY6R-related genes are mainly enriched in pathways and
functions related to visual light perception. Gene set enrichment analysis suggested that NPY6R is associated with tumor
progression in UVM. NPY6R is involved in the tumor progression of UVM and has a good predictive value as a prognostic
marker of UVM.

1. Introduction

Worldwide, among intraocular malignancies, uveal mela-
noma (UVM) has the highest prevalence, with an incidence
of up to 5.1 per million per year in Caucasians (95–98%)
and a lower incidence in Asian and African populations
[1–3]. However, in developing countries, UVM incidence
has progressively increased recently to that of developed
Western countries [4]. UVM has various presentations,
many complications, high malignancy, and high invasiveness
and metastatic capability, and is associated with a very poor
prognosis [5, 6]. UVM metastasis rates are approximately
25% and 34% at 5 and 10 years, respectively, and UVM is
associated with an 80% mortality rate within 1 year of metas-
tasis [7–9]. Enucleation, the standard treatment for UVM, is
a potentially devastating and disfiguring procedure that

confers significant physical and psychological impacts on
patients. Nonetheless, the post-enucleation 5-year survival
rate of UVM patients is only 17% to 53% [10]. Given the
insidious onset and advanced stage at diagnosis, early diag-
nosis and treatment of UVM are particularly important to
improve patient outcomes [11]. Therefore, the identification
of molecular markers that mediate the pathogenesis of CM is
urgently needed to improve treatment selection and progno-
sis in UVM patients.

With their wide distribution in the human body, neuro-
peptides are peptidergic neurotransmitters, modulators, or
hormones that modulate the central and peripheral nervous
systems [12–15]. As a potential growth factor for normal
cells, it can mediate tumor cell proliferation and differentia-
tion through autocrine, paracrine, neurosecretory, and
endocrine mechanisms [16, 17]. The role of neuropeptides
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Figure 1: Continued.
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in tumor development is gaining attention [18]. The NPY is
susceptible to hypermethylation in certain tumors [19, 20].
Moreover, VIP receptors are overexpressed on the tumor
cell surface and promote tumor growth, activat antiapoptotic
signaling pathways, and play an important role in regulating
the proliferative viability and differentiation of tumor stem
cells [21, 22].

In addition, neuropeptides play an important role in
ophthalmic diseases [23]. In rat retinal cells, NPY acts in a
paracrine manner [24]. whereas, in mice, NPY6R signaling
plays a key role in regulating energy homeostasis in the
suprachiasmatic nucleus (SCN) [25], which drives circadian
rhythms in peripheral organs, including the retina and cho-
roid [26, 27]. Therefore, we hypothesized that the NPY6R
gene plays an important role in ocular diseases. However,
the relevance and biological functions of NPY6R in ocular
diseases have been rarely reported.

This study investigated the expression and prognostic
significance of NPY6R in UVM and preliminarily investi-
gated the biological function of NPY6R in UVM. We also
analyzed the correlation between NPY6R expression and
the clinical characteristics and prognosis of UVM patients.

2. Materials and Methods

2.1. Acquisition of Bioinformatic Data. Data on the sur-
vival and mRNA expression of the UVM sample from
the Cancer Genome Atlas (TCGA) project were obtained.
Transcriptome sequencing data and the corresponding
clinical information were downloaded from the National
Cancer Institute (NCI) Genome Data Portal (GDC Legacy
Archive) using the TCGAbiolinks package in R [28],
which was used to integrate and normalize the down-
loaded mRNA expression data to extract information
about the NPY6R gene. Wilcoxon rank-sum test was used
to undertake differential analysis of samples with high and
low NPY6R expression and to screen out mRNAs that

were differentially expressed in the UVM patients and
normal group for enrichment analysis.

2.2. Correlation between NPY6R Expression and
Clinicopathologic and Survival Analysis. Based on the
median NPY6R expression levels, UVM patients were cate-
gorized into the NPY6R high expression and NPY6R low
expression groups. To investigate the relationship between
different clinical characteristics (age, tumor grading, TNM
staging, etc.) and NPY6R gene expression and the prognostic
risk of UVM patients, Cox univariate and multifactorial
regression analyses were performed using the coxph func-
tion, and the p values and hazard ratio (HR; risk ratio) were
calculated. Finally, column line plots for predicting survival
were established by the nomogram function in R package
based on the results of the Cox multifactor analysis.

2.3. Evaluation of Immune Cell Infiltration in Tumor Tissue.
The immune microenvironment was scored with reference
to previous studies showing [29]. The ESTIMATE algo-
rithm from the R language ESTIMATE package was used
to estimate the immune stromal component of the tumor
microenvironment estimate (TME) for each sample, which
was reported as three scores: ImmuneScore, StromalScore,
and ESTIMATEScore. The greater the ratio of the relevant
component of the tumor microenvironment, the higher
the corresponding score.

Using the ESTIMATE algorithm to determine immune
scores for all samples, the deconvolution algorithm based
on CIBERSORT (http://http://cibersort.stanford.edu/) cal-
culates the proportion of immune cells infiltrating tumors
in each patient in the training and validation sets [30].
Intergroup differences in immune cell infiltration between
the high and low NPY6R expression groups in the above-
mentioned dataset were assessed using the Wilcoxon rank-
sum test, and p < 0:05 indicated a significant difference in
immune cell infiltration. The abovementioned cells were
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Figure 1: Differential NPY6R expression in tumors is associated with poor prognosis in UVM: (a) Expression of NPY6R gene in common
tumors; (b) NPY6R expression levels correlated with the overall survival of UVM patients; (c) levels of NPY6R mRNA expression in TCGA
database; (d) correlation of NPY6R expression levels with overall survival (OS) in female patients with UVM; (e) correlation of NPY6R
expression levels with OS in male patients with UVM; and (f) ROC curves demonstrating the diagnostic value of NPY6R in UVM.
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subjected to a follow-up analysis to assess the impact of
their infiltration levels on patient prognosis.

2.4. Gene Set Enrichment Analysis. The TCGA-UVM expres-
sion dataset was loaded into the GSEA JAVA software pro-
gram, and the number of alignments was set to 1,000 for
analysis [31, 32]. The results of gene enrichment at a false
discovery rate (FDR) q value <25% and nom p value <0.
01 were obtained. The JAVA GSEA enrichment analysis
software (version 4.0.3) was downloaded from the Broad
Institute, and the R language TCGA2STAT package was
downloaded from the Comprehensive R Archive Network
(CRAN).

2.5. GO and KEGG Enrichment Analysis. Based on the risk
model, differential genes were obtained for patients in the
high- and low-risk groups and were subjected to gene ontol-
ogy (GO) analysis to obtain differential gene enrichment
concerning biological processes, molecular function, and cel-
lular composition. Furthermore, these genes were subjected
to Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis to obtain signaling pathways for differ-
ential gene enrichment. The specific methods of enrichment
analysis were described in the previous studies [14, 32–35].

2.6. Survival and Statistical Analyses. Statistical analysis was
performed using R software. Survival curves were plotted
based on the NPY6R mRNA expression profile. Survival
analysis was performed, and survival curves were plotted

Table 1: Relationship between the expression of NPY6R and
clinicopathological features.

Characteristic
Low expression

of NPY6R
High expression

of NPY6R
p

n 40 40

Age, mean ± SD 61:2 ± 12:73 62:1 ± 15:22 0.775

Pathologic T stage, n
(%)

0.398

T2 6 (7.5%) 8 (10%)

T3 14 (17.5%) 18 (22.5%)

T4 20 (25%) 14 (17.5%)

Pathologic N stage, n
(%)

1.000

N0 26 (32.9%) 26 (32.9%)

NX 14 (17.7%) 13 (16.5%)

Pathologic M stage, n
(%)

0.591

M0 26 (33.3%) 25 (32.1%)

M1 1 (1.3%) 3 (3.8%)

MX 13 (16.7%) 10 (12.8%)

Pathologic stage, n
(%)

0.331

Stage II 18 (22.8%) 21 (26.6%)

Stage III 21 (26.6%) 15 (19%)

Stage IV 1 (1.3%) 3 (3.8%)

Clinical T stage, n (%) 0.262

T2 3 (3.8%) 1 (1.3%)

T3 15 (19.2%) 21 (26.9%)

T4 22 (28.2%) 16 (20.5%)

Clinical N stage, n (%) 0.615

N0 37 (46.2%) 39 (48.8%)

NX 3 (3.8%) 1 (1.2%)

Clinical M stage, n
(%)

1.000

M0 37 (46.2%) 36 (45%)

M1 1 (1.2%) 2 (2.5%)

MX 2 (2.5%) 2 (2.5%)

Clinical stage, n (%) 0.535

Stage II 17 (21.2%) 19 (23.8%)

Stage III 22 (27.5%) 18 (22.5%)

Stage IV 1 (1.2%) 3 (3.8%)

Gender, n (%) 0.007

Female 11 (13.8%) 24 (30%)

Male 29 (36.2%) 16 (20%)

Weight, n (%) 0.218

≤80 10 (18.9%) 17 (32.1%)

>80 15 (28.3%) 11 (20.8%)

Height, n (%) 0.996

≤170 16 (30.2%) 19 (35.8%)

>170 9 (17%) 9 (17%)

Table 1: Continued.

Characteristic
Low expression

of NPY6R
High expression

of NPY6R
p

BMI, n (%) 1.000

≤30 18 (34%) 21 (39.6%)

>30 7 (13.2%) 7 (13.2%)

Histological type, n
(%)

0.949

Epithelioid cell 6 (7.5%) 7 (8.8%)

Spindle cell 15 (18.8%) 15 (18.8%)

Mix 19 (23.8%) 18 (22.5%)

Tumor shape, n (%) 0.408

Diffuse 0 (0%) 2 (3.9%)

Dome 20 (39.2%) 16 (31.4%)

Mushroom 6 (11.8%) 7 (13.7%)

OS event, n (%) 0.621

Alive 27 (33.8%) 30 (37.5%)

Dead 13 (16.2%) 10 (12.5%)

DSS event, n (%) 1.000

Alive 29 (36.2%) 30 (37.5%)

Dead 11 (13.8%) 10 (12.5%)

PFI event, n (%) 0.817

Alive 26 (32.5%) 24 (30%)

Dead 14 (17.5%) 16 (20%)
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using the “survival” package of R language with log-rank test
and Cox analysis. The measures are expressed as mean ±
standard deviation ðx ± sÞ, and t test was applied. The chi-
square test was used for statistical data. Wilcoxon rank-
sum test was used to compare gene expression levels. Corre-
lations were assessed using Spearman correlation analysis.
Factors associated with NPY6R expression were identified
using logistic regression analysis as previous researches
[36–41]. The predictive power of NPY6R was assessed by
receiver operating characteristics (ROC) curves, calibration
curves, and clinical decision curves (DCA). p < 0:05 was
considered indicative of a statistically significant difference.

3. Results

3.1. Expression Profile of NPY6R in Tumors. First, using data
from TCGA, we explored the expression of the NPY6R gene
in common tumors. NPY6R expression was significantly
upregulated in ACC, KICH, KIRC, KIRP, and LAML and
significantly downregulated in BLCA, BRCA, CESC, CHOL,
COAD, ESCA, GBM, HNSC, LGG, LIHC, LUAD, LUSC,
OV, PCPG, PRAD, READ, TGCT, THCA, UCEC, and
UCS (Figure 1(a)), which suggests that most tumors have
low NPY6R expression. However, there were no control
samples of normal tissues in TCGA-UVM dataset. The
expression of NPY6R was low in UVM. Kaplan–Meier
survival curves showed that patients in the high NPY6R
expression group had a higher overall survival rate than
patients in the low expression group (Figure 1(b)). Clinico-
pathological characterization revealed a higher proportion
of males among patients with low NPY6R expression and a
higher proportion of females among patients with high
NPY6R expression (Table 1). In addition, NPY6R expression
was nonsignificantly correlated with other factors. Clinical
correlation analysis suggested that NPY6R expression was
higher in female patients (Figure 1(c)). Logistic regression
analysis incorporating NPY6R expression with various path-
ological characteristics revealed only a sex-linked association
for NPY6R (Table 2), which suggests a potentially sex-
specific NPY6R expression.

3.2. Analysis of the Prognostic Predictive Ability of NPY6R
and Construction of a Nomogram Prediction Model. As
NPY6R expression is sex-specific, subgroup survival analysis
suggested that NPY6R was a stronger predictor of overall
survival in male patients than in female patients
(Figures 1(d) and 1(e)). The ROC curve of NPY6R expres-
sion and its diagnostic value in UVM is shown in
Figure 1(f) (area under the curve ½AUC� = 0:676; 95% CI:
0.556–0.795). The nomogram prediction model for overall
survival at 1, 3, and 5 years is shown in Figure 2(a) and
includes four clinical predictors (age, sex, pathologic stage,
and clinical stage). The ROC plot, calibration curve, and
clinical decision curve (DCA) demonstrate the accuracy of
this prognostic model in predicting the probability of sur-
vival at one year (Figures 2(b)–2(d)). The AUC value for this
ROC is 0.689 (95% confidence interval: 0.565-0.813)
(Figure 2(b)). This suggests that the model has predictive
capability. The DCA suggests that the model is helpful in
clinical decision making.

3.3. Characterization of the Immune Microenvironment of
NPY6R in UVM. Correlation analysis between NPY6R
expression and tumor immune infiltration suggested that
NPY6R expression was significantly and positively corre-
lated with the infiltration of T-helper, Tcm, pDC, and CD8
T cells (Figure 3(a)). (In contrast, NPY6R expression signif-
icantly and negatively correlated with the enrichment of T
cells, TFH, NK CD56dim cells, DC, cytotoxic cells, iDC,
Tem, and TReg (Figure 3(a)). NPY6R expression was signif-
icantly and negatively correlated with StromalScore, ESTI-
MATEScore, and ImmuneScore (Figure 3(b)). NPY6R was
found to be significantly and negatively correlated with Stro-
malScore, ESTIMATEScore, and ImmuneScore. This sug-
gests that NPY6R expression is significantly associated with
the characteristics of the UVM immune microenvironment.

3.4. Functional and Pathway Enrichment Analysis Associated
with Differential Expression of NPY6R. To further define the
pathway and function of NPY6R enrichment in UVM,
genes that are highly correlated with NPY6R expression
were obtained by differential analysis. In all, 689 genes

Table 2: Logistic regression analysis of the expression of NPY6R and various pathological features.

Characteristics Total(N) Odds ratio(OR) p value

Pathologic T stage (T4 vs. T2 and T3) 80 0.538 (0.216-1.312) 0.177

Pathologic N stage (NX vs. N0) 79 1.163 (0.458-2.975) 0.750

Pathologic M stage (M1 and MX vs. M0) 78 1.212 (0.475-3.110) 0.687

Pathologic stage (stage III and stage IV vs. stage II) 79 0.701 (0.287-1.697) 0.432

Clinical T stage (T4 vs. T2 and T3) 78 0.595 (0.240-1.450) 0.256

Clinical M stage (M1 vs. M0) 76 2.056 (0.189-45.378) 0.563

Clinical stage (stage III and stage IV vs. stage II) 80 0.817 (0.336-1.974) 0.653

Gender (male vs. female) 80 0.253 (0.096-0.633) 0.004

Age (>60 vs. ≤60) 80 1.494 (0.621-3.641) 0.372

BMI (>30 vs. ≤30) 53 0.857 (0.248-2.954) 0.805

Tumor shape (dome vs. diffuse and mushroom) 51 0.533 (0.150-1.791) 0.314
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Figure 2: Continued.
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met the |log2 (FC)|>1.5 and p.adj<0.05 threshold, with
562 highly expressed (positive logFC) genes and 127 low
expressed (negative logFC) genes. GO and KEGG enrich-
ment analysis revealed that the abovementioned genes were
mainly enriched in sensory perception of light stimulus
(GO:0050953), visual perception (GO: 0007601), photore-
ceptor outer segment (GO: 0001750), photoreceptor cell
cilium (GO: 0097733), ion-gated channel activity (GO:
0022839), gated channel activity (GO:0022836), phototrans-
duction pathway (hsa04744), and taste transduction pathway
(hsa04742) (Figure 4(a)), which suggests that these NPY6R-
related genes were mainly enriched in pathways and func-
tions related to light visual perception. Furthermore, GSEA
was used to analyze the role of NPY6R in UVM. NPY6R
expression was associated with metabolic reprogramming
in colon cancer (WP), epithelial to mesenchymal transition
in colorectal cancer (WP), bladder cancer (KEGG), and
constitutive signaling by aberrant PI3K in cancer (REAC-
TOME), which suggests that NPY6R is associated with tumor
progression in UVM.

4. Discussion

Neuropeptide Y is a bioactive polypeptide consisting of 36
amino acids, with N-terminal proline and C-terminal tyro-
sine amide, wherein each molecule contains five tyrosine
residues, which can maintain a stable conformation in an
aqueous solution [42, 43]. Peptides belonging to the neuro-
peptide Y family can act on multiple G–protein-coupled
receptors (e.g., Y1, Y2, Y4, Y5, and Y6), but exert different
effects on various receptors [44, 45]. However, the role of
NPY6R as an NPY receptor needs to be further investigated.
In this study, we investigated the expression and function of

the NPY6R gene in UVM by detecting and analyzing geno-
mic information from public databases.

In this study, low NPY6R expression was found in most
tumors. In UVM, the overall survival rate of patients in the
NPY6R high expression group was higher than that of
patients in the low expression group. NPY6R expression
shows a potentially sex-specific association and has some
diagnostic and prognostic predictive power in UVM. A
nomogram column line graph prediction model that
includes four clinical predictive characteristics factors was
constructed in this study and showed that NPY6R expression
was significantly associated with the characteristics of the
UVM immune microenvironment. NPY6R-related genes
are mainly enriched in pathways and functions that are
related to visual light perception. GSEA suggested that
NPY6R expression was associated with tumor progression
in UVM.

A previous study revealed no sex difference in UVM
[46]. Some studies showed a smaller sex difference in
UVM, with a slightly larger number of male than female
patients [47–49]. In this study, clinicopathological character-
ization based on UVM revealed that NPY6R expression
correlated with sex and was higher in female patients than
in male patients, suggesting a potential sex specificity of
NPY6R expression. Subgroup survival analysis suggested
that the prognostic predictive ability of NPY6R may be more
enhanced in male patients with UVM than in female
patients.

NPY6R, located on chromosome 5q31 and belongs to the
cell membrane G–protein-coupled receptor family, is one of
the receptors for NPY [50]. Some studies suggested that
NPY6R does not have a function in Mansfield [51]. However,
NPY6R plays an essential role in regulating energy balance and
body composition through the VIP-GH/IGF-1 axis [25]. In
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Figure 2: NPY6R-based prognostic predictive power analysis and nomogram model construction: (a) a nomogram prediction model for
overall survival at 1, 3, and 5 years and (b–d) ROC plots (b), calibration curves(c), clinical decision curves (DCA), and (d)
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addition, NPY6R, one of the adrenergic candidate sites, may
play a role in autonomic/sympathetic dysfunction in the
hypertension [52]. In this study, NPY6R expression in
UVM had a good diagnostic value and was significantly
associated with UVM survival prognosis. The overall sur-
vival rate of patients with high CM expression was higher
than that of patients with low CM expression. Previous
studies revealed that metastasis was a major cause of death
in CM patients [9, 53]. G–protein-coupled receptors are an
important factor in tumor growth and are metastasized
[54]. NPY6R, which belongs to the G–protein-coupled
receptor family, may affect the survival prognosis of
patients through its involvement in the development of

UVM, although the exact mechanism needs to be further
investigated.

Current clinical treatments for UVM include chemother-
apy, radiotherapy, immunotherapy, and targeted molecular
therapy. Due to the dual protection of low mutational load
and “immune immunity,” UVM immunotherapy is not very
effective [55]. A study found that mUM patients treated with
anti-PD-1 monoclonal antibodies comprised 3.6% partial
responders and 8.9% participants with stable disease, with
median progression-free survival and overall survival of 2.8
and 7.6 months, respectively, which indicated that the progno-
sis of immunotherapy patients did not improve significantly
[56]. However, the results of the first prospective study of
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the therapeutic value of ipilimumab in patients with Class 2
genotype UVM that was conducted by Fountain et al. revealed
that immunotherapy reduced the risk of distant metastases in
high-risk lesions [57]. Furthermore, tumor vaccines for the
treatment of UVM are currently being investigated. The den-
dritic cell-containing vaccine was administered to patients
with primary UVM combined with trisomic monosomy, and
most of the patients developed tumor-specific immune
responses without serious adverse effects, and progression-
free survival and overall survival were significantly prolonged,
confirming that dendritic cell immunization is safe and effec-
tive in patients with high-risk UVM [58]. In addition, Chan-
dran et al. found that regression of metastatic UVM tumors
could be induced by transplantation of autologous tumor-
infiltrating lymphocytes (TILs) [59]. Similar to these studies,
in our study, NPY6R expression significantly correlated with
the characteristics of the UVM immune microenvironment
and could be a new target for UVM immunotherapy.

With the rapid development of molecular biology, the
molecular genetic study of UVM has progressed, although
the mechanisms of action, regulation, and metastasis have
not been fully elucidated. PI3K expression is significantly
increased in choroidal melanoma tissues and is closely related
to the invasion and migration of cancer cells [60]. In animal
models of choroidal melanoma, inhibition of the PI3K/MMP
signaling pathway significantly reduced tumor cell growth
and neovascularization [61]. Yan et al. found that high expres-
sion of insulin-like growth factor-1 (IGF-1) in patients with
metastatic UVM upregulated the phosphorylation levels of
Akt, mTOR, and PI3K, which are key factors of the PI3K/
Akt signaling pathway [62]. In contrast, PI3K-related signal-
ing pathways play an important role in retinal diseases. As a
downstream target of PI3K, Akt kinase plays a key role in
the development and protection/regeneration of retinal gan-
glion cells [63]. Furthermore, the PI3K/Akt signaling pathway
is involved in the pathology of retinal detachment [64]. There-
fore, we speculate that retina-related pathways may play a role
in UVMprogression, as supported by the results of the present
study.

In summary, this study provides the first multilevel, mul-
tifaceted analysis of the role of NPY6R in UVM through infor-
mation mining of databases. NPY6R was associated with
UVM prognosis, and a novel UVM prognosis prediction
nomogram prediction model was constructed. NPY6R was
significantly associated with the characteristics of the UVM
immune microenvironment and was involved in UVM tumor
progression. However, some limitations of this study need to
be acknowledged: (i) the study was analyzed using bioinfor-
matics, and the specific mechanism underlying the correlation
between NPY6R and prognosis andmortality should be inves-
tigated in animal experiments; (ii) clinical specimens were not
collected in this study to verify the results obtained using bio-
informatics; and (iii) the accuracy of the NPY6R-based model
prediction model needs to be further optimized.

5. Conclusion

In this study, we used bioinformatics to initially confirm the
correlation between NPY6R and UVM prognosis, construct

a nomogram line graph prediction model, and analyze the
possible mechanisms and NPY6R-related pathways involved
in the progression of UVM. Therefore, this study provides
new insights for the use of NPY6R in the early diagnosis,
treatment, and prognosis prediction of UVM.
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