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Abstract

In 2017, the International Agency for Research on Cancer classified welding fumes as “car-

cinogenic to humans” (Group 1). Both mild steel (MS) welding, where fumes lack carcino-

genic chromium and nickel, and stainless steel (SS) increase lung cancer risk in welders;

therefore, further research to better understand the toxicity of the individual metals is

needed. The objectives were to (1) compare the pulmonary toxicity of chromium (as Cr(III)

oxide [Cr2O3] and Cr (VI) calcium chromate [CaCrO4]), nickel [II] oxide (NiO), iron [III] oxide

(Fe2O3), and gas metal arc welding-SS (GMAW-SS) fume; and (2) determine if these metal

oxides can promote lung tumors. Lung tumor susceptible A/J mice (male, 4–5 weeks old)

were exposed by oropharyngeal aspiration to vehicle, GMAW-SS fume (1.7 mg), or a low or

high dose of surrogate metal oxides based on the respective weight percent of each metal in

the fume: Cr2O3 + CaCrO4 (366 + 5 μg and 731 + 11 μg), NiO (141 and 281 μg), or Fe2O3 (1

and 2 mg). Bronchoalveolar lavage, histopathology, and lung/liver qPCR were done at 1, 7,

28, and 84 days post-aspiration. In a two-stage lung carcinogenesis model, mice were initi-

ated with 3-methylcholanthrene (10 μg/g; intraperitoneal; 1x) or corn oil then exposed to

metal oxides or vehicle (1 x/week for 5 weeks) by oropharyngeal aspiration. Lung tumors

were counted at 30 weeks post-initiation. Results indicate the inflammatory potential of the

metal oxides was Fe2O3 > Cr2O3 + CaCrO4 > NiO. Overall, the pneumotoxic effects were

negligible for NiO, acute but not persistent for Cr2O3 + CaCrO4, and persistent for the Fe2O3

exposures. Fe2O3, but not Cr2O3 + CaCrO4 or NiO significantly promoted lung tumors.

These results provide experimental evidence that Fe2O3 is an important mediator of welding

fume toxicity and support epidemiological findings and the IARC classification.
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Introduction

Nearly half of all U.S. products require welding for their production and there are millions of

welders worldwide [1]. Welding, the strongest method of joining metals, is, therefore, a com-

mon industrial practice, with gas metal arc welding (GMAW) being among the most popular

modalities. In GMAW, an electric arc is established between the work piece and a consumable

electrode, often mild or stainless steel (MS or SS). High temperatures create a molten pool into

which the electrode is fed and the work pieces fuse as the weld cools. Inert or semi-inert gases

through the welding gun serve to shield the weld from atmospheric contaminants. Arc welding

processes can generate a significant amount of welding fumes, vaporized metals that condense

to form particles that are respirable. The fume may contain particles from the base metal, wire/

electrode, and coatings on the base metal or electrode.

Welding fumes have known adverse human health effects [1–4]. In 2017, the International

Agency for Research on Cancer (IARC) classified welding fumes as a Group 1 carcinogen (car-
cinogenic to humans) [1, 5]. This classification was based on sufficient epidemiological evi-

dence for an increased risk of lung cancer in welders even after adjusting for smoking and/or

asbestos exposures that potentially confound these studies. Interestingly, positive associations

were found for welding on SS, which generates fume that contain carcinogenic metals [i.e.,

chromium (Cr), nickel (Ni)], and MS welding where the fume is primarily iron (Fe) and man-

ganese (Mn) [6–9]. Recent experimental animal evidence, although limited, for the carcinoge-

nicity of welding fumes in a two-stage (initiation-promotion) model of lung carcinogenesis

supported those associations [10–12]. Given the excess lung cancer risk among both SS and

MS welders, despite mild persistent inflammation observed in vivo with SS fumes and its carci-

nogenic metal content compared to MS fumes [13], the degree to which the individual metals

contribute to toxicity is even less clear. In a statement on welding in 2009, the IARC suggested

iron fumes may be a factor and account for the excess risk [14], but epidemiology studies to

date were not conclusive to evaluate specific effects attributable to iron oxides [14, 15]. Thus,

experimental research needs were identified for welding fumes, a high-priority IARC carcino-

gen, that included evaluating the carcinogenicity of its different components [14, 16].

Welding fumes currently have no occupational exposure limit as the former Threshold

Limit Value (TLV) of 5 mg/m3 as an 8-hour time-weighted average was retracted [17]. In the

workplace, more emphasis is on regulating exposures to the most toxic metals contained in the

fume (i.e., Cr or Ni). The first aim of this investigation compared the pulmonary toxicity of the

primary metal oxides found in GMAW-SS fume. The second aim examined the potential of

the metal oxides to function as lung tumor promoters using a two-stage initiation-promotion

model in A/J mice to gain insight into the metals that drive the carcinogenicity of SS fume.

Understanding the pneumotoxic effects of the individual components of welding fumes could

offer a better approach for ensuring welder health and safety as sustained inflammation, oxida-

tive stress, and persistence of the more toxic components in the lung are likely important to

carcinogenesis.

Material and methods

Animals

Male A/J mice, 4 to 5 weeks of age, were housed in groups of two in an AAALAC Interna-

tional-approved specific pathogen-free, environmentally-controlled facility as previously

described [18]. All animal studies were approved by the National Institute for Occupational

Safety and Health (NIOSH) Institutional Animal Care and Use Committee and applicable

international, national, and/or institutional guidelines for the care and use of animals were
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followed. Animals were acclimated to the animal facility for one week before beginning the

experimental protocols and allowed access to a conventional diet (6% irradiated NIH-31 Diet,

Envigo RMS, Inc., Madison, WI). All surgery was performed under sodium pentobarbital

anesthesia, and all efforts were made to minimize suffering.

GMAW-SS fume generation and metal oxide characterization

The welding fume used in this study has been fully characterized and was generated by the

robotic welder designed and constructed at NIOSH as previously described [19]. The metal

oxides used were Cr (as Cr(III) oxide [Cr2O3] + [Cr (VI)] as calcium chromate [CaCrO4],

nickel [II] oxide (NiO) and iron [III] oxide (Fe2O3). Cr2O3 (product number 393703; 151.99

g/mol), CaCrO4 (product number CDS001277; 156.07 g/mol), NiO (product number

203882; 74.69 g/mol), and Fe2O3 (product number 310050; 159.69 g/mol) and were pur-

chased from Sigma-Aldrich (St. Louis, MO). There is no ideal replication of the individual

metal oxides formed during welding processes. GMAW-SS fume consists of chain-like aggre-

gates of various metals and it was anticipated that the surrogate metal oxides chosen for this

study would likely have a smaller diameter than the aggregates. The oxide forms of Ni and Fe

presumed to be found in welding fumes are indicated above and were used as primary parti-

cles in this study. In general, Cr(VI) in shielded manual arc welding processes exists mostly

in the soluble form in combination with alkali elements such as sodium or potassium often

found in flux materials that protect the weld [20, 21]. GMAW-SS fumes are significantly less

water soluble due to the absence of these flux materials and the Cr in these fumes is typically

insoluble in the trivalent form with a very small percentage being soluble Cr(VI). Some insol-

uble Cr(VI) may be present in both GMAW and SMAW-SS fumes, however [20, 21]. It has

been reported that the slightly soluble Cr(VI) compounds may be more carcinogenic than

the highly soluble forms [22, 23]. For this reason, the Cr(VI) species (0.29% of the total fume

as measured in our laboratory) tested was a slightly soluble form (CaCrO4) as a conservative

approach.

Specific surface area (m2/g) of the powders was determined using nitrogen gas adsorption

(ASAP 2020, Micromeritics Instrument Corporation; Norcross, GA). Cr2O3, NiO, GMAW-SS,

or Fe2O3 powder was added to separate sample tubes and de-gassed under light vacuum at

300 ˚C for 2 hours then allowed to cool. CaCrO4 was degassed using the same procedure, but

was held at 80 ˚C for 6 hrs. A value of 1.62 x 10−19 m2 was used for the molecular cross-sec-

tional area of N2 at 77 ˚K and surface area was calculated from at least five adsorption points in

the range p/p0 = 0.01 to 0.3. Measurements were repeated four times for each sample except

for GMAW-SS, which was repeated twice. Hydrodynamic diameter and zeta potential of each

study material were determined using dynamic light scattering (DLS) and laser Doppler elec-

trophoresis, respectively (Zetasizer ZS90, Malvern Instruments, Worcestershire, UK), follow-

ing dispersion in the PBS dosing medium. The pH of each sample was measured before each

run using a SevenMulti calibrated electrode (Mettler-Toledo, LLC, Columbus, OH). All mea-

surements were made at 25 ˚C. Parameters of the dispersant were as follows: refractive

index = 1.334, viscosity = 0.9110 cP, dielectric constant = 80.2, and Henry function approxi-

mation of 1.5. Material-specific refractive index and absorbance values were used for each

metal oxide. Certain metal oxides were too polydisperse for size measurement via DLS and

were instead analyzed using nanoparticle tracking analysis (NTA) (NanoSight NS300, Malvern

Instruments; Worcestershire, UK) to characterize mean hydrodynamic particle size (nm). For

NTA analysis, the samples were injected through a Low Volume Flow Cell (LVFC) and mea-

sured at room temperature. Camera levels in the NTA instrument varied with each sample to

insure accurate particle characterization. Each sample was captured 5 times for 60 seconds.
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GMAW-SS fume and metal oxide preparation

Previous metal analyses of the GMAW-SS fume have shown that the metal content of the fume

is 57% Fe, 20.2% Cr, 13.8% Mn, 8.8% Ni, and 0.2% Cu [11, 19]. These metals are vaporized

from the electrode/rod during welding and then condense to form the fume particles that are

mainly in the form of metal oxides. However, the Cr component of this fume consists of both

Cr(III) and Cr(VI), with approximately 0.29% as Cr(VI) [11]. Therefore, for this study, mice

were exposed to a low or high dose of Ni as NiO, Fe as Fe2O3, and Cr as a mixture of Cr2O3 +

CaCrO4. Mn and Cu were not investigated as they are not suspected to be carcinogenic to

humans or cause lung disease. To calculate the doses in this study, the following formula was

used:

Mass of metal oxide mgð Þ ¼
Smass of metals ðmgÞ
mass of fume ðmgÞ

�
mass of metal oxidei ðmgÞ
Smass of metals ðmgÞ

� �

�

fume dose mgð Þ �
Molecular weight of metal oxidei ð

mg
molÞ

Atomic weight of metali ð
mg
molÞ

The first expression in this equation indicates that the metal content is 74% of the fume

mass, with the remaining mass contributed by gases including O2. The second expression in

the equation represents the percentage of each metal (listed in the paragraph above) that con-

tributed to that 74% of the fume mass. The third expression in the equation uses the cumula-

tive low dose (1.7 mg) or high dose (3.4 mg) of GMAW-SS that resulted in lung tumorigenesis

in our previous study [11]. The low dose of 1.7 mg represents 1.84 years of cumulative expo-

sure and 3.4 mg represents 3.67 years assuming the previous TLV for welding fume of 5 mg/

m3 for 8 h/d [11]. Lastly, the fourth expression in the equation represents the atomic weight

ratio of the metal oxide to the metal. For example, mass (g) of NiO (low dose) = 0.74 x 0.088 x

1.7 x (74.7/58.7) = 0.141 mg.

The respective low and high doses of each metal oxide are shown in Table 1 and scanning

electron microscopy images of GMAW-SS and the metal oxides are presented in Fig 1. The

fume and each component metal were suspended in USP-grade calcium and magnesium-free

phosphate buffered saline (PBS; vehicle) in a sterile conical tube. Fe2O3, GMAW-SS, and NiO

were vortexed and then sonicated at 40 amps for 15 seconds using a GE 130PB ultrasonic pro-

cessor (Cole Parmer; Vernon Hills, IL). The mixture of Cr2O3 + CaCrO4 was not sonicated.

Mouse oropharyngeal aspiration exposure

A/J mice were exposed to the metal oxides or the GMAW-SS fume by oropharyngeal aspira-

tion as previously described [13, 24]. In brief, each mouse was placed in a glass jar containing a

histology cassette with gauze moistened with isoflurane (Abbott Laboratories; North Chicago,

IL) and observed until breathing slowed. The mouse was suspended, by its front incisors, on a

Table 1. Exposure doses of the metal oxides or GMAW-SS fume.

Exposure Low Dose High Dose

NiO 141 μg 281 μg

Cr2O3 + CaCrO4 366 μg/5 μg 731 μg/11 μg

Fe2O3 1 mg 2 mg

GMAW-SS 1.7 mg - -

GMAW-SS, gas metal arc welding–stainless steel; NiO, nickel oxide; Cr2O3 + CaCrO4, chromium (III) oxide

+ calcium chromate mixture; Fe2O3, iron (III) oxide

https://doi.org/10.1371/journal.pone.0209413.t001
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slanted board in a supine position. Forceps were used to extend the tongue and 50 μl of metal

oxide or welding fume suspension was placed by pipette at the back of the throat. Shams

received an equal volume of vehicle (PBS). The mouse aspirated the suspension into its lungs

by normal breathing. The tongue was released after three deep breaths were observed. All solu-

tions were thoroughly vortexed immediately prior to dosing. This technique loses minimal

solution to the gastrointestinal tract when performed properly. The mouse was returned to its

cage and resumed normal activity within 10 to 20 seconds.

Experimental protocol 1: Biochemical measurements of lung toxicity,

histopathology, and gene expression

In two parallel studies, 256 male A/J mice were organized into 4 blocks of 64 mice and then

separated into 8 treatment groups within each block (n = 8/group) consisting of a single low

or high bolus dose of Cr2O3 + CaCrO4 mixture, NiO, Fe2O3, GMAW-SS fume (low dose only)

or PBS (sham control). Doses are shown in Table 1 and a timeline of the exposure and the

block design are shown in Fig 2. Animals were euthanized at 1, 7, 28, and 84 days post-

Fig 1. A, B, C, D. Scanning electron microscopy images of GMAW-SS (panel A), NiO (panel B), Fe2O3 (panel C), and Cr2O3 + CaCrO4 mixture (panel D).

https://doi.org/10.1371/journal.pone.0209413.g001
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oropharyngeal aspiration exposure. Mice were weighed after a weeklong acclimation period,

throughout the dosing, and at the 1, 7, 28, and 84 days sacrifice. Mice were given an overdose

of sodium pentobarbital (Fatal Plus; 100–300 mg/kg intraperitoneal; 390 mg/ml; Henry Schein;

Dublin, Ohio) then weighed. Once unresponsive to a toe pinch, the mouse was euthanized by

exsanguination.

Whole lung bronchoalveolar lavage (BAL) toxicity profile. A blunted cannula was

placed in the trachea through a small incision and the thorax was massaged as 0.6 mL of cold

PBS was instilled into the lungs. After 10 seconds, the BAL fluid was withdrawn and placed in

a 15 ml conical tube. This consisted of the first lavage fraction. This process was then repeated

3 times using 1 ml of PBS per instillate and this second fraction was collected in a separate 15

ml conical tube. The BAL fluid was kept on ice and then centrifuged (500 x g, 10 minutes,

4˚ C).

Bronchoalveolar lavage fluid cytokine analysis. Cytokine concentrations from the first

fraction BAL supernatant at 1 day and 28 days post-exposure were quantified simultaneously

by using a Discovery Assay called the Mouse Cytokine Array/Chemokine Array 32-Plex (Eve

Technologies Corp; Calgary, AB, CA). The multiplex assay was performed at Eve Technologies

by using the Bio-Plex 200 system (Bio-Rad Laboratories, Inc.; Hercules, CA, USA), and a Milli-

plex Mouse Cytokine/Chemokine kit (Millipore; St. Charles, MO, USA) according to their

protocol. The 32-plex consisted of eotaxin, granulocyte-colony stimulating factor (G-CSF),

Fig 2. Experimental timeline and block design for experimental protocol 1: Bronchoalveolar lavage and histopathology/gene expression studies. Two groups

of 256 mice were used for parallel BAL and histopathology/gene expression studies. Each group of mice was separated into 4 blocks with 8 treatment groups

corresponding to the low or high doses of metal oxides, sham or GMAW-SS fume (8 groups x 8 mice/group x 4 blocks = 256 mice). Mice were sacrificed at 1, 7, 28,

and 84 days after a single oropharyngeal aspiration exposure.

https://doi.org/10.1371/journal.pone.0209413.g002
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granulocyte monocyte-colony stimulating factor (GM-CSF), interferon gamma (IFNγ), inter-

leukin-1α (IL-1α), IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 (p40), IL-12

(p70), IL-13, IL-15, IL-17, IFN-γ-inducible protein 10 (IP-10), keratinocyte chemoattractant

(KC), leukemia inhibitory factor (LIF), C-X-C motif chemokine 5 (CXCL5), monocyte chemo-

tactic protein 1 (MCP-1), macrophage- colony stimulating factor (M-CSF), monokine induced

by gamma interferon (MIG), macrophage inflammatory protein 1α (MIP-1α), MIP-1β, MIP-

2, regulated on activation, normal T-cell expressed and secreted (RANTES), tumor necrosis

factor α (TNFα), and vascular endothelial growth factor (VEGF). Standard curves with a range

of 0 to>25,000 pg/ml were determined for each cytokine. The lowest concentration in the

group was used for any value that was out of range. The assay sensitivities of these markers

range from 0.1–33.3 pg/ml.

Lactate dehydrogenase (LDH) activity and BAL cell profile. The first BAL supernatant

lavage fraction was used to measure LDH activity, indicative of lung cytotoxicity. LDH activity

was analyzed using a COBAS MIRA Plus auto-analyzer (Roche Diagnostic Systems; Montclair,

NJ) which measured the oxidation of lactate to pyruvate coupled with the formation of NADH

at 340 nm.

For analysis of the BAL cells, the supernatant from the second lavage fraction was discarded

and the cell pellets of both fractions were combined. The final cell pellet suspended in 800 μl of

PBS was used for cell counts and differential staining. Total cell numbers were determined

using a hemocytometer. For cell differentials, cells were plated onto glass slides using a Cytos-

pin 3 centrifuge (Shandon Life Sciences International; Cheshire, England) set at 800 rpm for 5

minutes. Slides were stained with Hema 3 Fixative and Solutions (Fisher Scientific; Pittsburgh,

PA) then coverslipped. A minimum of 300 cells/slide, consisting of macrophages, lympho-

cytes, and polymorphonuclear leukocytes were identified using light microscopy.

Alveolar macrophage functional assay. To study the impact of the metal oxides on innate

immune function, alveolar macrophages from the BAL cell pellet at 1, 7, and 28 days post-

exposure to sham, GMAW-SS, or the metal oxides were challenged with Escherichia coli
(E. coli) GFP for 2 hours at 1:25 MOI (multiplicity of infection) as previously described [25].

The uptake of E.coli by macrophages was quantified by flow cytometry.

Quantitative real-time polymerase chain reaction (qPCR) and lung histopathology.

The left lung lobe was ligated, flash frozen, and then stored at -80 ˚C for RNA isolation while

the right lung lobes were fixed in 10% neutral buffered formalin for histopathology. A liver

sample was cut (~ 30 mg piece) and flash frozen before storage. RNA was isolated from the

lung and liver tissues using RNeasy Mini Kits (Qiagen; Hilden, Germany) and 1 μg was reverse

transcribed using random hexamers, dNTP mix and SuperScript III Reverse Transcriptase

(Invitrogen, ThermoFisher Scientific; Waltham, MA). Diluted cDNA (1:10) was combined

with Taqman Gene Expression Mastermix (ThermoFisher Scientific) and one of the following

genes for the 1 day post-exposure lungs: heme oxygenase 1 (Hmox1; Mm00516005_m1) and

SRY (sex determining region Y)-box 9 (Sox9; Mm00448840_m1). For the liver, the following

genes at 1 and 7 days post-exposure were analyzed: metallothionein 1 (Mt1; Mm00496660_g1),

metallothionein 2 (Mt2; Mm00809556_s1), haptoglobin (Hp; Mm00516884_m1), and serum

amyloid A1 (Saa1; Mm00656927_g1). Hypoxanthine phosphoribosyltransferase (Hprt) was

used as the reference gene (Mm03024075_m1, ThermoFisher Scientific). Amplification param-

eters included 10 minutes at 95˚C, 1 second at 95˚C and 20 seconds at 60˚C. Relative mRNA

levels were calculated using the comparative threshold method [26].

For histopathology studies, the right lung (consisting of apical, cardiac, azygos, and dia-

phragmatic lobes) was embedded in paraffin and a 5 μm standardized section was cut. Slides

were stained with hematoxylin and eosin and interpreted by a board-certified veterinary

pathologist in a blinded fashion. Any type or degree of lung injury and inflammation in the
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airways and alveolar region and evidence of changes in lung structure related to allergy includ-

ing thickening around airways (epithelium and/or smooth muscle), eosinophil and lympho-

cyte influx, and development of bronchus-associated lymphoid tissue was evaluated. If

abnormal changes were found, severity was scored as follows: 1 = minimal, 2 = mild, 3 = mod-

erate, 4 = marked.

Experimental protocol 2: Two-stage (initiation-promotion) lung tumor

bioassay

Male A/J mice (4–5 weeks of age) were organized into 5 groups (n = 40 per group) for a two

stage initiation-promotion study. Mice were initiated with 3-methylcholanthrene (MCA;

10 μg/g) or corn oil (CO; vehicle control) by intraperitoneal injection (1 x). Beginning one

week later, mice were exposed once per week to a mixture of Cr2O3 + CaCrO4 (146.2 μg +

2.2 μg), NiO (56.2 μg), Fe2O3 (400 μg), or PBS (sham control) for 5 weeks via oropharyngeal

aspiration (Fig 3A). A similarly designed study was performed by our laboratory that demon-

strated oropharyngeal aspiration of GMAW-SS fume significantly promoted lung tumors in

mice [11]. Therefore, this exposure group was not repeated. The cumulative dose of Cr2O3 +

CaCrO4 (731 μg + 11 μg), NiO (281 μg), Fe2O3 (2 mg) was equivalent to the bolus high dose

Fig 3. Experimental protocol 2: Two-stage initiation-promotion lung tumor bioassay. 200 male A/J mice were organized into 5 groups: MCA/NiO, MCA/

Cr2O3 + CaCrO4, MCA/ Fe2O3, MCA/sham, or CO/sham. Beginning 1 week post-initiation with MCA or CO, mice were exposed to the metal oxide or sham by

oropharyngeal aspiration once per week for 5 weeks (panel A). Doses of metal oxides were the cumulative high doses from experimental protocol 1 (panel B).

https://doi.org/10.1371/journal.pone.0209413.g003
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for each metal oxide as described in experimental protocol 1 (Fig 3B). Mice were weighed after

the acclimation period, throughout the dosing period, and at sacrifice.

At 30 weeks post-initiation, A/J mice were euthanized as described above. All internal

organs were examined for the presence of tumors. The whole lung was then excised. The lungs

were inflated and fixed with 10% neutral buffered formalin for 24 hours. Tumors were counted

and measured 24 hours after fixation. Any apparent merged tumors were counted as one.

Lungs were embedded in paraffin, and then a 5-μm standardized section was cut. Slides were

stained with hematoxylin and eosin and interpreted by a board-certified veterinary pathologist

in a blinded fashion for evidence of hyperplasia and neoplasia, inflammation, lymphoid tissue

response, and foreign materials by light microscopy. Diagnostic criteria for hyperplastic and

neoplastic findings were according to goRENI (http://www.goreni.org/), the standard refer-

ence for nomenclature and diagnostic criteria in toxicologic pathology and “INHAND,” the

International Harmonization of Nomenclature and Diagnostic criteria [27, 28]. If abnormal

changes were found, severity was scored by the pathologist using the following scale: 1 = mini-

mal, 2 = mild, 3 = moderate, 4 = marked. The final severity score reflects the average of the

right and left lung lobe scores and are presented as means ± standard error. Because bronch-

iolo-alveolar hyperplasia (BAH) and bronchiolo-alveolar adenomas (BAA) represent a contin-

uum of the proliferative process, and there is possible overlap between these diagnoses, the

number of lesions were combined to compare the tumorigenic potential of each exposure [28].

However, the gross tumor count at necropsy was more representative of the response because

examination of a single histological section from a lung underestimates the total number of

lesions [29].

Statistical comparisons and analysis

Statistical analyses were done using JMP version 12 and SAS version 9.4 for Windows (SAS

Institute; Cary NC). Factorial analysis of variance (ANOVA) was performed on continuous

variables from the BAL fluid and the log fold changes from the qPCR analytes to make com-

parisons between the treatment groups. For some variables, data were log-transformed to

reduce heterogeneous variance and meet the assumptions of an ANOVA. Dunnett’s test was

used for individual comparisons to sham. Histopathological findings using the graded scale

were analyzed using nonparametric Kruskal Wallis tests followed by Wilcoxon Rank Sum tests

for pair-wise comparisons. Gross tumor counts and histopathology counts from sections were

analyzed similarly. Post hoc comparisons using the nonparametric Dunn method for joint

ranking were conducted to compare the treated groups to the sham group, and to compare

low dose to high dose within each component. Lung tumor incidence was analyzed using a

Chi-square test in SAS ‘Proc Freq,’ while tumor multiplicity was analyzed using Poisson

regression in SAS ‘Proc Genmod’. In cases where overdispersion existed, a negative binomial

regression was performed using data from those animals surviving to the 30-week time point.

For all analyses, a p-value of<0.05 was set as the criteria for significance.

Results

Metal oxide and GMAW-SS fume characterization

Table 2 summarizes results of the material characterization. Specific surface area (SSA) of the

study materials ranged from about 1 to 6 m2/g, consistent with their smooth micronscale com-

pact particle morphology (Fig 1), whereas the welding fume had SSA that was at least a factor

of eight higher. The higher SSA of the welding fume is consistent with its chain-like cluster

particle aggregates [10]. Among study materials, hydrodynamic diameter measured following

dispersion in PBS ranged from about 150 nm (chromium-containing particles) to 1000 nm
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(GMAW-SS). The individual surrogate metal oxides were expected to have a smaller hydrody-

namic diameter compared to the total fume. For a given study material, values of hydrody-

namic diameter were similar for both the high and low dose concentration suspensions,

indicating that particles did not further agglomerate at the higher concentration. Values of

zeta potential, which is a measure of colloidal stability, were similar among materials and for a

given material did not differ between dosing concentrations.

Lung cytotoxicity after exposure to GMAW-SS or metal oxides

At 1 day post-exposure, BAL fluid LDH activity, indicative of lung cytotoxicity, was signifi-

cantly increased in all exposed groups compared to sham except for the low- and high-dose

NiO groups (Fig 4). At 7 days, it remained significantly increased in the GMAW-SS fume (~ 5

fold), Fe2O3 low and high (>2 and 3 fold, respectively), and Cr2O3 + CaCrO4 high-dose

groups. At 28 and 84 days post-exposure, only GMAW-SS fume and Fe2O3 high-dose groups

had significant lung cytotoxicity.

BAL cell profile and macrophage function after exposure to GMAW-SS

fume or metal oxides

Total BAL cells were significantly increased compared to sham in all groups except for low-

and high-dose NiO at 1 day post-exposure (Fig 5A). The greatest increase in total BAL cells at

1, 7, and 28 days post-exposure was found in GMAW-SS fume-exposed mice. Significantly

increased BAL cells were observed at every time point in the Fe2O3 high-dose group. The cell

increases at 1 day post-exposure were mostly due to neutrophil influx, as few changes in mac-

rophages were found at this time point (Fig 5B and 5C). However, there was significant neu-

trophil and macrophages in GMAW-SS fume-exposed mice at 7 and 28 days, but the

macrophage influx was greater. There was a mild, but significant, eosinophil response in the

GMAW-SS fume, Cr low- and high-dose, and Fe2O3 high-dose groups at 1 day post-exposure

(S1 Table). By 28 days, no eosinophils were present. At 84 days, only GMAW-SS fume and

Fe2O3 high-dose exposure groups had significantly increased total cells compared to sham that

was primarily due to increased macrophages and some remaining neutrophils. Neutrophils

were non-significant in all groups at 84 days. Macrophages were significantly increased only in

the Fe2O3 high-dose group at this time point. Lymphocytes were absent in all groups through-

out the time course (S1 Table). Alveolar macrophages had a reduced ability to phagocytose E.

Table 2. Characteristics of metal oxides and GMAW-SS fume.

Sample Dose SSA (m2/g) Hydrodynamic Diameter (nm) Zeta Potential (mV)��

NiO High 2.0 ± 0.01 124 ± 0.6� -25.8 ± 2.0

Low 126 ± 1.1 -28.1 ± 1.7

Cr2O3 + CaCrO4 High 2.7 ± 0.01 + 0.78 ± 0.01 147 ± 0.3� -28.7 ± 2.1

Low 142 ± 2.0� -28.4 ± 2.3

Fe2O3 High 6.0 ± 0.01 699 ± 200 -31.4 ± 0.9

Low 639 ± 32 -32.0 ± 0.8

GMAW-SS Low 53.1 ± 0.26 1068 ± 197 -27.1 ± 0.8

�Value determined using NTA; all other values determined using DLS

��pH of study materials: Cr2O3 + CaCrO4 high (7.2), low (7.3); Fe2O high (7.4), low (7.4); NiO high (7.4), low (7.4); GMAW-SS (6.9). GMAW-SS, gas metal arc

welding–stainless steel; SSA, specific surface area; NiO, nickel oxide; Cr2O3 + CaCrO4, chromium (III) oxide + calcium chromate mixture; Fe2O3, iron (III) oxide

https://doi.org/10.1371/journal.pone.0209413.t002
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coli 1 and 7 days post-exposure to GMAW-SS fume and all component metals but returned to

sham levels by 28 days post-exposure (Fig 6).

BAL cytokine analysis at 1 and 28 days post-exposure to GMAW-SS fume

or metal oxides

At 1 day post-exposure increased levels of G-CSF, GM-CSF, IL-5, IL-6, IP-10, KC, LIF, MIG,

MIP-1α, MIP-1β, TNFα, and VEGF were noted in many of the exposed groups compared to

Fig 4. LDH activity, measured in the BAL fluid and indicative of lung cytotoxicity, after exposure to GMAW-SS fume or metal

oxides. Data presented as percent change from sham (dashed line– 100%). �p<0.0001 compared to sham; ��p<0.0001 compared to sham

and all other low-dose groups; #p<0.0001 compared to low- and high-dose metal oxides within a group.

https://doi.org/10.1371/journal.pone.0209413.g004

Fig 5. Total BAL cells (panel A), macrophages (panel B), and neutrophils (panel C) after exposure to GMAW-SS fume or metal oxides. No sham bars are

present in panel c due to an absence of neutrophils in the sham group. �p<0.0001 compared to sham; ��p<0.0001 compared to sham and all other low dose groups;

#p<0.0001 compared to low- and high-dose metal oxides within a group.

https://doi.org/10.1371/journal.pone.0209413.g005
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sham (Table 3). Most cytokine levels were highest in GMAW-SS fume-exposed group and

near sham in the NiO-exposed groups. Most cytokines resolved by 28 days post-exposure

(Table 4). Fold change values from sham are shown in S2 Table.

Lung and liver gene expression analysis

Select lung and liver relative mRNA levels for genes representing systemic inflammation and

oxidative stress were measured 1 and 7 days post-exposure. Recent literature suggests Sox9
may be a new hallmark for lung adenocarcinoma so this gene was also explored in this study

[30]. Expression for these genes was significantly increased following GMAW-SS fume, Fe2O3

low-dose, and Fe2O3 high-dose exposure groups at 1 day post-exposure (Table 5). By 7 days

post-exposure, liver relative mRNA levels were resolving with Mt1 increased ~3 to 4 fold in all

three groups and Saa1 increased ~3 fold and ~2 fold in GMAW-SS fume and Fe2O3 low-dose

Fig 6. Ability of alveolar macrophages to phagocytose E. coli GFP after exposure to GMAW-SS fume or metal oxides. E. coli uptake by

macrophages was quantified by flow cytometry. Data presented as percent change from sham (dashed line– 100%). �p<0.05 compared to sham.

https://doi.org/10.1371/journal.pone.0209413.g006
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groups, respectively (S3 Table). Fewer changes in lung and liver relative mRNA levels were

detected in NiO or Cr2O3 + CaCrO4 groups compared to the GMAW-SS fume- and Fe2O3

-exposed groups (S3 Table). No changes in relative mRNA levels occurred in NiO low- or

high-dose groups in any of the genes examined. At 1 day post-exposure to Cr2O3 + CaCrO4

low- and high-dose, levels of liver Mt1 and Saa1 were significantly increased above sham (~5-

and ~12-fold for low-dose and ~8- and ~17-fold for high-dose Mt1 and Saa1 levels, respec-

tively; p< 0.05; S3 Table). At 7 days, Mt1 and Saa1 levels were still significantly increased ~ 2

fold in the Cr2O3 + CaCrO4 high-dose exposed group (S3 Table; p< 0.05). Among relative

lung mRNA levels, only Hmox1 levels were significantly increased in Cr2O3 + CaCrO4 high-

dose animals compared to sham (~2-fold; p< 0.05; S3 Table).

Table 3. BAL cytokine analysis at 1 day post-exposure to GMAW-SS fume or surrogate metal oxides. Color scheme of yellow-orange-red represent fold change from

sham (darker red represents greatest change).

G-CSF� GM-CSF@ IL-5 � IL-6 � IP-10 ^ KC � LIF ‡ MIG ‡ MIP-1a� MIP-1b� MIP-2# TNFa� VEGF�

Sham

NiO low

NiO high

Cr2O3 + CaCrO4 low

Cr2O3 + CaCrO4 high

Fe2O3 low

Fe2O3 High

GMAW-SS

�p< 0.05 for all groups compared to sham;
#p< 0.05 for GMAW-SS fume and Cr2O3 + CaCrO4 and high compared to sham;
^p < 0.05 for all groups compared to sham except NiO low and high;
‡p< 0.05 for all groups except NiO low;
@p< 0.05 for GMAW-SS fume, Fe2O3 groups, and Cr2O3 + CaCrO4 high compared to sham

https://doi.org/10.1371/journal.pone.0209413.t003

Table 4. BAL cytokine analysis at 28 days post-exposure to GMAW-SS fume or surrogate metal oxides. Color scheme of yellow-orange-red represent fold change

from sham (darker red represents greatest change).

G-CSF � GM-CSF IL-6 � IP-10 # KC ^ MIP-1a ‡ MIP-1b @ MIP-2 TNFa VEGF

Sham

NiO low

NiO high

Cr2O3 + CaCrO4 low

Cr2O3 + CaCrO4 high

Fe2O3 low

Fe2O3 High

GMAW-SS

�p< 0.05 for GMAW-SS fume compared to sham;
#p< 0.05 for GMAW-SS fume and Fe2O3 groups compared to sham;
^p < 0.05 for GMAW-SS fume and Fe2O3 groups compared to sham,
‡p< 0.05 for all groups compared to sham except NiO low;
@p< 0.05 for GMAW-SS fume, Fe2O3 groups, and Cr2O3 + CaCrO4 high compared to sham

https://doi.org/10.1371/journal.pone.0209413.t004
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Effects on body weight and survival post-welding fume or metal oxide

exposure

Mice for experimental protocol 1 BAL group weighed on average 18.33 ± 0.13 g and for experi-

mental protocol 1 histopathology/gene expression weighed on average 22.02 ± 0.15 g at the

start of dosing. All mice survived until their respective 1, 7, 28, or 84 day sacrifices. Mice for

experimental protocol 2 weighed on average 18.94 ± 0.13 g at the start of dosing and 28 of the

200 mice died prior to the planned 30 week sacrifice. All groups gained weight throughout the

study and there were no significant differences found among the exposure groups versus sham

for either protocol (data not shown).

Lung histopathological findings for lung toxicity in A/J mice

Morphological findings are presented in Table 6 with representative photomicrographs of the

findings shown in Fig 7. The response to NiO, Cr2O3 + CaCrO4, and Fe2O3 was characterized

by the presence of black foreign bodies and pigmented macrophages in terminal bronchioles

and adjacent alveoli. NiO, at 1 and 7 days, caused minimal to mild infiltration of neutrophils

Table 5. Relative mRNA levels as mean fold change ± standard error compared to sham (mean fold change of 1) in the lungs and liver at 1 day post-exposure to

GMAW-SS fume or Fe2O3.

GMAW-SS Fe2O3 low Fe2O3 high

Liver genes Mt1 74.64 ± 9.02� 29.89 ± 18.16� 42.26 ± 13.46�

Mt2 9.65 ± 2.58� 7.41 ± 5.03�� 8.59 ± 3.23�

Hp 3.93 ± 0.64� 3.24 ± 1.48� 2.31 ± 0.48�

Saa1 136.57 ± 38.32� 72.02 ± 51.83� 84.34 ± 31.52�

Lung genes Hmox1 2.69 ± 0.23� 1.54 ± 0.15�� 1.92 ± 0.37��

Sox9 1.63 ± 0.23 2.76 ± 0.55�� 4.36 ± 1.24��

GMAW-SS, gas metal arc welding–stainless steel fume; Fe2O3, iron (III) oxide; Mt1, metallothionein 1; Mt2, metallothionein 2; Hp, haptoglobin; Saa1, serum amyloid

A1; Hmox1, heme oxygenase 1; Sox9, SRY—box 9.

� p < 0.0001;

�� p < 0.05

https://doi.org/10.1371/journal.pone.0209413.t005

Table 6. Lung histopathology scores for the morphological findings in A/J mice at 1 day post-exposure to GMAW-SS fume or metal oxides.

n Infiltration,

mononuclear

Infiltration,

neutrophils

Pigmented

macrophages

Hyperplasia Phagocytes with cell

debris

Neutrophilic

exudates

Sham 6 - - - - - - - - - - - -

NiO low 6 - - 1.33 ± 0.42 1.00 ± 0.26 - - - - - -

NiO high 6 - - 1.67 ± 0.21� 1.17 ± 0.17 0.67 ± 0.33 0.33 ± 0.33 - -

Cr2O3 + CaCrO4

low

6 1.00 ± 0.45 1.67 ± 0.21� 2.00 ± 0.00 0.17 ± 0.17 1.33 ± 0.42 - -

Cr2O3 + CaCrO4

high

6 0.83 ± 0.40 1.33 ± 0.33 2.67 ± 0.21�� 0.17 ± 0.17 1.67 ± 0.76 1.00 ± 0.52

Fe2O3 low 6 1.17 ± 0.17 1.00 ± 0.00 2.5 ± 0.22� - - 1.67 ± 0.42 - -

Fe2O3 high 6 1.00 ± 0.37 1.83 ± 0.17�� 3.00 ± 0.00�� 0.33 ± 0.33 1.50 ± 0.50 0.50 ± 0.50

GMAW-SS 6 2.17 ± 0.17�� 1.67 ± 0.21� 2.83 ± 0.17�� 0.67 ± 0.42 3.17 ± 0.17�� 1.83 ± 0.60

Severity scores are the averages of right lung lobes and presented as means ± standard error. Severity was scored as 1 = minimal, 2 = mild, 3 = moderate, 4 = marked.

�p< 0.05 and

�� p < 0.005 compared to sham.

https://doi.org/10.1371/journal.pone.0209413.t006
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around terminal bronchioles and/or vessels in some instances. The response to the high-dose

was not notably different from the low-dose, with the exception that black pigment and pig-

mented macrophages were more often detected 84 days post-exposure (S4 Table).

At 1 day and 7 days post-exposure to Cr2O3 + CaCrO4, there was minimal infiltration of

neutrophils around terminal bronchioles and/or vessels and neutrophil exudate in bronchiolar

and alveolar lumens in many animals, especially in the high-dose exposure group (S4 Table).

Fe2O3 caused minimal to mild infiltration of neutrophils around terminal bronchioles and/

or vessels. There was neutrophil/macrophage exudate in alveolar lumens in many animals,

especially in the high-dose group at 1 and 7 days. Hyperplasia of bronchiolar epithelium was

rarely present. At 84 days, black foreign bodies and pigmented macrophages were consistently

present in terminal bronchioles and adjacent alveolar lumens. Also, at 84 days the incidence

and severity of lymphoid nodules was slightly increased (S4 Table).

The lung response to GMAW-SS fume was greater than the metal oxides and was character-

ized by the presence of brown foreign bodies and pigmented macrophages in terminal bron-

chioles and adjacent alveoli. Also, the alveolar walls were often thickened due to mononuclear

cell infiltration and hyperplasia of bronchial epithelium was sometimes present at 1 and 7

days. Amorphic brown foreign bodies were occasionally present in bronchial lumens, particu-

larly at the early time points. At 28 and 84 days, the cell response tended to transition from

neutrophilic to mononuclear cell (macrophage and lymphocyte), including formation of lym-

phocytic nodules around vessels in affected regions. Notable lesions were still present on day

84, including pigment in terminal bronchioles that was surrounded by spindle-shaped mono-

nuclear cells that appeared to be walling off a focal accumulation of brown pigment (S4 Table).

Gross lung tumor multiplicity and incidence

Among the component metals, only Fe2O3 significantly promoted lung tumors in the A/J

mouse after initiation with MCA compared to MCA/sham (15.18 ± 0.83 and 9.78 ± 0.80,

respectively; p<0.0001). The grossly observed lung tumor multiplicity (mean tumor number/

mouse lung ± SE and includes mice with no tumors) after exposure to MCA or a metal oxide

is shown in Fig 8. There was no significant effect of the other metal oxides on lung tumor mul-

tiplicity compared to MCA/sham (MCA/NiO, 8.62 ± 0.69; MCA/Cr2O3 + CaCrO4, 10.57 ±
0.72; MCA/sham, 9.78 ± 0.80). As expected, average tumor incidence (% of tumor-bearing

mice) was low in mice initiated with CO (CO/sham, 13.79%) and at or near 100% in those ini-

tiated with MCA (MCA/sham, 100%; MCA/Cr2O3 + CaCrO4, 97.22%; MCA/NiO, 100%;

Fig 7. Exudate and brown material in the bronchial lumen of a mouse exposed to GMAW-SS fume and sacrificed 1 day post-exposure (panel A; 10x

magnification). Mononuclear cell infiltrate of alveolar wall in a mouse exposed to GMAW-SS fume (panel B; 20x magnification) or low-dose Fe2O3 (panel C; 40x

magnification) and sacrificed 7 days post-exposure.

https://doi.org/10.1371/journal.pone.0209413.g007
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MCA/Fe2O3, 100%). Shown in Fig 9 is the gross lung morphology in sham, Cr2O3 + CaCrO4,

NiO, and Fe2O3- exposed mice. Fe2O3 and Cr2O3 + CaCrO4 deposition were visible in mouse

lungs and appeared red and green in color, respectively. Tumors appeared white in color and

opaque on initial gross exam and became well-defined after fixation which aided enumeration.

At 30 weeks, tumors were between ~0.5 and ~3 mm in diameter. Average tumor size was 1.00,

1.30, 1.17, 1.18, and 1.11 mm for CO/Sham, MCA/sham, MCA/NiO, MCA/Cr2O3 + CaCrO4,

and MCA/Fe2O3, respectively. No significant difference in sizes among groups was found.

Two-stage initiation-promotion lung tumor bioassay: Histopathological

evaluation of lung lesions, inflammation, and presence of metals

Microscopic findings of the lungs of mice exposed to MCA and one of the metal oxides or

sham are presented in Table 7. The most common findings were one or more bronchiolo-alve-

olar adenomas, and one or more foci of alveolar epithelial hyperplasia. Adenoma and hyper-

plasia were observed in the right and/or left lungs in all animals in all exposure groups. No

carcinomas were observed. A few of the adenomas in this study were well demarcated and

formed solid hypercellular masses and/or hypercellular papillary structures that had replaced

the normal alveolar architecture. The adenomas were composed primarily of cells that

appeared similar to those of hyperplasias, although some slightly enlarged, somewhat atypical

appearing cells with enlarged nuclei were sometimes present. Mitotic figures were rare. Repre-

sentative images of an adenoma are shown in Fig 10. Maintenance of the normal alveolar

structure versus replacement by an abnormal growth pattern, is the single most important

characteristic distinguishing hyperplasia from adenoma. Alveoli within larger hyperplasias

Fig 8. Total tumor number per mouse lung following exposure to CO or MCA and a metal oxide or sham. Bars

represent lung tumor multiplicity (mean tumor number/mouse lung and includes mice with no tumors) for each

group. �p<0.0001 compared to MCA/sham.

https://doi.org/10.1371/journal.pone.0209413.g008
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generally were collapsed and appeared hypercellular, but close examination of the lesion dem-

onstrated that the normal alveolar structure was still intact and that the lesion was a hyperpla-

sia and not an adenoma. Alveolar epithelial hyperplasia was greatest and most severe in MCA/

Fe2O3 exposed mice. Foreign material, presumably the metal, was observed in MCA/NiO,

Fig 9. Lung tumors pre-fixation (left) and 24 hours post-fixation (right) following exposure to NiO (panel A), Cr2O3 + CaCrO4

(panel B), and Fe2O3 (panel C). Tumors (arrows) were on average ~1 mm in diameter and opaque in color.

https://doi.org/10.1371/journal.pone.0209413.g009
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MCA/Fe2O3, and MCA/Cr2O3 + CaCrO4 exposure groups. The foreign material appeared as

multiple, widely scattered individual or small clusters of minute discrete focal aggregates of

black granules. In some cases the granules were clearly present within an alveolar histiocyte. In

other cases the granules appeared to be within an alveolar histiocyte but the histiocyte was

obscured by the granules. Occasionally, granules were scattered within an alveolus and not

within a histiocyte. Mild lymphocytic infiltrate was observed in a few MCA/Fe2O3 and MCA/

Cr2O3 + CaCrO4—exposed animals, but it was not significantly different than sham. Total

lung lesions, recorded as the average number of hyperplasias and adenomas per mouse lung,

were significantly increased only in the MCA/Fe2O3—exposed animals compared to MCA/

sham (6.91 ± 0.52 versus 4.33 ± 0.64, respectively; p< 0.0001).

Table 7. Two stage (initiation-promotion) lung cancer bioassay: Lung histopathology severity scores for abnormal morphological findings and number of lesions in

A/J mice at 30 weeks post-initiation.

n Lymphocytic

infiltrate�
Foreign

material�
Hyperplasia

severity�
Alveolar epithelial

Hyperplasia��
Bronchiolo-alveolar

adenoma��
Total lesions��

MCA/sham 24 - - - - 1.69 ± 0.30 3.00 ± 0.60 (75) 1.33 ± 0.25 (32) 4.33 ± 0.64

(107)

MCA/NiO 26 - - 0.77 ± 0.17^ 1.77 ± 0.42 2.77 ± 0.68 (72) 1.62 ± 0.48 (42) 4.38 ± 0.86

(114)

MCA/ Cr2O3 +

CaCrO4

32 0.06 ± 0.06 0.97 ± 0.05^ 2.19 ± 0.38 3.91 ± 0.90 (125) 1.50 ± 0.43 (48) 5.41 ± 1.02

(173)

MCA/ Fe2O3 33 0.45 ± 0.08 1.83 ± 0.05^ 2.33 ± 0.16+ 4.96 ± 0.44 (164) 1.94 ± 0.24 (64) 6.91 ± 0.52

(228)^

�Severity scores are the averages of the left and right lung lobes and presented as means ± standard error. Severity was scored as 1 = minimal, 2 = mild, 3 = moderate,

4 = marked.

��Hyperplasia and adenoma were the only two lung lesions present and represented as count data presented as average or total lesions (in parenthesis).

- -Indicates no findings
^p < 0.0001 compared to MCA/sham
+p < 0.005 compared to MCA/sham

MCA: 3-methylcholanthrene

https://doi.org/10.1371/journal.pone.0209413.t007

Fig 10. A bronchiolo-alveolar adenoma in an Fe2O3-exposed mouse 30 weeks post-initiation with MCA at 10x magnification (panel A) and 20x

magnification (panel B).

https://doi.org/10.1371/journal.pone.0209413.g010
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Discussion

In this investigation, Fe2O3 was the only metal oxide to promote lung tumors in mice. At doses

representative of the total GMAW-SS fume by weight percent, the lung inflammatory potential

of the surrogate metal oxides was Fe2O3 > Cr2O3 + CaCrO4 > NiO. Overall, the pneumotoxic

effects were negligible for NiO, acute but not persistent for Cr2O3 + CaCrO4, and persistent

for the Fe2O3 exposures. Pneumotoxicity was greatest for the total GMAW-SS fume, which is

consistent with other studies that reported components of the fume are less toxic than the total

fume [13, 31].

The primary finding of this study was that Fe2O3 was the only metal oxide to function as a

promoter in vivo. Iron oxides are a Group 3 or not classifiable as to its carcinogenicity to
humans according to the IARC [32]. Occupational scenarios involving iron exposure (iron

and steel founding) as well as haematite underground mining are Group 1, however, most

occupational exposures to iron oxides are mixed exposures to other metals or potential carcin-

ogens, making epidemiologic studies difficult to directly link iron oxide with a carcinogenic

effect [33, 34]. In a 2009 report by the IARC, it was acknowledged that there was “an as-yet

unexplained common reason” for the increased risk of lung cancer observed in several epide-

miological studies with both MS and SS welding occupations [14]. Epidemiology research sug-

gested a potential role for iron fumes, and experimental carcinogenicity assays on individual

metal components of welding fumes was identified as a future research need [15, 16]. This

study and more recent work showing lung tumor promotion of MS welding fumes in mice

further support the epidemiological findings that MS welders, despite exposure to mainly Fe

and Mn, are at increased risk of lung cancer [8, 9, 15]. Fe2O3 was the most pneumotoxic of the

metals examined, as the Fe high dose group caused significant cytotoxicity and a persistent

inflammatory cell response in the lung. Similarly, Fe2O3 caused the greatest increases in BAL

cytokine levels, systemic inflammation, and lung histopathological alterations.

Numerous worker and animal studies have implicated Cr as contributing to lung cancer

development. Cr(VI) compounds are classified as carcinogenic to humans (Group 1) according

to the IARC and Cr(III) a Group 3 [34–38]. It has been reported that Cr(III) cannot enter cells

as readily as Cr(VI) and is, therefore, less harmful [3, 36]. Cr(VI) is reduced to Cr(III) once

inside cells and in the process can generate reactive oxygen species that damage DNA [36]. In

the present study, the mixture of these two forms of Cr (as Cr2O3 + CaCrO4) did not promote

lung tumors at the doses evaluated in this study but did cause mild acute cytotoxicity and

inflammation at 1 and 7 days post-exposure. Levels of BAL cytokines, tissue gene expression,

and lung histopathology changes were less compared to Fe2O3 and GMAW-SS fume. Nette-

sheim et al. 1971 performed one of the first in vivo Cr(VI) chronic inhalation exposure studies,

exposing C57BL/6 mice, a lung tumor resistant strain, to CaCrO4 (13 mg/m3) for their lifetime

and observed a significant increase in tumor incidence [39, 40]. An intratracheal instillation

study in rats by Steinhoff et al. (33) reported evidence of carcinogenicity and chronic inflam-

mation for both a soluble Cr(VI) compound and CaCrO4 at primarily high-dose or “irritant”

levels (1.25 mg/kg for 30 months)[22]. Similarly, Glaser et al. [41] found weak evidence of

carcinogenicity in a 2-year inhalation study using a soluble Cr(VI) species and a slightly solu-

ble chromium oxide mixture (Cr5O12) in rats. Systemic effects, mild histopathological changes,

and increased persistence (~10 times) of the slightly soluble Cr5O12 compared to the soluble

Cr(VI) was also reported. It is apparent that high doses of Cr(VI) are needed to observe its car-

cinogenic effects in vivo [39]. Interestingly, both Steinhoff et al. and Glaser et al. suggested that

chronic inflammation and/or Cr accumulation (i.e. decreased lung clearance functions) in

association with a “maximally tolerated” dose may be essential for tumorigenesis. While the

dose of CaCrO4 used in the present study (cumulative 11 μg) reflected the percentage found in
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the GMAW-SS fume, there was only mild acute inflammation and cytotoxicity and the dose

was likely too low to result in tumorigenesis.

Like Cr(VI), Ni compounds are classified as carcinogenic to humans according to the IARC,

with support from many worker and experimental animal studies [38, 42–45]. In 2012, the

IARC concluded that high cytotoxic concentrations as well as the presence of inflammation

may be needed to induce carcinogenicity [38, 46–49]. Solubility properties and speciation may

play a role in carcinogenic potency of different Ni compounds with the release and accumula-

tion of ionic Ni of seemingly high importance [38, 42, 50]. Few in vivo studies have specifically

investigated the tumorigenic potential of NiO. Most notably, the National Toxicology Program

performed 2-year chronic inhalation studies [51] that demonstrated that NiO caused inflam-

mation and tumorigenesis in F344 rats and B6C3F1 mice. In the present study, exposure to

NiO did not cause lung cytotoxicity or inflammation and the low dose, in combination with its

negligible water solubility, may partially explain the absence of a tumor promoter effect.

As may be expected, GMAW-SS fume was more cytotoxic than the individual metal oxides

tested. While this study demonstrated that none of the metals besides Fe2O3 functioned

individually as lung tumor promoters, previous studies in our lab have demonstrated that

GMAW-SS fume promotes lung tumors in A/J mice after both oropharyngeal aspiration and

inhalation exposure [11, 18]. Also, histopathological changes were found in the lungs of

GMAW-SS fume-exposed mice, which included both a mononuclear and neutrophilic infiltra-

tion of a greater degree compared to that of the individual metals. Changes in BAL cytokine

levels as well as liver mRNA abundance were also greatest in GMAW-SS fume-exposed groups.

Most notably, GMAW-SS fume increased G-CSF and IP-10 protein levels, which promote

neutrophil survival and function and act as chemoattractants for macrophages, respectively,

mirroring the neutrophil and macrophage influx that was observed. The greatest changes in

gene expression were observed in liver at 1 day post-exposure, with increased expression of

Mt1, Mt2, and Saa1 occurring in Fe2O3- and GMAW-SS-exposed mice, indicating a potential

acute phase protein response. Results from previous studies have also suggested that the total

fume may be more cytotoxic than its individual components. Manual metal arc welding

(MMA)-SS fume is more pneumotoxic than soluble Cr(VI), at the percent found in the fume

(11). Antonini et al. (20) observed that the lung toxicity and inflammation caused by MMA-SS

fume was due to both the soluble and insoluble fractions. The results of these studies, along

with our findings, suggest that individual components of SS welding fumes are not capable of

approximating the toxicity of the total fume. The Fe appears to be the primary component

driving the persistent toxicity of the GMAW-SS fume, however, with Cr and Ni potentially

contributing to the more acute effects. Further studies should determine if the sub-threshold

effects of the known carcinogens, Cr and Ni, exacerbate the effects observed with Fe.

The mechanisms by which welding fumes act as lung carcinogens remain largely unknown.

A recent report from Guyton et al. [52] concluded that the two most likely key carcinogenic

characteristics of welding fumes include the ability to cause immunosuppression and chronic

inflammation. GMAW-SS fume has been shown to cause sustained cellular influx in rodent

models and this study found that both GMAW-SS fume and Fe2O3 were pneumotoxic with

local and systemic inflammatory responses observed after a single bolus dose [13, 53, 54]. Epi-

demiology studies indicate that welders and metal fume workers are more susceptible to

develop an infection [55–58]. In agreement, inhalation to GMAW-SS fume suppressed the

lung’s ability to clear Listeria monocytogenes in Sprague-Dawley rats [53]. The present study

also demonstrated that the metal oxides and GMAW-SS fume inhibited the ability of macro-

phages to phagocytose bacteria, suggesting that an immunosuppressive state was induced but

alone was not sufficient for tumor promotion. Alterations in phagocytic function has been

shown to be caused by an alteration in surface receptors with a phenotypic change in alveolar
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macrophages [59, 60]. These mechanisms, likely in combination, potentially contribute to

tumorigenesis.

There are a number of limitations to this study. First, the metal oxides used for exposure

were pure oxides and were not isolated directly from the fume. The metals in the freshly gener-

ated fume are more complex and may consist of different chemical compositions and combi-

nations of these oxides; therefore, the oxides in the fume may differ in their morphology,

reactivity, and solubility compared to those used in this study. For this reason, we character-

ized the metal oxides used in this study and noted that each oxide had much smaller SSA and

different hydrodynamic diameters than the GMAW-SS. A second limitation to this study was

that the exposures were done by oropharyngeal aspiration of bolus doses. Although this is a

well-established method and both inhalation and oropharyngeal aspiration of this welding

fume promoted lung tumors [10, 11], the bolus doses are less representative of worker inhala-

tion exposures. A further limitation of this study was that metals were dosed individually and

not in combination, which eliminated the examination of any potential additive or synergistic

effects among two or more metal oxides.

In summary, the results of this study provide experimental insight into the toxicity and

tumorigenicity of some of the abundant metal oxides found in welding fumes. In particular, it

was found that Fe2O3 is a lung tumor promoter in vivo and may be the primary metal oxide

responsible for the carcinogenic effect of SS fume. The results also add quantitative support to

an earlier hypothesis from the IARC that indicated a common reason for excess lung cancer

risks for all welders beyond Ni and Cr(VI) given that welding processes not associated with

carcinogenic metals are now classified as a Group 1 carcinogen [5, 14]. Additional studies will

focus on further investigating the toxicity of these metal oxides in vivo and in vitro and explor-

ing potential mechanisms of tumorigenesis of different welding fumes and combinations of

the metal components.
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