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Abstract

Background: According to the endosymbiont hypothesis, the mitochondrial system for aerobic respiration was derived
from an ancestral Alphaproteobacterium. Phylogenetic studies indicate that the mitochondrial ancestor is most closely
related to the Rickettsiales. Recently, it was suggested that Candidatus Pelagibacter ubique, a member of the SAR11 clade
that is highly abundant in the oceans, is a sister taxon to the mitochondrial-Rickettsiales clade. The availability of ocean
metagenome data substantially increases the sampling of Alphaproteobacteria inhabiting the oxygen-containing waters of
the oceans that likely resemble the originating environment of mitochondria.

Methodology/Principal Findings: We present a phylogenetic study of the origin of mitochondria that incorporates
metagenome data from the Global Ocean Sampling (GOS) expedition. We identify mitochondrially related sequences in the
GOS dataset that represent a rare group of Alphaproteobacteria, designated OMAC (Oceanic Mitochondria Affiliated Clade)
as the closest free-living relatives to mitochondria in the oceans. In addition, our analyses reject the hypothesis that the
mitochondrial system for aerobic respiration is affiliated with that of the SAR11 clade.

Conclusions/Significance: Our results allude to the existence of an alphaproteobacterial clade in the oxygen-rich surface
waters of the oceans that represents the closest free-living relative to mitochondria identified thus far. In addition, our
findings underscore the importance of expanding the taxonomic diversity in phylogenetic analyses beyond that
represented by cultivated bacteria to study the origin of mitochondria.
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Introduction

Mitochondria are eukaryotic organelles for aerobic respiration,

thought to have originated sometime after the rise of oceanic and

atmospheric oxygen levels roughly about 2.06109 years ago [1,2].

Early phylogenetic analyses of ribosomal RNA and of components in

the respiratory chain complexes suggested that the mitochondrion

was derived from an Alphaproteobacterial endosymbiont [3,4].

Consistently, comparative genomics analyses have identified aerobic

respiration as ancestrally present in both the Alphaproteobacteria [5]

and the proto-mitochondrion [6]. However, despite extensive debate,

there is no consensus about the identities and characteristics of the

partners involved in the endosymbiotic association.

On the host-side, the debate has focused on the extent to which

the origin of mitochondria coincides with the emergence of

eukaryotes. Several mutually incompatible models have been

proposed. One suggests that the host was a relatively complex

eukaryote, as explicitly stated in the Archezoa hypothesis [7]. A

counter-argument raised against this model is that ancestrally

amitochondriate eukaryotes have never been found [8]. Other

models, such as the Hydrogen hypothesis, favour an archaeal

methanogenic host that evolved into a eukaryotic cell upon the

acquisition of mitochondria [9].

On the endosymbiont side, discussions have centred on the

metabolic capability transferred to the host and the phylogenetic

placement of the lineage from which the mitochondrial endosym-

biont emerged. Since subunits of key enzymes of the respiratory

chain complexes are encoded by all mitochondrial genomes and

homologs are present in most of the sequenced alphaproteobac-

terial genomes, attempts to elucidate the origin of mitochondria

have mostly focused on the system for aerobic respiration [10–12].

A few ribosomal proteins are encoded by some mitochondrial

genomes and these have also been used to trace the mitochondrial

ancestry [13,14].
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With the number of complete genome sequences from

alphaproteobacterial species steadily growing, several recent

studies have re-examined the placement of mitochondria in

relation to contemporary alphaproteobacterial species [13–15].

Phylogenetic analyses of concatenated protein alignments have

suggested that mitochondria are affiliated with the Rickettsiales

[14,15], an obligate intracellular clade with members that are well

adapted to the cytosol of both metazoa [16] and protozoa [17].

However, phylogenetic analyses of single proteins have indicated

different placements of mitochondria in relation to the Rickettsi-

ales, as seen for example in a study of the mitochondrial phylome

of Reclinomonas americana [13]. Of the single proteins analyzed,

some indicated a placement of the mitochondria outside the

Alphaproteobacteria, others as a sister-group to the Rickettsiales

and the remaining suggested that they diverged within or

represents a sister-group to the clade consisting of Rhizobiales,

Rhodobacterales, Rhodospirilalles, Caulobacterales and Sphingo-

monadales [13].

A possible underlying reason for the difficulty in determining

the specific placement of mitochondria in the alphaproteobacterial

tree might involve unbalanced taxon sampling, as the current

collection of completely sequenced genomes, including those of

Alphaproteobacteria, is heavily biased towards medically and

agriculturally relevant species. As such, the current sampling does

not extensively cover the taxonomic diversity of species that

inhabit environments in which mitochondria might have origi-

nated, such as the oxygen-producing marine photic zone. Given

that Alphaproteobacteria are extremely common in these habitats

with members of the SAR11 clade representing 30–40% of total

cell counts in the oceans, it is of interest to examine the

relationship between mitochondria and oceanic Alphaproteobac-

teria.

The SAR11 group of bacteria plays an important role in the

oceanic carbon cycle. These bacteria have small cell volumes and

grow slowly. The genome of Candidatus Pelagibacter ubique has

recently been sequenced [18] and it currently is the only published

genome from a species belonging to the SAR11 clade. The Ca.

Pelagibacter ubique genome is 1.3 Mb in size and, with an

average intergenic space of only 3 basepairs, it is one of the most

compact of all bacterial genomes sequenced to date [18].

Interestingly, the first and only phylogeny inferred so far from a

concatenated protein alignment that includes Ca. Pelagibacter

ubique along with mitochondria and 71 other alphaproteobacter-

ial species has identified Ca. Pelagibacter ubique as a sister-species

to the clade encompassing mitochondria and the Rickettsiales

[15].

In light of the points discussed above, a better sampling of

oceanic bacteria might help to determine the nature of the

mitochondrial progenitor. The largest marine metagenomic

sequencing initiative performed to date, the Global Ocean Survey

(GOS) [19] uncovered more than 6 million genes from the ocean

surface waters, of which at least one third, perhaps up to as much

as half, can be attributed to alphaproteobacterial species. Based on

analysis of ribosomal RNA abundance, SAR11 is by far the most

abundant alphaproteobacterial clade in this dataset, while other

alphaproteobacterial orders such as SAR116 and Rhodobacterales

(which includes the Roseobacter clade) are also well represented in

the oceanic surface waters [20]. A clustering analysis of

proteorhodopsin sequences affiliated with Ca. Pelagibacter ubique

indicated extensive genetic diversity within this lineage [19]. Thus,

the GOS data set provides the most comprehensive and diverse

collection of SAR11 sequences to date.

The aim of this study was to examine the evolutionary

relationship of aerobic respiration in mitochondria in relation to

the homologous systems in oceanic bacteria. We have used a

phylogenomic framework to select suitable marker genes for

inferring the phylogenetic relationship of Alphaproteobacteria and

mitochondria, and to extract an include alphaproteobacterial

orthologs from the GOS database in the analysis. This approach

resulted in the identification of sequences from oceanic bacteria

that seemed to be more closely related to the mitochondrial

progenitor than previously recognized bacteria. In addition, we

show that the SAR11 clade is not a sister-clade to the Rickettsiales-

mitochondria clade, as was suggested by previous studies.

Results

Marker Gene Selection for Inferring the Phylogenetic
Affiliation of Mitochondria and Alphaproteobacteria

The starting point for our analysis was the mitochondrial

proteome of the freshwater protist Reclinomonas americana, defined as

the protein sequences that are encoded by its mitochondrial

genome [21] (See Figure 1 for overview). First a reference dataset

was composed for each protein of this proteome by extracting

orthologous protein sequences from a set of 28 alphaproteobacter-

ial genomes and up to 18 mitochondrial genomes (Table S1). To

check for phylogenetic coherence in the reference data sets and to

exclude protein datasets in which phylogenetic signals were

potentially obscured by horizontal gene transfer events, multiple

sequence alignments of the individual protein sequences in the

reference datasets were generated and phylogenetic trees were

inferred using PhyML [22]. Only those datasets in which the

mitochondrial sequences formed a monophyletic group and in

which the Alphaproteobacteria formed a monophyletic group

were retained.

Ten datasets that fulfilled these criteria were selected for a more

detailed phylogenetic analysis using Bayesian methods. These data

sets included an essential enzyme of the citric acid cycle (SDH2),

subunits of the ATP synthase complex (ATP1, ATP3) and

components of each of the three energy-coupling sites of the

respiratory chain: (i) the NADH dehydrogenase complex (NAD7,

NAD8), (ii) the cytochrome bc1 complex (COB) and (iii) the

cytochrome oxidase complex (COX1, COX2, COX3). For

comparisons with bacteria without systems for oxidative phos-

phorylation, we also included ribosomal protein S2 (RPS2). These

genes are present in most alphaproteobacterial genomes, although

COX1, COX2 and COX3 have been lost independently from

Rhodospirillilum rubrum, Gluconobacter oxydans, Zymononas mobilis and

Bartonellaceae species. However, for each of the major alphapro-

teobacterial orders, a homolog was available for each of the 10

selected reference datasets, making the datasets comparable.

The subsequent Bayesian inference showed that of these 10

reference datasets, the COX1, COB and NAD7 proteins provided

the highest support for the divergences of the deeper nodes and

grouped the taxa into the six major alphaproteobacterial orders

(Figures S1, S2, S3). To examine the influence of sequence

heterogeneity among lineages [23–34] on our different protein

data sets, we calculated the frequencies of amino acids coded solely

by AT- and GC-codons in these species. Whereas a control dataset

consisting of ribosomal proteins showed large variations in amino

acid composition patterns among species, suggestive of mutational

biases (Figure S4), the COX1, COB and NAD7 proteins were

robust to such biases, displaying only a few percent differences in

amino acid frequencies between the most AT- and GC-rich lineages

(Table S2). Hence, the latter observation suggests that phylogenies

based on these sequences are likely to be less influenced by base

composition biases. In conclusion, the monophyly of mitochondria,

the resolution of the deeper nodes into six major alphaproteobac-
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terial orders and the lack of base composition biases suggest that

COX1, COB and NAD7 are particularly suitable for phylogenetic

analyses of mitochondrial origins.

Extracting GOS Sequences for Respiratory Proteins
In order to exploit the taxonomic diversity in the GOS dataset for

a study of the evolutionary relationship of mitochondria with

bacteria from the ocean upper surface waters, we extracted full-

length GOS sequences that produced significant best hits (BlastP, E-

value,1*10210 and .50% HSP overlap to the query protein) to the

R. americana mitochondrial protein sequences through a series of

subsequent filtering steps (Figure 1, see Material and Methods for

details). The number of retrieved GOS sequences per protein

differed markedly, ranging from several hundred to a few thousand

sequences (Table S3). The observed differences in abundance are

mainly the result of differences in gene length as well as anticipated

differences in phylogenetic distribution patterns among different

bacterial groups. For example, the short, universal RPS2 genes are

much more abundant in the GOS dataset than COX1 genes, which

are much longer and have a limited phylogenetic distribution.

To get a rough estimate of the diversity of the retrieved

sequences in relation to previous analyses of the diversity in the

GOS metagenome data set, neighbour-joining trees including all

sequences extracted from the GOS database were produced. As

expected, for all genes, the dominant fraction of extracted

sequences was affiliated with the SAR11 clade. For example, of

the alphaproteobacterial RPS2 homologs extracted in our study,

the vast majority, 82.5%, were tentatively associated with this

clade (Figure 2). Other main alphaproteobacterial clades were less

well represented, with Rhodobacterales, Rhodospirillales, Rhizo-

biales and Rickettsiales containing only 9.3%, 7.4%, 0.6% and

0.2% of the alphaproteobacterial GOS sequences, respectively.

None of the extracted RPS2 homologs were affiliated with

Sphingomonodales or Caulobacterales.

The estimated diversity of the extracted GOS sequences is in

good agreement with a recent survey of GOS sequence diversity as

inferred by ribotyping [20], except that our estimated abundance of

Rhodospirillales (7.4%) is significantly higher than reported in the

previous study (1.2%) [20]. The observed discrepancy is probably

caused by the fact that no reference species with a sequenced

genome were available at the time of our analysis from the relatively

abundant SAR116 cluster, which is distantly related to Rhodospir-

illales [35]. As a result, SAR116-derived RPS2 homologs present in

the GOS data have most likely been accounted as Rhodospirillales

sequences in our study. Consistently, the SAR116 clade represents

6.3% of the alphaproteobacterial ribotypes [20].

Altogether, the sequence data covered by the GOS dataset

greatly increases the previous sampling of the SAR11-clade, as

well as of other oceanic bacteria that lack sequenced representa-

tives, thereby representing a rich source of sequences for

examining the placement of mitochondria in relation to bacteria

found in the upper surface waters of the oceans. To do so, we set

out to determine the placement of the extracted GOS sequences

relative to the recognized alphaproteobacterial and mitochondrial

sequences in each of the COX1, COB and NAD7 protein trees.

Given that Bayesian inferences of protein phylogenies are

Figure 1. Schematic overview of data selection procedure. The flow scheme depicted here displays which datasets have been used and how
they were analysed (for more details, see Materials and Methods). Three different datasets have been used, being the COG database (taken from
STRING [40]; ‘‘COG’’, orange shading), the GOS database (‘‘GOS’’, blue shading), and a local database of proteins that are encoded by mitochondrial
genomes (‘MT’, green shading). First, homologs were retrieved for each of the 67 proteins encoded by the R. americana mitochondrial genome for
each of these datasets using BlastP searches. Next, paralogs and distant homologs were removed from the retrieved GOS and MT hits by performing
BlastP searches against the COG database and using stringent cut-off filters. Since the amounts of retrieved GOS homologs was too high for Bayesian
analyses, two strategies were used for down-sampling: One approach involved a pruning step in which the amount of GOS homologs was reduced
while reducing the phylogenetic diversity, another approach involved the targeted sub-sampling of GOS sequences that were placed as a neighbour
to the mitochondrial clade in a jack-knifing screen (see Material and Methods for details). Then, the MT and COG datasets were combined and
subjected to phylogenetic analysis (PhyML), selecting only those proteins whose evolutionary history was evolutionary coherent (i.e.
Alphaproteobacteria formed one clade, and mitochondria formed one clade). The resulting protein datasets are referred to as the ‘reference
datasets’. The reference datasets were used for three independent analyses: (i) Proteins of the reference dataset were concatenated and subjected to
Bayesian analysis; Proteins of the reference dataset were either combined with the pruned (ii) or sub-sampled (iii) GOS datasets, followed by Bayesian
analysis.
doi:10.1371/journal.pone.0024457.g001
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computationally demanding, we had to down-sample the amount

of GOS sequences prior to performing such analyses. To achieve

this, we used two different approaches: (i) sub-sampling the data

while maintaining phylogenetic diversity (pruning), and (ii) pre-

filtering the data for specific GOS homologs that grouped as

potential mitochondrial neighbour, as detailed below.

Inclusion of a Pruned Set of Genetically Diverse GOS
Sequences

In order to obtain manageable amounts of COX1, COB and

NAD7 homologs from the GOS database, a pruning step was

incorporated such that the number of sequences decreased while

the phylogenetic diversity within the dataset was maintained

(See Material and Methods for details). This pruning procedure

resulted in the addition of 30–50 GOS sequences per protein

dataset. Despite the pruning step that eliminated much of the

genetic redundancy, a large majority of the GOS sequences still

clustered with Ca. Pelagibacter ubique with posterior probability

values (pp) in the range of 0.90–0.97 (Figures 3, 4, 5). Another

set of GOS sequences clustered within the Rhodobacterales

(pp = 0.99–1), which contains the oceanic bacteria Silicibacter

pomeroyii and Jannaschia sp. CCS1. A third set of GOS sequences

Figure 2. The taxonomic sampling of Alphaproteobacteria is enhanced by the addition of GOS sequences. A phylogenetic analysis of
1641 GOS RPS2 homologs reveals that the taxonomic sampling is increased for most major bacterial clades, and specifically for the
Alphaproteobacteria. The vast majority (82.5%) of the extracted RPS2 homologs that are placed in the Alphaproteobacteria is associated with the
SAR11 clade, which includes Ca. Pelagibacter ubique. Rhodobacterales, Rhodospirillales, Rhizobiales and Rickettsiales are associated with 9.3, 7.4, 0.6
and 0.2% of the GOS sequences, respectively. The sequence data covered by the GOS dataset greatly increases the previous sampling of the SAR11-
clade, as well as of other oceanic bacteria that lack sequenced representatives, thereby representing a rich source of sequences useful for examining
the placement of mitochondria in relation to bacteria adapted to the upper surface waters of the oceans. For clarity, all GOS clades have been
collapsed. Annotation of collapsed GOS clades is as follows: l and n represent the total branch length and the number of GOS sequences within
collapsed GOS clades, respectively, and shading is according to the total branch length of the clade as indicated.
doi:10.1371/journal.pone.0024457.g002
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Figure 3. Phylogenetic analysis COX1 orthologs extracted from the GOS database. A phylogenetic tree is shown that is based on an
alignment of COX1 protein sequences from the reference set of alphaproteobacterial and mitochondrial species supplemented with a pruned set of
GOS sequences (shown in bold). The main alphaproteobacterial orders Rickettsiales, Rhodobacteriales, Rhodospirillales, Sphingomonadales,
Caulobacteriales and Rhizobiales are indicated in coloured shading. Note that some GOS sequences are placed close to or at the root of the
Rickettsiales clade and that the SAR11 clade encompassing Ca. Pelagibacter ubique is unrelated to the mitochondrial lineage. The tentative
placement of the outgroup (OG) is indicated with an arrow. Phylogenies were produced using Bayesian methods with the CAT model. Numbers at
nodes denote posterior probability values. Numbers associated with GOS clades denote the number of GOS sequences here represented as a single
terminal node.
doi:10.1371/journal.pone.0024457.g003
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were placed within the Rhodospirilalles (pp = 0.94–0.99).

Theoretically, the GOS database should not contain any

sequences of eukaryotic origins since the pore size of the filters

that were utilized during the sampling procedures was

specifically aimed at recovering bacteria. Yet, we observed that

a number of GOS sequences grouped internally with the

mitochondrial lineage of the COX1 tree with high support

(Figure 3). Most likely, these sequences are derived from

photosynthetic picoeukaryotes related to green alga or to

marine alveolates [36].

Interestingly, some COX1 and NAD7 sequences were identified

in the GOS dataset that were placed close to or at the root of the

Rickettsiales and in relatively close proximity of the mitochondrial

clade (Figure 3 and 5). Encouraged by these results, we decided to

Figure 4. Phylogenetic analysis COB orthologs extracted from the GOS database. A phylogenetic tree is shown that is based on an
alignment of COB protein sequences from the reference set of alphaproteobacterial and mitochondrial species supplemented with a pruned set of
GOS sequences (shown in bold). The main alphaproteobacterial orders Rickettsiales, Rhodobacteriales, Rhodospirillales, Sphingomonadales,
Caulobacteriales and Rhizobiales are indicated in coloured shading. Note that the SAR11 clade encompassing Ca. Pelagibacter ubique is unrelated to
the mitochondrial lineage. The tentative placement of the outgroup (OG) is indicated with an arrow. Phylogenies were produced using Bayesian
methods with the CAT model. Numbers at nodes denote posterior probability values. Numbers associated with GOS clades denote the number of
GOS sequences here represented as a single terminal node.
doi:10.1371/journal.pone.0024457.g004
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use a targeted approach to identify more GOS sequences that

could belong to these oceanic clades.

Systematic Searches for Mitochondrial Neighbours in the
GOS Data

To systematically search for sequences that are more closely

related to the mitochondrial clade than any of the alphaproteo-

bacterial reference species, we designed a taxon jack-knifing

procedure in which GOS sequences were extracted that clustered

in the vicinity of the mitochondrial clade in phylogenetic

analyses. To this end, random samples of 100 GOS sequences

were extracted for each of the selected proteins and added to the

sequences in the reference data set. These combined datasets

were used to construct phylogenetic trees using RAxML under

the CAT [WAG] model. Subsequently, sequences affiliated with

the mitochondrial clade were selected for further analysis using

Bayesian methods. This procedure was repeated 100 times in

order to ensure that all sequences in the dataset were sampled

(the estimated un-sampled fraction for the largest dataset

,6.7*1025). A random sampling approach was used to avoid

sampling biases.

Several of the resulting Bayesian single protein trees indicated

the presence of deeply diverging GOS sequences, but the topology

was often poorly resolved (not shown). In an attempt to improve

Figure 5. Phylogenetic analysis NAD7 orthologs extracted from the GOS database. A phylogenetic inference based on an alignment of
NAD7 protein sequences from the reference set of alphaproteobacterial and mitochondrial species supplemented with a pruned set of GOS
sequences (shown in bold). The main alphaproteobacterial orders Rickettsiales, Rhodobacteriales, Rhodospirillales, Sphingomonadales,
Caulobacteriales and Rhizobiales are indicated. Note that some GOS sequences are placed at the root of the Rickettsiales clade and that the
SAR11 clade encompassing Ca. Pelagibacter ubique is unrelated to the mitochondrial lineage. The tentative placement of the outgroup (OG) is
indicated with an arrow. Phylogenies were produced using Bayesian methods with the CAT model. Numbers at nodes denote posterior-probability
values. Numbers associated with GOS clades denote the number of GOS sequences here represented as a single terminal node.
doi:10.1371/journal.pone.0024457.g005
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the resolution, we selected in a second step GOS sequences

situated on scaffolds (i.e. continuous stretches of sequences

obtained from the assembly procedure of GOS data) with more

than one gene per scaffold. A Bayesian analysis of the

concatenated COX1 and COX2 proteins revealed a clade

comprising GOS sequences, the Rickettsiales and mitochondria

with a posterior probability of 0.99 (Figure 6), as also shown by a

network analysis (Figure S5). These findings allude to the existence

of a hitherto undetected clade of Alphaproteobacteria that may

represent free-living relatives of the Rickettsiales and, by inference,

extant relatives of the mitochondrial progenitor.

We propose to refer to this clade as OMAC, after Oceanic

Mitochondrial Affiliate Clade. Based on low fraction of COX1

sequences that were retrieved in the GOS dataset that can be

reliably attributed to this clade (12 out of 566; 2.1%), OMAC does

not seem to be particularly abundant in the ocean. Under the

assumption that Alphaproteobacteria comprise ,32.5% of all

microbial cells (see Figure 2, based on phylogenetic distribution of

RPS2 sequences), the relative overall abundance of OMAC is

estimated to be less than 1 percent (0.84%) of all cells. Such

sequences were identified in both open ocean and coastal waters,

and in both temperate and tropical waters (Table 1). These

Figure 6. Deeply diverging alphaproteobacterial GOS sequences in a COX1–COX2 protein tree. A systematic search for GOS sequences
was performed to identify alphaproteobacterial clades that could potentially represent the closest free-living ancestor of the mitochondria. The
Bayesian phylogenetic analysis of concatenated COX1–COX2 sequences encoded by GOS scaffolds revealed a deeply diverging clade of GOS
sequences that are associated with the Rickettsiales (pp = 0.99). The tentative placement of the outgroup (OG) is indicated with an arrow. Phylogenies
were produced using Bayesian methods with the CAT model. Numbers at nodes denote posterior-probability values.
doi:10.1371/journal.pone.0024457.g006
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bacteria seemed not to be associated with any particular habitat

(Table 1) although 4 out of 12 OMAC COX1 sequences were

derived from three Sargasso Sea sampling stations. However,

given the low numbers of sequences that were identified, the

differences in sequencing depth between the different GOS

sampling sites, and the existence of temporal variation of microbial

cell abundances, any inference of cell abundance should be taken

with extreme caution.

SAR11 is not closely related to the Rickettsiales/
mitochondria clade

As part of the Bayesian analyses of datasets that included

genetically diverse sets of GOS sequences (Figures 3, 4, 5), we

noticed that the SAR11 clade, comprising Ca. Pelagibacter ubique

and affiliated GOS sequences, showed a tendency to cluster with

free-living Alphaproteobacteria, rather than with the Rickettsia-

les/mitochondria clade, as has been suggested in previous studies

[15,37]. To investigate this further, we inferred a phylogeny of a

concatenated dataset comprising 42 proteins encoded by the R.

americana mitochondrial genome and their alphaproteobacterial

orthologs (Table S4). Using Bayesian methods under the CAT-

model [30], a well-supported tree topology was obtained that

resolved all major alphaproteobacterial orders (Figure 7). Impor-

tantly, Ca. Pelagibacter ubique, the sole representative of the

SAR11 clade was embedded within the group of free-living

Alphaproteobacteria (Rhodobacteriales, Rhodospirillales, Sphin-

gomonadales, Caulobacteriales and Rhizobiales) with high support

in this tree, whereas R. americana was placed as a sister lineage to

the Rickettsiales (Figure 7).

Discussion

The current study was motivated by a recent phylogenetic

survey that identified the closest free-living sister clade of

mitochondria and the Rickettsiales to be SAR11, [15], a clade

that dominates the ocean surface waters in terms of abundance

[18]. Our aim was to explore the recently published ocean surface

metagenome [19] to search for genes in the oceans from free-living

bacteria that might be related to the mitochondrial progenitor. As

such, this study describes the first systematic attempt to infer the

evolutionary relationships of mitochondrial proteins involved in

oxidative phosphorylation to metagenomic sequences recovered

from the oceans.

In the present study, we have identified a group of bacteria in

the oceans that is more closely related to mitochondria than the

SAR11 clade or the Rhodospirillales, the only two groups in the

tree that contain cultivated species from the oceans. The new

group, here referred to as the OMAC clade, is represented by

GOS sequences in relatively low abundance based on the fact that

we could attribute only 12 COX1 sequences in the GOS dataset to

this group (less than 1% of the cell population of the ocean surface

waters). Ribotyping surveys of GOS data have revealed the

presence of Alphaproteobacteria that are currently unclassified or

belong to uncultured clades, such as for example the SAR116

cluster [20]. Novel sequences from poorly characterized alpha-

proteobacterial species are therefore to be expected.

Apart from identification of the OMAC clade, our study

associates Ca. Pelagibacter ubique and the SAR11 clade with the

group of free-living Alphaproteobacteria rather than with

mitochondria and the Rickettsiales in the phylogenetic analyses

of both concatenated and single protein datasets. These results

corroborate the outcome of an independent study performed in

our group that also supported a clustering of Ca. Pelagibacter

ubique with marine and soil bacteria [38]. The genomes of Ca.

Pelagibacter ubique and members of the Rickettsiales are AT-rich,

whereas most other alphaproteobacterial genomes are GC-rich.

Phylogenies inferred from sites in the alignment that were strongly

affected by these biases supported a clustering of Ca. Pelagibacter

ubique with the Rickettsiales, whereas sites less affected by such

compositional heterogeneity clustered Ca. Pelagibacter ubique

with free-living Alphaproteobacteria [38]. Thus, the clustering of

the SAR11 clade with the Rickettsiales observed previously is

likely to be an artefact of the strong AT/GC bias in the dataset.

Since COX1, COB and NAD7 are three of the most highly

conserved mitochondrial proteins and thereby less sensitive to

these biases, we suggest that the separation of the SAR11 clade

from mitochondria and the Rickettsiales observed in our

phylogenies represent the underlying evolutionary divergence

pattern. It is reassuring that the position of the Rickettsiales with

the same low genomic G + C content as Ca. Pelagibacter ubique

was stable in all our phylogenies.

Table 1. Geographic location of OMAC scaffolds encoding COX1–COX2 sequences that were identified in the GOS dataset.

OMAC Scaffold id GOS ID Habitat type Sample location Coordinates

JCVI_SCAF_1096627235190 GS000b Open ocean Sargasso Sea, Station 13 and 11 31u32910n; 63u35970w

JCVI_SCAF_1096626936283 GS000d Open ocean Sargasso Sea, Station 13 31u3296n; 63u35942w

JCVI_SCAF_1096626952824 GS000d Open ocean Sargasso Sea, Station 13 31u3296n; 63u35942w

JCVI_SCAF_1096628371392 GS001b Open ocean Sargasso Sea, Hydrostation S 32u10900n; 64u30900w

JCVI_SCAF_1101668018618 GS002 Coastal Gulf of Maine 42u30911n; 67u14924w

JCVI_SCAF_1096626991516 GS018 Open ocean Rosario Bank 18u2912n; 83u4795w

JCVI_SCAF_1096627080744 GS027 Coastal Devil’s Crown, Floreana Island 1u12958s; 90u25922w

JCVI_SCAF_1096627330651 GS029 Coastal North James Bay, Santigo Island 1u12958s; 90u25922w

JCVI_SCAF_1096627106753 GS030 Warm seep Warm seep, Roca Redonda 0u1290s; 90u5097w

JCVI_SCAF_1101668499179 GS031 Coastal upwelling Upwelling, Fernandina Island 0u1894s; 91u3996w

JCVI_SCAF_1101668505444 GS031 Coastal upwelling Upwelling, Fernandina Island 0u1894s; 91u3996w

JCVI_SCAF_1096627164454 GS036 Coastal Cabo Marshall, Isabella Island 0u35938s; 91u4910w

doi:10.1371/journal.pone.0024457.t001
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Given that the process of oxygenation probably started in the

ocean surface waters, it seems reasonable to assume that the

systems for aerobic respiration evolved in the oceanic surface

waters as well. However, much of the genetic diversity present in

the ancestral oceans may since have been eliminated. Hence even

if mitochondria originated in the oceans, its most closely related

free-living bacterial relative may not necessarily be highly

abundant in the modern oceans. Furthermore, periods of rapid

evolutionary change along with different selective constraints on

respiratory chain proteins in the eukaryotic cells and in free-living

bacterial cells in the oceans may make it very difficult to trace

these relationships using the currently available methods and tools.

Despite these limitations it is encouraging to see that novel

mitochondrial sequence relatives can be identified in metagenomic

data sets. Whole-genome sequence analyses of these and other

close relatives may thus help resolve some of the many questions

concerning the origin and evolution of mitochondria.

Concluding remarks
The findings presented in the current study underscore that

future research aiming at the identification and culturing of

bacterial lineages related to the mitochondrial progenitor should

regard the exploration of marine environments such as the ocean

surface waters as a priority goal. Additionally, models on the origin

and evolution of the eukaryotic cell and its organelles now need to

be re-examined in light of the full genetic diversity of micro-

Figure 7. Ca. Pelagibacter ubique is placed with free-living Alphaproteobacteria in a phylogenetic tree inferred from concatenated
protein sequences. A phylogenetic inference of the alphaproteobacterial tree topology based on a concatenated alignment of 42 mitochondrially
encoded proteins reveals a well-supported alphaproteobacterial phylogeny, in which the SAR11 clade, here represented by Ca. Pelagibacter ubique is
placed among the free-living alphaproteobacteria rather than with the Rickettsiales. The tentative placement of the outgroup (OG) is indicated with
an arrow. Phylogenies were produced using Bayesian methods with the CAT model. Posterior-probability values of 1 are not shown.
doi:10.1371/journal.pone.0024457.g007
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organisms that is being uncovered by metagenome sequence data.

Analyses combining the increasing volumes of sequence data with

computationally intense evolutionary methods will require the

development of new frameworks in bio-informatics. The recent

development of improved analytical methods and the rapid

increase of processing power give good hope that these

fundamental biological questions can be further resolved.

Materials and Methods

Delineation and Selection of Reference Datasets
First, each of the 67 proteins encoded by the Reclinomonas

americana mitochondrial genome were assigned to an orthologous

group of proteins by performing BlastP searches [39] against an

updated COG database [40], comprising proteomes of a balanced

selection of species, including species from all major bacterial,

archaeal and eukaryotic divisions. R. americana proteins were

assigned to an orthologous group if a significant, best hit (E-

value,1*10210, HSP (high-scoring segment pair) overlap .50%)

was observed against a protein of this orthologous group. To

remove any redundancy, only the best hit against a R. americana

protein was retained in cases where an orthologous group

contained multiple proteins from the same species. Given the

central position of the Alphaproteobacteria in the current analysis,

we included all available alphaproteobacterial genomes represent-

ed in the STRING database (Table S1).

In order to increase the phylogenetic coverage of mitochondrial

proteins, and to compensate for those cases in which mitochon-

drially encoded proteins were omitted from the eukaryotic

proteomes covered in the STRING database, we included

mitochondrially encoded proteins for a selected number of species

in our analysis (Table S1). The selected mitochondrial genomes

were searched for potential orthologs for each of the 67 proteins

encoded by the R. americana mitochondrial genome by BlastP

analysis. Significant hits (E-value,1*10210, HSP-overlap.50%)

were added to the respective COGs. For those species where a

mitochondrial protein was already represented in a given

orthologous group, only one copy was retained. The respective

orthologous groups, supplemented with the selected mitochondrial

sequences are referred to as the ‘reference datasets’ throughout the

manuscript.

Retrieval and Filtering of GOS Sequences
Selection of GOS sequences was initiated by performing BlastP

analyses [39] against the CAMERA protein database [41] using

the mitochondrially encoded R. americana proteins as a query. In

order to filter out potential paralogs and distant homologs, each

GOS sequence thus identified (E-value,1*10210, HSP-over-

lap.50%) was then used as a query in a BlastP search against

the updated COG database [40]. The GOS sequence was retained

for further analysis only if the top hit (E-value,1*10210, HSP-

overlap.70%) was a member of the same orthologous group as

the R. americana query protein. In order to warrant sufficient

diversity covered in the environmental datasets, only datasets for

which more then 500 GOS sequences were retrieved in the first

BlastP search were considered.

Pruning the GOS Dataset
To select a manageable number of GOS sequences to include in

the phylogenetic analyses while trying to maintain as high a

diversity as possible among the included environmental sequence,

sequences were selected to maximize the phylogenetic diversity

[42] for a growing set using a greedy algorithm [43] as

implemented in the in-house software MrTwig [44]. A set of

150 sequences was determined to be a feasible set while still

comprising representatives from all major (tentative) clades

observed in the full selection of GOS sequences.

Phylogenetic Inference of Concatenated Gene Trees
A concatenated dataset of 42 protein sequences (Table S4) was

assembled as follows: For each of the 42 proteins, sequence

alignments were constructed using Kalign 2.03 [45] that, apart

from the Reclinomonas sequence, included up to 28 alphaproteo-

bacterial orthologs. The outgroup consisted of homologous protein

sequences from Escherichia coli, Pseudomonas aeruginosa, Helicobacter

pylori and Campylobacter jejuni when available. The protein

alignment (Dataset S1) was cleaned with Gblocks [46] using

default settings. Subsequently, a concatenated dataset was

constructed which was used for phylogenetic inference by running

Bayesian analyses using PhyloBayes 3.2c under the CAT+G+I

model [30]. In order to prevent obtaining phylogenies that are a

result of chains that got stuck in local optima, several chains were

analysed and compared.

Phylogenetic Inference of Single Protein Trees
To check for taxonomic consistency multiple sequence align-

ments of the protein sequences in the reference datasets were

created using Kalign 2.03 [45] and phylogenetic trees were

constructed using PhyML [22]. We used PhyloBayes 3.2c to run

Bayesian analyses using the CAT+G+I model for the selected set

of single protein trees that included 28 alphaproteobacterial

orthologs. The outgroup consisted of homologous protein

sequences from Ralstonia solanacearum and Burkholderia pseudomallei

[30]. Two chains were run in all cases and convergence was

checked by plotting the parameters and discarding 25% of all trees

after a stable state was reached, after an initial step in which

output from the bpcomp program indicated a max-diff value of no

more than 0.3. The remaining trees were summarized after

removal of burn-in, both as majority rule consensus trees and as

consensus networks using SplitsTree 4 [47,48]. For the consensus

network, a subsample of c. 500 trees from the trees after burn-in

was used for each gene, and consensus networks were made using

a threshold value of 0.25.

Identification of Potential Mitochondrial Neighbour
Sequences from the GOS Dataset

We used a step-wise approach to search for GOS sequences

forming sister-taxons to the mitochondria, or that are situated

within the mitochondrial clade. First, we performed a jack-knife

analysis using the full set of extracted GOS sequences together

with the reference ortholog groups for each gene. Using an in-

house Perl script, random samples of 100 homologous sequences

were drawn with replacement from the GOS data and aligned

with all the sequences in the reference data set. For each gene and

sample size, 100 replicates were generated with RAxML and the

CAT-model of protein substitution. GOS sequences associated

with the mitochondrial clade were automatically extracted using a

script developed in-house. To improve the resolution in the

subsequent phylogenetic analyses, we used a second filtering step

to select GOS sequences situated on a scaffold that comprises

more than one gene. This step assured that the final alignment

consisted of two, or in a few cases three, concatenated genes.

Finally, we aligned the concatenated GOS and reference

sequence datasets, and performed Bayesian phylogenetic inference

using Phylobayes and the CAT-model of protein substitution. In

the COX1–COX2 protein tree the outgroup consisted of

concatenated protein sequences from R. solanacearum, B. pseudo-
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mallei, P. aeruginosa, Mycobacterium tuberculosis, Corynebacterium glutami-

cum, Streptomyces coelicor, Xyellla fastidiosa, Bacillus subtilis, Geobacter

metallireducens, Desulfovibrio vulgaris, Leptospira interrogans and Anaero-

myxobacter dehalogenans.

Supporting Information

Figure S1 Placement of mitochondria in a protein tree
inferred from an alignment of COX1 protein sequences.
A phylogenetic inference based on an alignment of COX1 protein

sequences from the reference set of alphaproteobacterial and

mitochondrial species. The main alphaproteobacterial orders

Rickettsiales, Rhodobacteriales, Rhodospirillales, Sphingomona-

dales, Caulobacteriales and Rhizobiales are indicated. Note that

the SAR11 clade encompassing Ca. Pelagibacter ubique is

unrelated to the mitochondrial lineage. The tentative placement

of the outgroup (OG) is indicated with an arrow. Phylogenies were

produced using Bayesian methods with the CAT model. Numbers

at nodes denote posterior-probability values.

(EPS)

Figure S2 Placement of mitochondria in a protein tree
inferred from an alignment of COB protein sequences. A

phylogenetic inference based on an alignment of COB protein

sequences from the reference set of alphaproteobacterial and

mitochondrial species. The main alphaproteobacterial orders

Rickettsiales, Rhodobacteriales, Rhodospirillales, Sphingomona-

dales, Caulobacteriales and Rhizobiales are indicated. Note that

the SAR11 clade encompassing Ca. Pelagibacter ubique is

unrelated to the mitochondrial lineage. The tentative placement

of the outgroup (OG) is indicated with an arrow. Phylogenies were

produced using Bayesian methods with the CAT model. Numbers

at nodes denote posterior-probability values.

(EPS)

Figure S3 Placement of mitochondria in a protein tree
inferred from an alignment of NAD7 protein sequences.
A phylogenetic inference based on an alignment of NAD7 protein

sequences from the reference set of alphaproteobacterial and

mitochondrial species. The main alphaproteobacterial orders

Rickettsiales, Rhodobacteriales, Rhodospirillales, Sphingomona-

dales, Caulobacteriales and Rhizobiales are indicated. Note that

the SAR11 clade encompassing Ca. Pelagibacter ubique is

unrelated to the mitochondrial lineage. The tentative placement

of the outgroup (OG) is indicated with an arrow. Phylogenies were

produced using Bayesian methods with the CAT model. Numbers

at nodes denote posterior-probability values.

(EPS)

Figure S4 Biased amino acid composition patterns.
Frequencies of amino acids encoded exclusively by AT (A) and

GC (B) codons for whole proteomes and for ribosomal proteins

(RP) encoded by the genomes of Ca. Pelagibacter ubique, Rickettsia

prowazekii and Caulobacter crescentus.

(EPS)

Figure S5 Network analysis of a concatenated dataset of
COX1 and COX2 protein sequences including sequences
from the OMAC group. The network analysis revealed a

deeply diverging clade of GOS sequences that are associated with

the Rickettsiales. The main alphaproteobacterial orders Rickett-

siales, Rhodobacteriales, Rhodospirillales, Sphingomonadales,

Caulobacteriales and Rhizobiales are indicated.

(EPS)

Table S1 Species included in the analysis.

(XLS)

Table S2 Frequencies of amino acids coded by AT- and GC-

codons of COX1, COB and NAD7 proteins encoded by

alphaproteobacterial genomes.

(XLS)

Table S3 Results of BlastP searches against the GOS metagen-

ome database using mitochondrial proteins from R. americana

proteins as query (E,1*10210, HSP overlap of query protein

.50% of the total length). Each hit was subsequently used as a

query against the COG database and only those sequences that

had a best hit in the same orthologous group as the R. americana

seed protein was retained (E,1*10210, HSP overlap.70%).

(XLS)

Table S4 Mitochondrial proteins used in the concatenated

alignment used to produce the phylogeny shown in Figure 7.

(XLS)

Dataset S1 Concatenated alignment of 42 mitochondrial

proteins from Reclinomonas americana and 28 alphaproteobacterial

orthologs. Outgroup sequences from Escherichia coli, Pseudomonas

aeruginosa, Helicobacter pylori and Campylobacter jejuni were included

when available.

(AFA)
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