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Abstract

Background: According to previous KCNQ1 (potassium channel, voltage gated, KQT-like subfamily, member 1)
gene screening studies, missense variants, but not nonsense or frame-shift variants, cause the majority of long
QT syndrome (LQTS; Romano-Ward syndrome [RWS]) 1 cases. Several missense variants are reported to cause
RWS by a dominant-negative mechanism, and some KCNQ1 variants can cause both Jervell and Lange-Nielsen
Syndrome (JLNS; in an autosomal recessive manner) and LQTS1 (in an autosomal dominant manner), while
other KCNQ1 variants cause only JLNS. The human KCNQ1 gene is known to have two transcript isoforms
(kidney isoform and pancreas isoform), and both isoforms can form a functional cardiac potassium channel.

Case presentation: Here, we report a novel nonsense KCNQ1 variant causing not only JLNS, but also significant
QTc prolongation identical to RWS in an autosomal dominant manner. Our case study supports that haploinsufficiency
in the KCNQ1 gene is causative of significant QTc prolongation identical to RWS. Interestingly, the nonsense variant
(NM_000218.2:c.115G > T [p.Glu39X]) locates in exon 1a of KCNQ1, which is a kidney-isoform specific exon. The variant
is located closer to the N-terminus than previously identified nonsense or frame-shift variants.

Conclusion: To the best of our knowledge, this is the first report showing that a nonsense variant in exon 1a of
KCNQ1, which is the kidney-isoform specific exon, causes JLNS. Our findings may be informative to the genetic
pathogenesis of RWS and JLNS caused by KCNQ1 variants.
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Background
The human KCNQ1 (potassium channel, voltage gated,
KQT-like subfamily, member 1) gene is known to have
two transcript isoforms [1]; the longer, kidney isoform
encodes a protein of 676 amino acids, while the shorter
form is the pancreas isoform (549 amino acids). The kid-
ney KCNQ1 protein is almost identical to pancreatic

KCNQ1 protein, except for the highly dissimilar N-
terminus region [1]. Both isoforms can form a func-
tional cardiac potassium channel [1, 2]. The kidney
isoform contains a specific first exon, known as exon
1a [3, 4] (Fig. 1), which encodes 129 amino acids [4].
The kidney isoform is mainly expressed in the human
heart [1], and the shorter isoform (containing exon 1b in-
stead of exon 1a) is also reported to be expressed in the
human heart [3]. Thus, both isoforms are expressed at
significant levels in the human heart.
Variants in the KCNQ1 gene can cause two hereditary

variants of congenital long-QT syndrome (LQTS). One
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variant is known as long QT syndrome 1 (LQT1) and
the other is severe Jervell and Lange-Nielsen syndrome
1 (JLNS1). The typical mode of LQT1 inheritance is
autosomal dominant, whereas JLNS1 shows autosomal
recessive inheritance or sporadic cases of compound
heterozygosity [5].
In LQTS1, the variants may produce different effects

in the multimeric cardiac potassium channel. Defective
and wild-type protein subunits may coassemble and
exert a dominant negative effect on the potassium chan-
nel function. Alternatively, some mutant subunits may
not coassemble with the wild-type proteins, resulting in
a loss of function (haploinsufficiency) [5]. LQTS1 can be
caused by loss-of-function variants in the KCNQ1-
encoded cardiac potassium channel [6]. Homozygous
gene variants in KCNQ1, or compound heterozygous
gene variants, may cause the recessive JLNS variant,
which is characterized by deafness.
KCNQ1 exhibits different functions in different tis-

sues, which accounts for KCNQ1 variants causing the
two syndromes. When KCNQ1 is coupled with the beta-
subunit KCNE1, it repolarizes cardiac action potentials
[7, 8]. Importantly, transepithelial potassium transport in
the inner ear is also associated with the KCNQ1 protein
[9], which is why KCNQ1 variants may cause deafness in
JLNS1 [8]. Deafness in JLNS is characterized as congeni-
tal, bilateral and sensorineural hearing loss [9].
Both frameshift/nonsense variants and missense/splice

site variants may cause LQT1 and JLNS1 [10, 11].
Therefore, a precise genotype-phenotype correlation
in LQT1 and JLNS1 is not established, which compli-
cates both genetic counseling and clinical risk evalu-
ation in carriers [9, 12–16]. A frameshift variant
(NM_000218.2[KCNQ1]:c.567dupG [17]) is reported
to cause not only JLNS1 when homozygous, but also
causes severe LQT1 when heterozygous. Nevertheless,
nonsense and frameshift variants that are generally
associated with a non-penetrant phenotype (no symp-
toms, QTc normal or borderline) have been identified
in heterozygous carriers in JLNS1 families [12]. For
example, skipping of KCNQ1 exon 1, the first

common exon of the kidney and pancreas isoforms
(Fig. 1), causes JLNS1 when homozygous, but exhibits
an asymptomatic cardiac phenotype with normal QTc
interval when heterozygous [4].
Here, we report on a JLNS1 patient with a homozy-

gous nonsense variant in exon 1a of KCNQ1 in a family
exhibiting LQT1. Thus, this is the first report that a
nonsense variant in the kidney isoform-specific exon
(exon 1a) can cause JLNS1.

Case presentation
The proband (II-2 in Fig. 2) is a 45-year old woman,
who first presented to our university hospital at the age
of 35 and was referred to us because of her pregnancy.

Fig. 1 Exon–intron structure and alternative transcripts of the human KCNQ1 gene. The two wild-type isoform transcripts, the kidney and pancreas
isoforms, are composed of exons 1a and 1–15 (kidney isoform) encoding 676 amino acids or exons 1b and 1–15 (pancreas isoform) encoding 549
amino acids [1, 4]. The arrow and star indicate the nonsense variant (NM_000218.2:c.115G > T, p.Glu39X) in exon 1a of the KCNQ1 gene.
*, both isoforms can form a functional cardiac potassium channel [1, 2]

Fig. 2 Pedigree of the family. The proband is indicated by a black
filled circle and an arrowhead. Squares denote males, and circles
denote females. Hatched squares or circles denote significant QTc
prolongation. QTc intervals are provided for each individual. *, QTc
was measured under beta-blocker treatment (metoprolol). **, QTc
was measured under treatment with beta-blockers (atenolol and
bisoprolol) and other medication (mexiletine). E39X and P448R,
nonsense variant (NM_000218.2:c.115G > T) or common variant
(NM_000218.2:c.1343C > G) in the KCNQ1 gene. mo., months old;
yo., years old; hetero, heterozygous; homo, homozygous; ms,
millisecond; N.D., not determined
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She has congenital deafness, first experienced syncope at
the age of 3, and was diagnosed with epilepsy. She was
treated with anti-epilepsy medications; however, she sub-
sequently experienced several instances of syncope. At
the age of 13, she had a syncope event, and was sus-
pected of having JLNS because of her congenital deaf-
ness and prolonged QT interval. Her syncope was
diagnosed as an arrhythmic episode when she was aware
of tachycardia and as epilepsy when she was not. She
also had a subarachnoid hemorrhage at the age of 29.
When she first presented at our hospital, she was not

taking beta-blockers, because of a history of asthma, but
was taking mexiletine in addition to phenytoin. Her QTc
was found to be prolonged (584 ms) at presentation and
administration of atenolol was initiated. She delivered
her baby (III-1 in Fig. 2) through Caesarean operation at
our hospital at the age of 35. At 37, she delivered her
second baby (III-2 in Fig. 2) through Caesarean oper-
ation at our hospital. Despite administration of beta-
blockers, her QTc remained prolonged (600 msec at the
age of 37, 780 msec at 44) (Figs. 2 and 3a), which is not
unexpected because treatment with beta-blockers in
LQTS1 is not expected to overtly reduce QTc [18].
However, she continued to experience occasional syn-
cope and finally underwent an implantable cardioverter
defibrillator (ICD) operation at 38 years of age. Subse-
quently, she is in a stable clinical condition. Because the
proband was suspected of JLNS and both infants had a

measured QTc of 500 ms or greater within 1 month
after birth, beta blockers were initiated and both chil-
dren remain in stable condition at ages 10 and 8 (Figs. 2
and 3b, c). QTc of the son (III-1 in Fig. 2) was measured
as 500 ms one month after birth, while the QTc of his
sister (III-2) was 530 ms at birth.
The father (I-1) and mother (I-2) of the proband were

first cousins. There is no history of sudden unexplained
syncope or death of children or adults in the immediate
family members, despite the prolonged QTc of the
children.

Clinical evaluation of the proband and her family
members, and blood collection
Clinical evaluation and consultation of the proband and
her family members were performed at Chiba University
Hospital. Clinical phenotypes were deduced from the
clinical history, physical examinations, and ECG. Blood
samples were collected from the proband and her family
members following genetic counseling, and written in-
formed consent was obtained prior to sample collection.

Genetic testing
Genomic DNA was isolated from peripheral blood lym-
phocytes according to established protocols at our
laboratory [19]. Entire coding exons, including the in-
tronic boundaries of the genes, of KCNQ1 (NCBI ref:
NM_000218) and other LQT causative genes (KCNH2,

Fig. 3 Baseline electrocardiogram (ECG) of the proband (II-2), her son (III-1), and her daughter (III-2). Baseline ECG from the proband at 44 years of
age a, baseline ECG from the son at 8 months of age b, and baseline ECG from the daughter at 5.25 years old c. Baseline ECG from the proband
a was recorded under beta-blockers (atenolol and bisoprolol) and other medication (mexiletine). Baseline ECGs from the children b, c
were recorded under beta-blocker treatment (metoprolol)
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SCN5A, KCNE1, KCNE2, KCNJ2, SCN4B, KCNJ5) were
amplified by polymerase chain reaction (PCR), according
to established protocols in our laboratory. Briefly, 30–
100 ng of genomic DNA was subjected to PCR amplifica-
tion with DNA polymerase (PrimeSTAR GXL DNA Poly-
merase; Takara Bio Inc., Kusatsu, Japan) and primer sets.
The amplicons were subjected to conventional se-

quencing with Sanger sequencers (Applied Biosystems
3730/3130 DNA analyzers; Thermo Fisher Scientific,
Waltham, MA, USA). The sequence data were proc-
essed with Gene Codes Sequencher Software (Takara
Bio Inc.) and mapped to the human genome sequence
(build GRCh37/hg19).

Genomic report
Genetic analysis was performed to screen all coding
exons and the exon–intron boundaries of the KCNQ1
gene (NCBI ref: NM_000218.2, NP_000209.2) with con-
current screening of other LQT causative genes
(KCNH2, SCN5A, KCNE1, KCNE2, KCNJ2, SCN4B,
KCNJ5). We detected a novel homozygous nonsense
variant, NM_000218.2:c.115G > T (p.Glu39X, in exon
1a), in the KCNQ1 gene of the proband, as well as a
homozygous common variant (NM_000218.2:c.1343C >
G, p.Pro448Arg) (Additional file 1: Table S1). Genetic
screening of her mother (I-2) and children (III-1 and III-
2) revealed that they were heterozygous for the nonsense
variant (Fig. 2). Her husband (II-3) was also screened
and found to be heterozygous for the common variant
(NM_000218.2:c.1343C > G, p.Pro448Arg). The proband
is a child from a first-cousin marriage, and we have con-
cluded the homozygous nonsense variant in the proband
is the cause of her JLNS1. The proband was negative for
pathogenic variants in other LQT causative genes, in-
cluding the KCNE1 gene (Additional file 1: Table S1).

Discussion and conclusions
To the best of our knowledge, this is the first report
showing that a nonsense variant in exon 1a of KCNQ1,
which is the kidney-isoform specific exon, causes JLNS.
The novel NM_000218.2:c.115G > T (p.Glu39X) variant
is located closer to the N-terminus than previously iden-
tified pathogenic variants. This nonsense variant can
cause not only JLNS, but also significant QTc prolonga-
tion that is identical to RWS.
A homozygous common variant (NM_000218.2:c.

1343C > G, p.Pro448Arg) was also detected in the
KCNQ1 gene of the proband. This common variant is
reported to be highly frequent in Asian populations, in-
cluding the Chinese and Japanese (14 to 28% allele fre-
quency [20–22]), and may have an effect on the channel
current [21]. The p.Pro448Arg common variant is re-
ported to increase the channel current of normal chan-
nels, while having lesser effects on the current of mutant

channels [21]. Therefore, although its effect is not negli-
gible, the p.Pro448Arg common variant does not
strongly influence the JLNS/LQTS syndrome. Indeed,
the son (III-1 in Fig. 2) of the proband was heterozygous
both for p.E39X and p.P448R, which would have been
inherited in cis from the proband. The son (III-1) has an
equally convincing LQTS phenotype to his sister (III-2),
who has inherited the two variants on one chromosome
from her mother as well as the p.P448R common variant
from her father.
Previous studies [23, 24] have reported a nonsense

variant (NM_000218.2:c. 153 C > G, p.Tyr51X, in exon
1a) in a RWS patient. This patient appears to be the only
other RWS patient harboring a nonsense variant in exon
1a; however, the patient has not been described in detail,
besides her/his ethnicity being white [23, 24]. Although
exon 1a is the kidney-isoform specific exon, the obvious
QTc prolongation shown in our patient (III-1, III-2)
leads to the reasonable conclusion that nonsense vari-
ants in exon 1a can cause RWS. Previous studies have
reported several missense variants located in exon 1a
(NM_000218.2:c.217C > A, p.Pro73Thr [23], c.1A > G,
p.Met1Val and c.170G > T, p.Gly57Val [25] c.19C > T,
p.Pro7Ser [26], c.136G > A, p.Ala46Thr [27]) that can
cause RWS. A frameshift variant in exon 1a
(NM_000218.2:c.151dupT, p.Tyr51Leufs*234) has also
been reported [26, 27]. Although exon 1a is specific
to the kidney isoform, variants in exon 1a can none-
theless cause RWS. According to the recent ACMG
guidelines for the interpretation of sequence variants
and pathogenicity [28], both the p.Glu39X and
p.Tyr51X variants exhibit “very strong” evidence for
pathogenicity.
Several papers have reported that families with JLNS

exhibit variants affecting both KCNQ1 alleles, although
family members harboring just one variant do not ex-
hibit RWS symptoms or QTc prolongation [4, 12]. Con-
versely, it has been reported that some JLNS family
members with heterozygous variant in KCNQ1, includ-
ing our cases, show RWS symptoms or QTc prolonga-
tion [17]. In summary, some KCNQ1 variants can cause
both JLNS (in an autosomal recessive manner) and RWS
(in an autosomal dominant manner), while several
KCNQ1 variants cause only JLNS in an autosomal reces-
sive manner.
According to a comprehensive LQTs gene screening

study [23, 24], the majority of RWS cases are caused by
missense variants, rather than nonsense or frame-shift
variants. In general, variants can cause disease by either
haploinsufficiency or dominant-negative mechanisms.
Several missense variants are reported to cause RWS by
a dominant-negative mechanism [1]. It is reasonable to
conclude that dominant-negative KCNQ1 variants can
cause both RWS and JLNS.
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An amino acid substitution in or nearby functional
domains may cause loss of function or dominant
negative effects similar to missense variants. The
functional domains in the KCNQ1 gene are encoded
in the middle (transmembrane domains) and down-
stream (subunit assembly domain) exons [23], which
likely accounts for the majority of pathogenic vari-
ants being located in the middle and downstream
exons.
On the other hand, nonsense variants in the region

proximal to the N-terminus of exon 1a of KCNQ1
can cause significant QTc prolongations identical to
RWS in our current and previous cases [23]. Non-
sense variants in KCNQ1 are understood to be causa-
tive of haploinsufficiency for gene function [6]. Our
case study supports that haploinsufficiency in the
KCNQ1 gene is causative of significant QTc prolonga-
tion identical to RWS.
Furthermore, our case is the first demonstration of a

variant in the kidney-isoform specific exon being causa-
tive of JLNS. Several genetically engineered mouse
models of JLNS have been created, and two KCNQ1-
knockout models have been described [29, 30]. Exon
1 (Fig. 1), the first common exon of the kidney and
pancreas isoforms, is engineered in both knockout
models. A JLNS family reported by Zehelein et al.
[4] is similar to these models because the described
variant is located in exon 1. Interestingly, significant
QT prolongation is not observed in one model strain
[29], while both deafness and QT prolongation are
observed in the other KCNQ1-knockout model [30].
Our case is clearly a JLNS instance with both
deafness and QT prolongation; however, correspond-
ing animal models based on engineering of the
kidney-isoform specific exon have not been
developed.
As mentioned above, we have reported a unique

variant of KCNQ1 (NM_000218.2:c.115G > T, p.
Glu39X) that can cause not only JLNS, but also sig-
nificant QTc prolongation identical to RWS. This
nonsense variant may be informative to the genetic
pathogenesis of RWS and JLNS caused by KCNQ1
variants. In the absence of corresponding animal
models, iPS cell technology [31] has enabled the
study of cell biology with gene variants. In the very
near future, we aim to generate iPS cells with the
KCNQ1 variant described herein.

Additional file

Additional file 1: Table S1. The proband’s (II-2 in Fig. 2) results of
genetic screening of LQT causative genes (KCNQ1, KCNH2, SCN5A,
KCNE1, KCNE2, KCNJ2, SCN4B, KCNJ5). Entire coding exons, including the
intronic boundaries of the genes were analyzed. (XLSX 10 kb)
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