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Abstract

Blood-brain barrier (BBB) disruption is thought to facilitate the development of cerebral

infarction after a stroke. In a typical stroke model (such as the one used in this study), the

early phase of BBB disruption reaches a peak 6 h post-ischemia and largely recovers after

8–24 h, whereas the late phase of BBB disruption begins 48–58 h post-ischemia. Because

cerebral infarct develops within 24 h after the onset of ischemia, and several therapeutic

agents have been shown to reduce the infarct volume when administered at 6 h post-ische-

mia, we hypothesized that attenuating BBB disruption at its peak (6 h post-ischemia) can

also decrease the infarct volume measured at 24 h. We used a mouse stroke model

obtained by combining 120 min of distal middle cerebral arterial occlusion (dMCAo) with ipsi-

lateral common carotid arterial occlusion (CCAo). This model produced the most reliable

BBB disruption and cerebral infarction compared to other models characterized by a shorter

duration of ischemia or obtained with dMCAO or CCAo alone. The BBB permeability was

measured by quantifying Evans blue dye (EBD) extravasation, as this tracer has been

shown to be more sensitive for the detection of early-phase BBB disruption compared to

other intravascular tracers that are more appropriate for detecting late-phase BBB disrup-

tion. We showed that a 1 h-long treatment with isoflurane-anesthesia induced marked hypo-

thermia and attenuated the peak of BBB disruption when administered 6 h after the onset of

dMCAo/CCAo-induced ischemia. We also demonstrated that the inhibitory effect of isoflur-

ane was hypothermia-dependent because the same treatment had no effect on ischemic

BBB disruption when the mouse body temperature was maintained at 37˚C. Importantly,

inhibiting the peak of BBB disruption by hypothermia had no effect on the volume of brain

infarct 24 h post-ischemia. In conclusion, inhibiting the peak of BBB disruption is not an

effective neuroprotective strategy, especially in comparison to the inhibitors of the neuronal

death signaling cascade; these, in fact, can attenuate the infarct volume measured at 24 h

post-ischemia when administered at 6 h in our same stroke model.
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Introduction

The blood-brain barrier (BBB) protects the brain from circulating plasma proteins and inflam-

matory cells. Therefore, disturbances of the BBB are thought to contribute to the pathogenesis

of many neurodegenerative diseases, and interventions that inhibit BBB disruption are being

developed to hinder disease progression. In particular, BBB disruption is a hallmark of ische-

mic stroke [1–3]. Ischemic insult to either the endothelial cells forming the BBB or the sup-

portive cells near the capillary beds, which include the glia and pericytes, can contribute to

barrier disruption. Consistent with the notion that BBB disruption contributes to neurodegen-

eration, the degree of BBB disruption strongly predicts the severity of neuronal injury within

the first 3 weeks after an ischemic stroke [1, 3–5]. Moreover, some drugs that can mitigate

ischemic BBB disruption have been shown to also reduce the volume of cerebral infarction

after a stroke [6, 7].

BBB disruption following transient focal cerebral ischemia is a biphasic process. The early

phase begins after reperfusion, reaches its peak approximately 6 h after the onset of cerebral

ischemia, and recovers, mostly or completely, in the successive 8–24 h [1, 8–11]. This early

phase is caused primarily by an increase in endothelial transcytosis, characterized by little or

no degradation of tight junction [10, 12], and resulting in a marked cerebral extravasation of

plasma albumin and related intravascular tracers [1, 8–14] such as the Evans blue dye (EBD)

[1, 8, 9, 11, 13, 14]. Interestingly, the augmented transcytosis that occurs in the early phase of

BBB disruption does not result in a noticeable increase in extravasation of small molecules or

immunoglobulins [10]. In marked contrast, the late phase of BBB disruption begins 48–58 h

following cerebral ischemia [8, 10] and is associated with the disruption of tight junction integ-

rity and increased transcellular and paracellular transport of many intravascular tracers [10]. It

should be noted that the nature of BBB disruption depends on the chosen stroke model and,

for this reason, different time courses and cellular mechanisms of BBB disruption have also

been reported [2, 5, 15].

Brain infarction following focal cerebral ischemia develops in the first 24 h post-ischemia,

when the first phase of BBB disruption has recovered but the second phase has not yet begun.

Given that therapeutic interventions administered as late as 6 h post-ischemia has been shown

to reduce infarct volume in different animal models [16, 17], we asked whether brief anesthe-

sia-induced hypothermia at the same time point, corresponding to the peak of early-phase

BBB disruption, hinders ischemic BBB disruption and/or reduces infarct volume. To answer

this question, we utilized a model of cerebral ischemia that has previously shown infarct vol-

ume reduction following the administration of an inhibitor of the neuronal death signaling

cascade 6 h post-ischemia [17]. Because early-phase BBB disruption is characterized by the

selective leakage of albumin but not of other intravascular tracers [10], BBB permeability was

quantified by measuring the cerebral extravasation of the albumin-binding tracer EBD. In fact,

with a cerebral extravasation property that is distinct from that of a non-albumin-binding

tracer [18], EBD is able to extravasate in the early phase of BBB disruption [1, 8, 9, 11, 13].

The lack of clinical advancement despite much basic stroke research is a subject of active

discussion and debate amongst stroke researchers, and many reasons have been proposed to

explain the continued failure of experimental treatments or interventions in stroke trials

despite their reported effectiveness in preclinical animal models [19–21]. The lack of adher-

ence to animal research guidelines, poor reporting of preclinical experimental procedures, and

under-reporting of negative findings are some of the primary obstacles that can prevent the

translation of stroke research [21]. Such endeavors not only lead to unnecessary repetition of

animal experiments and premature execution of clinical trials, but also dissuade pharmaceuti-

cal companies to further invest in translational stroke research and stroke clinical trials [21].
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Here, we report the lack of neuroprotection when the peak of early-phase BBB disruption fol-

lowing stroke was inhibited by anesthesia-induced hypothermia. In accordance to ARRIVE

recommendations, the treatment groups were randomized and blinded to the investigators

carrying out the animal experiments.

Materials and Methods

Animals

Male C57BL/6 mice (21–27 g) purchased from the National Laboratory Animal Center (Tai-

pei) were used in this study. They were housed in large-diameter cages in groups of 10 per

cage and had free access to standard rodent chow and water. Room lighting was controlled

under a 12:12 h light/dark cycle, and the experiments were always performed during the light

cycle. The experimental protocols were carried out in accordance with the ARRIVE guidelines

and the Institutional Guidelines of the China Medical University for the Care and Use of

Experimental Animals (IGCMU-CUEA). All the procedures were approved by the Institu-

tional Animal Care and Use Committee (IACUC) of the China Medical University (Taichung,

Taiwan) (Protocol No. 103-224-NH).

Cerebral ischemia

To induce focal ischemia, the mice were anesthetized with pentobarbital (65 mg/kg, i.p.) or

tiletamine/zolazepam (50 mg/kg each, i.p.), and subjected to distal middle cerebral arterial

occlusion (dMCAo) with common carotid arterial occlusion (CCAo) using the protocol

described by Chen et al [22]. In brief, the right dMCA was ligated with a 10–0 nylon suture,

and the right CCA was occluded using a non-traumatic arterial clip. After inducing ischemic

periods of various lengths (30–120 min), the nylon suture and the arterial clip were removed

to allow complete reperfusion. Body temperature was maintained at ~37˚C throughout the

procedure by means of a heating pad and 0.5% bupivacaine was preemptively administered

first subcutaneously and then topically at the sites of surgery to achieve analgesia. The mice

were allowed to recover in their home cages after reperfusion.

To determine BBB permeability, mice received EBD (4% solution in saline; 2 ml/kg) via tail

vein injection under very brief isoflurane-anesthesia 6 h after the onset of ischemia. In our

experience, this time point is associated with the greatest increase in EBD extravasation follow-

ing dMCAo/CCAo. After allowing a 1 h-long period for EBD extravasation, the mice were

euthanized under urethane-anesthesia and perfused with saline to clear the circulation of EBD.

The concentration of EBD extravasated into each hemisphere was quantified as previously

described [23].

To quantify infarct volume, mice were euthanized with an overdose of urethane (4 g/kg, i.

p.) 24 h after the onset of ischemia, and coronal sections of their isolated brains were stained

with 2,3,5-triphenyltetrazolium chloride (TTC) as previously described [24]. Infarct volume

was then quantified with the image analysis software Image J.

A non-blinded pilot study was initially performed to determine the optimal dMCAo/CCAo

protocol for inducing brain infarction and BBB disruption (Fig 1A and 1B). In this pilot study,

infarct volumes were measured 24 h after the onset of ischemia and the results obtained from

different groups of mice were compared. These groups included mice subjected either to sham

surgery or different lengths of ischemic periods induced as follows: 30 min dMCAo, 30 min

dMCAo + ipsilateral-CCAo, 120 min dMCAo, 120 min right-CCAo, 120 min dMCAo + ipsi-

lateral-CCAo, and 120 min dMCAo + contralateral-CCAo (n = 6 per group) (Fig 1A). Simi-

larly, the BBB permeability to EBD 6 h post-ischemia was compared in control mice (n = 5)

and mice subjected to 30 min dMCAo (n = 4), 30 min dMCAo + ipsilateral-CCA occlusion
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(CCAo) (n = 3), 120 min dMCAo (n = 4), 120 min right-CCAo (n = 4), 120 min dMCAo + ipsi-

lateral-CCAo (n = 4), and 120 min dMCAo + contralateral-CCAo (n = 4) (Fig 1B). Based on

the results of these experiments, an ischemic period of 120 min induced by dMCAo + ipsilat-

eral-CCAo was selected as the optimal protocol for the subsequent experiments (Figs 2 and 3),

which were performed in a systematic, randomized, and blinded manner.

Hypothermia induced by isoflurane inhalation

To induce hypothermia, we used doses of isoflurane known to have little or no effect on blood

gas and blood pressure [25, 26]. In addition, a similar degree of hypothermia has been shown

to have no effect on intra- and post-ischemic cerebral blood flow [27]. To confirm that isoflur-

ane-anesthesia produces hypothermia, a subset of mice was briefly anesthetized by means of a

quick exposure to air carrying 4% isoflurane, to facilitate the placement of a standard mouse

rectal probe. The probe was securely taped against the mouse’s tail so that body temperature

could be monitored in a continuous manner while the mouse was recovering from the anes-

thesia. To examine the effect of isoflurane on body temperature, each mouse was allowed to

recover for 1 h in a gas chamber (room temperature of ~23˚C) containing air carrying either

1% isoflurane (n = 5) or 2% isoflurane (n = 5). During this time, the mouse’s body temperature

was monitored and recorded (Fig 2A). In a control mouse that recovered in a gas chamber

without isoflurane, this protocol did not produce hypothermia.

To examine the effects of hypothermia on ischemic BBB disruption, mice were subjected to

a 2 h-long dMCAo/CCAo procedure, and 6 h after the onset of ischemia, they received EBD

administration and were placed for 1 h inside a gas chamber containing one of the followings:

(1) air (n = 14), (2) air carrying 1% isoflurane (n = 14), or (3) air carrying 2% isoflurane

(n = 13). Thereafter, the amount of EBD that extravasated into the brain parenchyma was

quantified (Fig 2B). In addition, to examine whether hypothermia had an effect on cerebral

infarction, mice were subjected to a 2 h-long dMCAo/CCAo procedure, and 6 h after the onset

of ischemia, they were placed for 1 h inside a gas chamber containing one of the followings: (1)

Fig 1. Early infarct volume and blood-brain barrier (BBB) disruption following distal middle cerebral arterial occlusion (dMCAo). Mice were

subjected to 30 min or 120 min of cerebral ischemia induced by dMCAo with or without ipsilateral (ipsi-) or contralateral (contra-) common carotid arterial

occlusion (CCAo). (A) Infarct volume was revealed by 2,3,5-triphenyltetrazolium chloride staining 24 h post-ischemia (n = 6 per group). Data are expressed

as mean ± SEM, and *p<0.05 and ***p<0.001 indicate a significant infarct volume. (B) BBB permeability was determined by measuring Evans blue dye

(EBD) extravasation 6 h post-ischemia (n = 3–5 per group). Data are expressed as mean ± SEM, and *p<0.05 indicates a significant difference compared to

the contralateral hemisphere.

doi:10.1371/journal.pone.0170682.g001
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air (n = 10), (2) air carrying 1% isoflurane (n = 10), or (3) air carrying 2% isoflurane (n = 10).

Subsequently, they were returned to their home cage to recover from the anesthesia-induced

hypothermia, and their brain infarct volumes were quantified 24 h after the onset of ischemia

(Fig 3A and 3B). To determine whether isoflurane had an effect on blood electrolyte concen-

tration, blood samples were collected from a control mouse and mice treated with 1% or 2%

isoflurane (n = 1 each) and analyzed with a blood electrolyte analyzer (Stat Profile Critical

Care Xpress, Nova Biomedical), as previously described [28].

To examine whether normothermia could be maintained during isoflurane-anesthesia by

means of a heating pad, a subset of mice was subjected to rectal probe placement under brief

isoflurane-anesthesia. Afterward, each mouse was allowed to recover for 1 h on a heating pad

inside the gas chamber, which contained air carrying either 1% isoflurane (n = 4) or 2% isoflur-

ane (n = 4) (Fig 2C). The heating pad received feedback from the rectal probe, and automati-

cally adjusted heating temperature in accordance to measured body temperature. To examine

the effect of normothermic isoflurane on ischemic BBB disruption, mice were subjected to 2 h

Fig 2. Hypothermic but not normothermic isoflurane-anesthesia attenuates early blood-brain barrier (BBB) disruption following distal middle

cerebral arterial occlusion (dMCAo). (A) Body temperature was measured continuously in mice using a rectal probe, and recorded at 0, 30, and 60 min

after exposure to 1% or 2% isoflurane (n = 5 per group). Data are expressed as mean ± SEM, and ***p<0.001 indicates a significant change in body

temperature over time. (B) To induce ischemic BBB disruption, the mice were subjected to 120 min of dMCAo coupled with ipsilateral common carotid

arterial occlusion. At 4 h post-reperfusion (6 h after the onset of ischemia), the mice were placed for 1 h inside a gas chamber filled with 0%, 1%, or 2%

isoflurane to induce hypothermia. The severity of BBB disruption was determined by comparing the concentrations of intravascular tracer Evans blue dye

(EBD), injected 4 h post-reperfusion and quantified 1 h thereafter, extravasated into the left (control, non-ischemic) and the right (ischemic) hemisphere

(n = 13–14 per group). Data are expressed as mean ± SEM. *p<0.05 and ***p<0.001 indicate a significant difference, whereas n.s. indicates no significant

difference. (C) Same as (A), except that body temperature was maintained with a heating pad (n = 4 per group). (D) Same as (B), except that body

temperature was maintained with a heating pad (n = 4–5 per group).

doi:10.1371/journal.pone.0170682.g002
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of dMCAo/CCAo, and 6 h after the onset of ischemia, they received EBD administration and

rectal probe-placement as described above, and were placed for 1 h inside a gas chamber con-

taining the rectal probe-coupled heating pad and one of the followings: (1) air (n = 5), (2) air

carrying 1% isoflurane (n = 4), or (3) air carrying 2% isoflurane (n = 4). Thereafter, the amount

of EBD that extravasated into the brain parenchyma was quantified (Fig 2D).

Randomization and exclusion

Unless otherwise indicated, the experiments involving cerebral ischemia were performed in a ran-

domized and blinded manner. Hence, the investigators performing the dMCAo/CCAo surgery,

injecting EBD, collecting brain tissue, quantifying BBB permeability, and measuring cerebral

infarction area/volume were unaware of the treatment groups (control vs. 1% isoflurane vs. 2%

isoflurane). To avoid randomization bias, treatment groups were randomized using the = RAND-

BETWEEN(1, 3) function in Microsoft Excel. A sample size of 4–5 was used in most experiments,

as this sample size was sufficient for detecting significant BBB disruption in our pilot study. To

further ensure reproducibility of the key findings, a larger sample size was used in the experi-

ments relating to the effect of hypothermia on BBB permeability (n = 13–14) and infarction

(n = 10). No animals were excluded from data analysis, and the n = 1 difference in sample size

between some treatment groups was due to animal availability at the time of the experiment.

Statistical analysis

Data were expressed as the mean ± SEM. EBD extravasation into each hemisphere or brain

region was compared using 2-way repeated-measures ANOVA (i.e., different brain regions

Fig 3. Hypothermia induced by isoflurane-anesthesia had no effect on early infarct volume following distal middle cerebral arterial occlusion

(dMCAo). To induce brain infarction, mice were subjected to 120 min of dMCAo coupled with ipsilateral common carotid arterial occlusion. At 4 h post-

reperfusion (6 h after the onset of ischemia), hypothermia was induced by exposure to 1% or 2% isoflurane for 1 h. Control animals received 0% isoflurane in

the same gas chamber and were normothermic. (A) Infarct area per coronal section was revealed by 2,3,5-triphenyltetrazolium chloride staining 24 h post-

ischemia (n = 10 per group). Data are expressed as mean ± SEM. The x-axis indicates the location of the coronal section relative to the medial prefrontal

cortex (mPFC). No significant difference was detected. (B) Infarct volume derived from (A); n = 10 per group. Data are expressed as mean ± SEM. n.s.

indicates no significant difference.

doi:10.1371/journal.pone.0170682.g003
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from the same animal were matched), whereas infarct volumes were compared using 1-way

ANOVA. In both cases, significant differences were confirmed with the Sidak’s multiple com-

parisons test. Changes in body temperature over time were compared using 2-way repeated-

measures ANOVA (i.e., different time points from the same animal were matched) followed

by the Sidak’s multiple comparisons test.

Results

Cerebral ischemia

To establish a model of cerebral ischemia characterized by both a robust BBB disruption and a

sizable infarct volume, mice were subjected to a number of dMCAo/CCAo protocols that pro-

duced different degrees of cerebral infarction (see Methods). Of all the protocols, 120 min of

ischemic time induced by dMCAo + ipsilateral-CCAo produced the greatest infarct volume

(n = 6 per group; p<0.001) (Fig 1A). Compared to other protocols, this method also produced

the greatest unilateral increase in BBB permeability, as indicated by the cerebral extravasation

of the intravascular tracer EBD (n = 3–5 per group; p<0.05) (Fig 1B). Conversely, 120 min of

ischemic time induced by dMCAo + contralateral-CCAo produced a moderate infarct volume

(p<0.05) with a disruption of the BBB that was only mildly noticeable (p>0.05) (Fig 1A and

1B). These results were consistent with previous reports showing that moderate cerebral

ischemia causes neuronal injury but not BBB disruption [2]. In comparison, neither 30 min

dMCAo nor 30 min dMCAo + ipsilateral-CCAo resulted in cerebral infarction or a significant

BBB disruption (Fig 1A and 1B). This result confirms that our surgical procedure, even when

associated with a mild ischemic insult, does not cause cerebral infarction or affect BBB

permeability.

Hypothermia induced by isoflurane inhalation

Next, we investigated whether hypothermia induced by isoflurane-anesthesia can reduce

early-phase BBB disruption, which, in our experience and as reported by others [10], reaches a

peak 6 h after the onset of cerebral ischemia and recovers in the successive 24 h. As expected,

mice subjected to isoflurane-anesthesia experienced dose-dependent hypothermia, as indi-

cated by a decrease in rectal temperature from 37.0 ± 0.2˚C to 29.5 ± 0.2˚C (with 1% isoflur-

ane) and to 26.8 ± 0.2˚C (with 2% isoflurane) over a period of 1 h (n = 5 per group; p<0.001

compared to other time points) (Fig 2A). When administered at 6 h post-ischemia, this hypo-

thermic regimen attenuated ischemic BBB disruption in a dose-dependent manner, as indi-

cated by the parenchymal concentration of the intravascular tracer EBD extravasated into the

ipsilateral (ischemic) hemisphere (n = 13–14 per group) (p<0.05 for 1% isoflurane and

p<0.01 for 2% isoflurane) (Fig 2B). It should also be noted that isoflurane-induced hypother-

mia had no effect on basal BBB permeability, as shown by the concentration of EBD extrava-

sated into the contralateral (non-ischemic) hemisphere (p>0.05) (Fig 2B). In a subset of mice

(n = 1 for control, 1% isoflurane, and 2% isoflurane), blood electrolyte analysis showed that

isoflurane treatment had no effect on blood electrolyte concentration or osmolarity (data not

shown). To determine whether the effect of isoflurane-induced hypothermia could be due to

other effects of isoflurane, we exposed the mice to the same isoflurane-treatment in presence

of a heating pad, which maintained the mouse rectal temperature at 36.8 ± 0.3˚C (with 1% iso-

flurane) or 37.0 ± 0.3˚C (with 2% isoflurane) throughout the 1 h-long treatment period (n = 4

per group; p>0.05 compared to other time points) (Fig 2C). Under this normothermic condi-

tion, isoflurane-anesthesia had no effect on ischemic or basal BBB permeability, as indicated

by the concentrations of EBD extravasated into the ipsilateral and contralateral hemispheres,

respectively (n = 4–5 per group) (p>0.05 for either 1% or 2% isoflurane) (Fig 2D).

Anesthesia-Induced Hypothermia on Ischemic Blood-Brain Barrier Disruption and Infarct Volume

PLOS ONE | DOI:10.1371/journal.pone.0170682 January 24, 2017 7 / 12



To investigate whether inhibition of early-phase BBB disruption at its peak (6 h post-ische-

mia) can decrease acute infarct volume, mice were administered isoflurane-anesthesia at 6 h

post-ischemia and then subjected to the associated hypothermia for 1 h. Despite the obvious

inhibitory effect on the peak of early-phase BBB disruption (Fig 2B), isoflurane-induced hypo-

thermia at 6 h after the onset of ischemia had no effect on the volume of cerebral infarction,

indicated by the TTC staining of coronal brain sections performed at 24 h post-ischemia

(n = 10 per group) (p>0.05) (Fig 3A and 3B).

Discussion

Hypothermia is well-known to exert powerful neuroprotective effects [29–33], but its clinical

use in the management of stroke remains mostly limited to the treatment of increased intracra-

nial pressure and cerebral edema rather than being used for neuroprotection [34, 35]. Like

most neuroprotective treatments, intra-ischemic hypothermia is more neuroprotective than

post-ischemic hypothermia [30]. In fact, hypothermia has already shown neuroprotective effi-

cacy in patients with global cerebral ischemia caused by cardiac arrest and neonatal asphyxia,

for which intra-ischemic treatment is possible [32, 33, 36]. However, stroke patients are typi-

cally admitted to the hospital several hours following the onset of focal ischemia, making intra-

ischemic hypothermia impractical. In line with the known therapeutic effect of hypothermia

against cerebral edema following focal ischemia [35], hypothermia is also recognized to be

effective at preventing ischemic BBB disruption [37]. Given the presumed role of the BBB in

protecting the brain from circulating neurotoxins and inflammatory cells, we asked whether a

delayed protection of the BBB by hypothermia at a critical period, when stroke-induced BBB

disruption reaches its peak, may protect the brain against infarction within a clinically man-

ageable time window.

Anesthesia is an effective method for inducing hypothermia, and hypothermia induced by

isoflurane-anesthesia has been shown to alter hippocampal protein expression and brain func-

tion independently of other anesthesia-related effects [38]. Moreover, neurobiological changes

induced by isoflurane-anesthesia can be achieved at doses that do not significantly alter blood

gas and blood pressure [25, 26]. In this study, we further showed that isoflurane-anesthesia

induced dose-dependent hypothermia without affecting blood electrolyte concentration and

osmolarity. Interestingly, although hypothermia decreased post-ischemic cerebral vascular

permeability in this study, decrease in brain temperature has been shown to have little effect

on post-ischemic cerebral blood flow [27]. Given that the early phase of ischemic BBB disrup-

tion is characterized primarily by an increase in endothelial transcytosis rather than a deficit in

tight junction integrity [10], hypothermia induced by isoflurane-anesthesia probably hindered

plasma protein extravasation at this time point by impairing vesicular formation and traffick-

ing. Notably, a recent study has shown that isoflurane is able to prevent BBB disruption

induced by subarachnoid hemorrhage in mice [39]. Unfortunately, body temperature of the

mice was not measured in that study. Therefore, it remains unclear whether the reported effect

was due to isoflurane-induced hypothermia or rather non-hypothermic effects of isoflurane

[39]. In the present study, we showed that isoflurane-anesthesia inhibited early-phase BBB dis-

ruption following cerebral ischemia when hypothermia was allowed, but not when the body

temperature was maintained at ~37˚C.

In addition to its inhibitory effect on ischemic BBB disruption, which is characterized by a

marked extravasation of albumin and other macromolecular tracers, as reported in this study,

isoflurane-anesthesia has also been previously reported to decrease the physiological extravasa-

tion of an amino acid [40]. Moreover, one study reported that isoflurane-anesthesia increases

the extravasation of EBD when the tracer was injected at specific time points corresponding to
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a particular EEG signal [41]. In addition to isoflurane, non-gaseous anesthetics and analgesics

also affect BBB permeability. Pentobarbital or ketamine, when administered alone, decreased

BBB permeability to aminoisobutyric acid [42]. However, when combined with ethanol, pen-

tobarbital (but not ketamine) injured cerebral endothelial cells, leading to an increase in the

extravasation of intravascular horseradish peroxidase [43]. Like pentobarbital and ketamine,

the opioid analgesic fentanyl also decreased BBB permeability to labeled aminoisobutyric acid

[44]. However, in contrast with the in vivo effect, neither barbiturates nor fentanyl affected

the permeability of aminoisobutyric acid, sucrose, or EBD-albumin through the brain micro-

vascular endothelial cell monolayer in an in vitro culture system [45]. This result raised the

intriguing possibility that, despite the lipophilic nature of these compounds, many of these

anesthetics/analgesics did not affect BBB permeability by acting directly on the endothelial cell

membrane.

BBB disruption can contribute to ischemic neuronal injury by introducing plasma proteases

and inflammatory cells into the brain. Indeed, the degree of BBB disruption strongly correlates

with the severity of neuronal injury [1], and some therapeutic agents that reduce ischemic BBB

disruption also attenuate ischemic brain infarct volume [6, 7]. In contrast to this notion, we

found that inhibiting BBB disruption at its peak during the early phase of cerebral ischemia (at

6 h post-ischemia), by a 1 h-long treatment of isoflurane-induced hypothermia, had no effect

on the volume of cerebral infarction that was later determined at 24 h post-ischemia. In com-

parison, two previous studies reported a marked reduction of the cerebral infarction volume

24 h post-ischemia, following the injection of inhibitors of the neuronal death signaling cas-

cades 6 h after the onset of ischemia [16, 17]. One of these studies used the same stroke model

reported in the present study [17]. Altogether, these findings suggest that the inhibitors of the

neuronal death signaling cascades may be more effective than inhibitors of BBB disruption as

neuroprotective treatments for ischemic stroke. Similar to the inhibitors of the neuronal death

signaling cascade, which are even more effective when administered immediately after a stroke

[20], inhibiting the entire early-phase period of ischemic BBB disruption is likely to produce a

better neuroprotective effect than inhibiting only the peak of BBB disruption. Therefore, our

data do not exclude the possibility that the entire early phase of BBB disruption could contrib-

ute to ischemic brain infarction.
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