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Abstract: Aquaculture environment plays important roles in regulating the growth, morphology,
nutrition, and flavor of aquatic products. The present study investigated growth, morphology,
nutrition, and flavor formation in largemouth bass (Micropterus salmoides) cultured in the ponds with
(EM group) and without (M group) the submerged macrophytes (Elodea nuttallii). Fish in the EM
group showed a significantly greater body length, higher growth rate, and lower hepatosomatic index
than those in the M group (p < 0.05). Moreover, compared with fish in the M group, those in the EM
group showed improved muscle quality with significantly elevated levels of crude protein, total free
and hydrolysable amino acids, and polyunsaturated fatty acids (p < 0.05). Specifically, certain amino
acids related to flavor (Glu, Asp, Ala, and Arg) and valuable fatty acids (C18:2, C18:3n3, C20:3n3,
and C22:6) were more abundant in the EM group (p < 0.05). In addition, the levels of 19 volatile
(p < 0.05) were significantly higher in the EM group than in the M group. Therefore, E. nuttallii
significantly improved growth, morphological traits, nutritional components, and characteristic
flavor in largemouth bass, indicating the superior nutritional value and palatability of fish cultured
with submerged macrophytes.

Keywords: largemouth bass; submerged macrophyte; volatile compounds; nutritional; GC-IMS

1. Introduction

China is one of the largest producers and consumers of aquatic products in the world,
accounting for over 60% of the global aquaculture output [1]. Among aquatic products, the
annual production of largemouth bass (Micropterus salmoides)—an economically important
freshwater aquaculture species [2]—reached about 0.62 million tons [3] with an output
value of over $1.76 billion in 2020. This species is native to lakes and rivers in North
America [4]. Owing to its rapid growth, delicious flavor, and lack of intermuscular bones,
largemouth bass has become widely popular in China since its introduction in 1983 [5]. At
present, traditional pond systems remain the only acceptable mode of largemouth bass
culture in China [6]. During pond culture, artificial compound feed is supplied, which
leads to eutrophication, thereby promoting the outbreak of bloom-forming cyanophytes
and diseases and ultimately deteriorating the quality of aquaculture products [7,8]. There-
fore, these challenges must be addressed by developing and promoting new ecological
aquaculture models.

Ecological aquaculture not only protects the environment but also fulfills the market
demand. In recent times, with increased affluence, the focus of consumption has shifted
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from quantity to quality [9]. Fish meat quality traits, including shape, taste, and flavor, are
important factors related to consumer preferences [10], and these attributes are affected
by both external and internal drivers, including the culture environment, nutrition, and
genetics [11–13]. In particular, the nutritional value and sensory traits of fish muscle are
affected by the culture environment [14,15]. In bighead carp (Hypophthalmichthys nobilis),
due to the presence of abundant volatiles with distinct aromas, fish cultured in cold water
reservoirs and common culture ponds developed a greater umami intensity than those
captured from a natural lake [16].

Therefore, development of effective approaches to produce high-quality aquatic prod-
ucts is a key target in the aquaculture industry [15,17]. In this context, bio-floating beds
and submerged plant technology have been used in aquaculture as ecological remedia-
tion methods to purify water in situ, thereby improving the meat quality of aquaculture
species [15,18]. For instance, floating beds planted with Ipomoea aquatica were installed in
ponds to assimilate excess nutrients; improve water quality; and promote crab growth,
yield, and quality [19]. In grass carp, growth performance and muscle quality improved in
the presence of bio-floating beds in culture ponds [15]. In terms of the nutritional quality of
aquatic products, the polyculture mode with an in situ ecological floating bed system was
proven superior to the conventional monoculture mode [20]. An artificial composite ecosys-
tem with aquatic plants and fish is a reliable eco-agricultural model. To date, however,
ecological aquaculture of largemouth bass with aquatic plants has received little attention,
and the effects of water quality factors on flavor have seldom been reported.

Volatile compounds significantly affect food flavor, further influencing the overall
evaluation of food. Various techniques, including gas chromatography coupled to ion
mobility spectrometry (GC-IMS), have been developed to investigate volatile organic
compound emissions. In this technique, GC is applied for pre-separation, followed by
IMS, and this method does not require time for sample pretreatment [21,22]. Therefore,
GC-IMS is a rapid, nondestructive, sensitive, and reliable detection method, and it has
gained popularity for exploring trace toxic chemicals and drug residues [23], particularly
in the flavor analysis of food and agricultural products [21,24].

However, no study has investigated differences in the morphology and nutritional
quality of largemouth bass cultured in the presence or absence of submerged plants (e.g.,
Elodea sp.). Therefore, in the present study, we compared the water quality as well as
largemouth bass morphology and nutritional value between two aquaculture modes and
constructed a fingerprint of flavor substances using GC-IMS. Further exploration of the
key water quality parameters affecting flavor and nutritional value is warranted. Overall,
our findings offer novel insights into the effects of submerged plants on the nutritional
value and flavor formation of cultured largemouth bass, providing a reference for healthy,
sustainable, and ecological culture of this species.

2. Materials and Methods
2.1. Experimental Design and Sampling

Largemouth bass juveniles of the same age were purchased from Zhanglin Fishery
Co., Ltd. (Anhui, China). Six ponds, each covering an area of 0.17 ha, were selected for two
treatments with three replicates at the Yang Zhong experimental base: Freshwater Fisheries
Research Center (FFRC) and Chinese Academy of Fishery Sciences (CAFS). Three ponds
lacked aquatic vegetation (M group), whereas in the remaining three ponds, submerged
macrophytes (Elodea nuttallii) covered 20% of the superficial area of the bottom (EM group).
The experimental period was 90 days (28 June 2021–28 September 2021). At the start of
the trial, fish with an initial body weight of 14.50 ± 0.23 g were randomly distributed
into six ponds at a stocking density of 43.48 g·m−3. The fish were supplied a commercial
floating feed containing ≥47% crude protein and ≥5% crude lipid (Xinxin Tianen Aquafeed,
Zhejiang, China). Feeding (stopped when >80% largemouth bass were no longer feeding)
was performed twice a day at 8–9 a.m. and 5–6 p.m., with 5% feeding ratio.
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Samples were collected every month to record growth performance. Body weight,
body length, and liver and visceral weights of 30 fish in each group were measured after
24 h of starvation, and the fish anaesthetized with 100 mg·L−1 MS-222. At the end of the
experimental period, dorsal muscles of 12 fish in each group were sampled, and stored
at −80 ◦C for subsequent analysis. Water samples were collected from the experimen-
tal ponds to determine water quality parameters. All animal experiments conformed
to the ARRIVE guidelines and were performed following the U.K. Animals (Scientific
Procedures) Act, 1986, and the associated guidelines of the EU Directive 2010/63/EU for
animal experimentation.

2.2. Water Quality Determination

Dissolved oxygen (DO) and pH were measured in situ using a portable multimeter
(HQ30D; HACH, Ames, IA, USA) and the YSI Professional Plus system (YSI Inc., Yellow
Springs, OH, USA). To test quality, triplicate water samples from each of the treatment sets
were transferred to 500 mL polyethylene bottles and the physicochemical parameters of
total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (CODMn) were
analyzed as described previously [25]. All samples were filtered using Whatman filter
papers with a pore size of 0.45 µm before laboratory analyses.

2.3. Biological, Color and Muscle Nutrients Measurements

In the present study, we calculated the weight gain rate (WGR), specific growth
rate (SGR), and hepatosomatic index (HSI) as parameters reflecting growth performance,
as follows.

WGR (%) = (Wt − W0) × 100/W0

SGR (% day−1) = (lnWt − lnW0) × 100/days

HSI (%) = (hepatosomatic weight/body weight) × 100

where W0 is the initial body weight and Wt is the final body weight.
Dorsal and abdominal skin color of largemouth bass cultured under different condi-

tions was measured using a colorimeter (NR10QC Shenzhen Sanen Time Technology Co.,
Ltd., Shenzhen, China), calibrated with a standard white tile. L*, a*, and b* values were
recorded, and the color results were expressed as L* (lightness), a* (−a*: greenness, +a*:
redness), and b* (−b*: blueness, +b*: yellowness) [26].

The approximate composition of muscles was investigated following the national
standard methods, with three parallel measurements per group. Moisture content was
determined according to the AOAC Official Method 930.15 (drying at 105 ◦C to a con-
stant weight). Ash content was measured according to the AOAC Official Method 942.05
(burning at 550 ◦C in a muffle furnace) [27]. Crude protein content was determined accord-
ing to the AOAC Official Method 968.08 (Kjeldahl nitrogen determination method) [28],
and crude fat was determined according to the AOAC Official Method 996.06 (Soxhlet
extraction method).

For fatty acid analysis, fatty acid methyl esters (FAMEs) were prepared by transes-
terification with boron trifluoride and methanol, then dissolved in hexane, and the upper
organic phase was collected for analysis with an Agilent 7820 A Gas Chromatograph
(Agilent Technologies, Inc., Santa Clara, CA, USA) [29].

To determine amino acid content, muscle samples were freeze-dried and ground to
powder. Next, 0.1 g samples were accurately weighed and used for amino acid deter-
mination. Briefly, the samples were treated with 6 M HCl for acid hydrolysis at 120 ◦C
for 22 h, and then then neutralized with NaOH, and the supernatant was collected for
analysis. Free amino acid were adjusted to an appropriate volume with 5% trichloroacetic
acid, mixed well, then allowed to stand for 2 h and filtered. Finally, the supernatant was
collected for analysis. Amino acid analyses were performed using high-performance liquid
chromatography (HPLC) (Ag 1260 HPLC, American Agilent Company), according to the
method described by Harimana [5].
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2.4. Comparison of Fish Muscle Volatile Substances

Volatile compounds were identified using GC-IMS [30]. Muscle samples from each
group were weighed and chopped evenly. Each sample was analyzed in triplicate to ensure
the reliability of results. Briefly, 3 g samples in 20 mL headspace bottles were randomly se-
lected. The analytical conditions were as follow: headspace incubation = 15 min, tempera-
ture = 60 ◦C, speed = 500 rpm, injection volume = 500 µL, and syringe temperature = 110 ◦C.
GC conditions were as follows: chromatographic column = MXT-5 (15.00 m × 0.53 mm,
1.00 µm i.d.), column temperature = 60 ◦C, run time = 20 min, and carrier gas = N2
(purity ≥ 99.999%). The initial flow rate of the carrier gas was 2 mL·min−1 for 2 min, which
was increased to 100 mL·min−1, and the total run time was 20 min. IMS conditions were as
follows: temperature = 45 ◦C and drift gas flow rate = 150 mL·min−1. The retention index
(RI) of each compound was calculated. The analytical software supporting the measure-
ment instruments were vocal, three plug-ins (Reporter, Gallery Plot, and Dynamic PCA),
and GC-IMS Library Search, which can analyze samples from different perspectives. Spiked
and non-spiked samples were measured five times in parallel to calculate the recovery rate
and relative standard deviation (RSD).

2.5. Statistical Methods and Data Processing

Data collated using Microsoft Excel were expressed as mean ± standard deviation (SD). In
SPSS v26.0. (IBM Corporation, Armonk, NY, USA), t-test was performed to determine significant
differences between the groups. A p < 0.05 indicated significant (*), p < 0.01 indicated highly
significant (**), and p < 0.001 indicated extremely highly significant (***) difference.

3. Results
3.1. Growth Performance and Morphological Characteristics

The monthly growth performance of fish is summarized in Table 1. On day 30, there
were no significant differences in BL, BT, BW, WGR, or SGR (p > 0.05), whereas fish in
the EM group showed a significantly lower HSI than those in the M group (p < 0.05). On
day 60, compared with fish in the M group, those in the EM group showed a significantly
higher BW and SGR (p < 0.05) and a lower BT and HSI (p < 0.05). One month later (at
90 days), the BL, BW, WGR, and SGR of fish in the EM group significantly increased, while
HSI continued to decrease significantly (p < 0.05). Moreover, fish in the EM group were
slender and presented a green body (Figure 1), with darker dorsal skin, as evidenced
by significantly lower L* values (Table 2, p < 0.01). Regardless of the origin (dorsal or
abdominal skin), significant differences were observed in a* and b*.

Table 1. Growth performance and morphological indices of largemouth bass.

Item Time/d M EM

BL/cm
30 139.96 ± 8.19 142.69 ± 4.42
60 191.21 ± 9.00 192.38 ± 11.04
90 207.13 ± 8.06 221.15 ± 7.67 *

BT/cm
30 21.91 ± 2.01 22.56 ± 1.80
60 31.22 ± 1.20 * 30.43 ± 1.26
90 34.51 ± 2.89 36.26 ± 2.00 *

BW/g
30 61.54 ± 8.38 63.32 ± 7.56
60 163.72 ± 16.71 174.07 ± 18.37 *
90 214.99 ± 25.37 252.86 ± 22.21 *

WGR/%
30 330.33 ± 58.60 342.77 ± 52.85
60 168.05 ± 20.72 175.42 ± 9.57
90 31.23 ± 6.85 45.64 ± 5.36 *

SGR/(%/d)
30 4.83 ± 0.49 4.89 ± 0.40
60 3.28 ± 0.24 3.38 ± 0.12 *
90 0.90 ± 0.18 1.25 ± 0.56 *

HSI/%
30 2.82 ± 0.40 * 2.49 ± 0.42
60 2.23 ± 0.28 * 1.63 ± 0.38
90 2.09 ± 0.20 * 1.59 ± 0.15

Note: p < 0.05 indicated significant (*).
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Figure 1. Comparative photographs of Micropterus salmoides in the EM (A) and M (B) groups.

Table 2. Chroma values of largemouth bass skin.

Item
Dorsal Skin Abdominal Skin

M EM M EM

L* 49.92 ± 5.81 ** 37.78 ± 2.77 68.67 ± 6.11 64.08 ± 3.89
a* 1.07 ± 0.44 *** −1.52 ± 0.73 2.81 ± 0.91 ** 0.93 ± 0.81
b* 14.50 ± 1.13 *** 5.97 ± 1.14 6.25 ± 0.71 *** 2.15 ± 0.47

Note: p < 0.01 indicated highly significant (**), and p < 0.001 indicated extremely highly significant (***) difference.

3.2. Water Quality and Dominant Phytoplankton

Water chemical indices and dominant phytoplankton, including Cyanophyta and
Chlorophyta, are shown in Figure 2. At the end of the 90-day experimental period, signif-
icant differences in four water quality indices (TN, TP, DO, and CODMn) and dominant
phytoplankton reflected the variations in ecological factors for aquaculture water between
groups. Compared with values in the M group, TN, TP, and CODMn in the EM group
were significantly decreased, while DO was significantly increased (p < 0.05). Further-
more, in the M group, cyanobacteria accounted for 60% of all phytoplankton, with a
density of 1.36 × 107 cells·L−1, which was significantly higher than that in the EM group
(2.28 × 105 cells·L−1; p < 0.01). More specifically, nearly 60-fold difference was noted be-
tween the two groups.

3.3. Nutritional Components

The proximate compositions of samples varied (Table 3). All samples were rich sources
of proteins. The crude protein content of samples in the M and EM groups was respectively
21.13% and 23.07% (p < 0.05). Moisture content was significantly higher in the M group
(p < 0.01). Ash and crude fat content did not significantly differ between the two groups
(p > 0.05).

Table 3. Proximate chemical composition of fish meat (%, n = 3).

Items M EM p

Moisture 72.63 ± 1.04 69.03 ± 0.40 0.005 **
Ash 1.43 ± 0.06 1.87 ± 0.35 0.103

Crude lipid 3.43 ± 0.71 3.87 ± 0.45 0.422
Crude protein 21.13 ± 0.67 23.07 ± 0.35 0.011 *

Note: p < 0.05 indicated significant (*), p < 0.01 indicated highly significant (**).
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Seventeen free and hydrolysable amino acids were detected in different samples
(Table 4). Levels of free amino acids, including Gly, Thr, Tyr, Phe, and Ile, in the muscles of
largemouth bass were significantly higher in the EM group than in the M group. Moreover,
levels of essential, no−essential, and total free amino acids significantly differed between
the two groups (EM > M). Among hydrolysable amino acids, Glu content was the highest
in different samples, and Glu content in the EM group was significantly higher than that in
the M group. In addition, Asp, Ala, Arg, Ser, His, Thr, Val, Phe, IIe, and Leu levels were
higher in the EM group than in the M group.

Furthermore, 22 fatty acids were detected (Table 5), including eight saturated fatty
acids (ΣSFAs), five monounsaturated fatty acids (ΣMUFAs), and nine polyunsaturated
fatty acids (ΣPUFAs). ΣPUFA levels were higher but ΣSFA and ΣMUFA levels were lower
in the EM group than in the M group. In addition, the levels of C18:2, C18:3n3, C20:3n3,
and C22:6 (docosahexaenoic acid, DHA), which are important indicators for evaluating the
nutritional value of fatty acids, were significantly higher in the EM group. Based on these
results, largemouth bass cultured with submerged macrophytes shows a relatively higher
nutritional value.
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Table 4. Amino acid profile (n = 3).

FAA (mg/g) HAA (g/100 g)

M EM M EM

Aspartic acid (Asp) 0.17 ± 0.00 0.16 ± 0.00 4.58 ± 0.24 5.29 ± 0.29 *
Glutamic acid (Glu) 0.45 ± 0.01 0.46 ± 0.00 6.97 ± 0.41 8.08 ± 0.48 *

Serine (Ser) 0.03 ± 0.00 0.03 ± 0.00 1.58 ± 0.09 1.86 ± 0.10 *
Histidine (His) 3.02 ± 0.16 2.96 ± 0.08 1.19 ± 0.05 1.49 ± 0.11 *
Glycine (Gly) 1.69 ± 0.17 2.21 ± 0.07 ** 2.26 ± 0.05 2.60 ± 0.21

Threonine (Thr) 0.61 ± 0.02 0.74 ± 0.02 ** 1.80 ± 0.08 2.09 ± 0.14 *
Arginine (Arg) 0.04 ± 0.00 0.03 ± 0.01 2.37 ± 0.10 2.73 ± 0.20 *
Alanine (Ala) 1.00 ± 0.05 1.04 ± 0.03 2.57 ± 0.12 2.97 ± 0.18 *
Tyrosine (Tyr) 0.13 ± 0.01 0.15 ± 0.00 * 1.15 ± 0.22 1.35 ± 0.08

Cysteine (Cys-s) 0.04 ± 0.01 0.03 ± 0.00 0.07 ± 0.05 0.09 ± 0.01
Valine (Val) 0.27 ± 0.01 0.27 ± 0.01 2.46 ± 0.16 2.88 ± 0.19 *

Methionine (Met) 0.12 ± 0.01 0.13 ± 0.01 0.94 ± 0.31 1.13 ± 0.05
Phenylalanine (Phe) 0.08 ± 0.00 0.09 ± 0.00 ** 1.82 ± 0.11 2.10 ± 0.12 *

Isoleucine (IIe) 0.09 ± 0.00 0.10 ± 0.00 *** 2.12 ± 0.12 2.48 ± 0.15 *
Leucine (Leu) 0.12 ± 0.09 0.18 ± 0.00 3.41 ± 0.21 3.97 ± 0.25 *
Lysine (Lys) 0.52 ± 0.01 0.54 ± 0.01 4.00 ± 0.29 4.69 ± 0.33
Proline (Pro) 0.40 ± 0.05 ** 0.23 ± 0.03 1.60 ± 0.18 1.33 ± 0.36

EAA 1.81 ± 0.09 2.05 ± 0.04 * 16.54 ± 1.19 19.33 ± 1.23
NEAA 6.95 ± 0.11 7.30 ± 0.18 * 24.33 ± 1.42 27.79 ± 1.69
TAA 8.76 ± 0.02 9.35 ± 0.20 * 40.87 ± 2.61 47.12 ± 2.89 *

Note: FAA: free amino acids; HAA: hydrolyzed amino acids; EAA: total essential amino acids; NEAA: total
no-essential amino acids; TAA: total amino acids. p < 0.05 indicated significant (*), p < 0.01 indicated highly
significant (**), and p < 0.001 indicated extremely highly significant (***) difference.

Table 5. Fatty acid profile (%, n = 3).

Fatty Acid M EM

C12:0 0.06 ± 0.01 0.06 ± 0.01
C14:0 3.30 ± 0.08 3.59 ± 0.27
C15:0 0.36 ± 0.02 0.37 ± 0.01
C16:0 22.82 ± 0.20 22.11 ± 0.47
C17:0 0.31 ± 0.01 0.25 ± 0.07
C18:0 3.78 ± 0.15 3.29 ± 0.37
C20:0 0.17 ± 0.01 0.15 ± 0.01
C22:0 0.17 ± 0.08 0.10 ± 0.01
ΣSFA 30.98 ± 0.20 ** 29.92 ± 0.30
C14:1 0.07 ± 0.04 0.06 ± 0.02
C16:1 5.71 ± 0.19 5.97 ± 0.29
C17:1 0.39 ± 0.03 0.35 ± 0.01
C18:1 25.24 ± 0.10 ** 23.33 ± 0.59
C20:1 0.74 ± 0.08 0.66 ± 0.04

ΣMUFA 32.16 ± 0.25 ** 30.37 ± 0.35
C18:2 23.63 ± 0.25 25.64 ± 0.50 **

C18:3n6 0.14 ± 0.02 0.13 ± 0.02
C18:3n3 2.53 ± 0.02 2.64 ± 0.06 *

C20:2 0.48 ± 0.01 0.48 ± 0.00
C20:3n6 0.15 ± 0.01 * 0.13 ± 0.01
C20:3n3 0.17 ± 0.00 0.19 ± 0.01 *

C20:4 0.53 ± 0.03 0.49 ± 0.04
C20:5 1.48 ± 0.15 1.51 ± 0.05
C22:6 7.76 ± 0.19 8.33 ± 0.07 **

ΣPUFA 36.87 ± 0.23 39.54 ± 0.47 **
ΣPUFA/∑SFA 1.19 ± 0.01 1.32 ± 0.02 ***

Note: ΣSFA: total saturated fatty acids; ΣMUFA: total monounsaturated fatty acids; ΣPUFA: total polyunsaturated
fatty acids. p < 0.05 indicated significant (*), p < 0.01 indicated highly significant (**), and p < 0.001 indicated
extremely highly significant (***) difference.

3.4. Volatile Compounds

The entire spectrum representing total volatile substances was presented as two-
dimensional topographical visualization. Figure 3 shows significant differences in the
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gas-phase ion migration spectra of muscle samples. The concentration of volatile sub-
stances was significantly lower in the M group than in the EM group. We used a different
comparison system to visualize the differences between samples. Taking M1 as the refer-
ence, the remaining spectral values were deducted from the signal peaks in M1 to obtain
the differences in spectra (Figure 4). Substances with levels lower than those in M1 are
shown in blue (region A), whereas those with levels higher than those in M1 are shown
in red (region B). If the levels of volatile substances are comparable, the background after
deduction is white. The deeper the color, the greater the difference. Differences between
Figures 3 and 4 clearly demonstrate that the concentration of volatile organic compounds
was consistently higher in the EM group. The galleryplot plug-in of the LAV software was
used to automatically generate fingerprints of all peaks for determining characteristic dif-
ferences in volatile substances. As shown in Figure 5, substances related to flavor presented
characteristic and common peak areas in the two groups. Regions A and B in Figure 5
represent the characteristic peak areas of the M and EM group, respectively. Therefore, the
flavor of samples significantly differed between the M and EM groups.
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Next, principal component analysis (PCA) was applied to understand the correlations
in largemouth bass muscle samples. PC1 explained 36% sample variance, whereas PC2
explained 28% sample variance (Figure 6). Based on these data, the samples were divided
into two groups, and the between-group difference was greater than the within-group
difference. Therefore, GC-IMS is suitable to distinguish largemouth bass from different
culture models.
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In the present study, 55 volatile compounds were identified, of which 54 were qual-
itative substances, primarily comprising aldehydes, alcohols, ketones, acids, esters, and
miscellaneous compounds (Table 6). Twenty-four aldehydes accounted for 43.64% of all
volatile compounds and were the most abundant volatile compounds. Thus, different
culture environments affect flavor composition. Compared with those in the M group, the
levels of aldehydes, namely nonanal-M, nonanal-D, octanal-D, benzaldehyde-M, heptanal-
D, 2-methylbutanal-D, and 2-methylbutanal-D, were significantly higher in the EM group.
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Furthermore, the most abundant alcohols were 2-ethyl-1-hexanol-M, 2-ethyl-1-hexanol-D,
1-propanethiol-D, 1-propanethiol-M, 3-furanmethanol, pentan-1-ol-D, oct-1-en-3-ol-D, and
2-octanol, and their levels were higher in the EM group. Similarly, the levels of ketones,
such as 2-butanone, 2-pentanone, 3-hydroxybutan-2-one-D, 3-hydroxybutan-2-one-M, (E)-
3-penten-2-one-M, and (E)-3-penten-2-one-D, were significantly higher in the EM group
than in the M group. Finally, 2-butanone accounted for approximately 50% of all ketones
and was the most abundant ketone in bass muscle in the present study. Thus, 2-butanone
appears to be a characteristic volatile compound of largemouth bass.
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Table 6. Qualitative results of the gas-phase ion mobility spectra of Micropterus salmoides muscles (n = 3).

Count Compound CAS# Formula MW RI Rt [sec] Dt [a.u.]
Peak Intensity

M EM

1 Nonanal-M C124196 C9H18O 142.2 1112.8 513.223 1.47528 1594.20 ± 569.27 2220.24 ± 352.87 *
2 Nonanal-D C124196 C9H18O 142.2 1113.2 513.73 1.95085 222.52 ± 132.59 444.14 ± 156.23 **
3 (E)-2-octenal C2548870 C8H14O 126.2 1058.2 434.653 1.33775 230.10 ± 172.74 251.44 ± 100.42
4 2-methylpentanoic acid C97610 C6H12O2 116.2 1028.9 392.58 1.26318 138.11 ± 95.69 161.91 ± 26.07
5 (E, E)-2,4-heptadienal C4313035 C7H10O 110.2 1014.3 371.527 1.19175 195.11 ± 105.12 225.32 ± 80.96
6 Octanal-M C124130 C8H16O 128.2 1007.1 361.154 1.40395 1404.23 ± 435.87 1646.58 ± 185.32
7 Octanal-D C124130 C8H16O 128.2 1007.3 361.434 1.82706 542.77 ± 398.71 958.61 ± 320.32 *
8 1 unidentified − 0 990.4 340.757 1.39455 1201.18 ± 324.12 1280.64 ± 185.88
9 oct-1-en-3-ol-M C3391864 C8H16O 128.2 984 335.282 1.16248 796.05 ± 170.35 1026.74 ± 115.11 **

10 3-Furanmethanol C4412913 C5H6O2 98.1 977 329.248 1.10918 332.53 ± 60.43 403.17 ± 56.14 *
11 Benzaldehyde-M C100527 C7H6O 106.1 961.3 315.903 1.15223 466.75 ± 161.68 674.45 ± 169.11 *
12 Benzaldehyde-D C100527 C7H6O 106.1 960.2 314.96 1.4733 116.41 ± 81.63 322.43 ± 328.21
13 (E)-hept-2-enal-M C18829555 C7H12O 112.2 956.1 311.424 1.25978 684.92 ± 388.43 753.34 ± 177.46
14 (E)-hept-2-enal-D C18829555 C7H12O 112.2 957.7 312.838 1.67575 204.13 ± 284.33 344.39 ± 361.19
15 Heptanal-M C111717 C7H14O 114.2 902.7 265.925 1.33254 1319.31 ± 149.13 1298.56 ± 92.38
16 Heptanal-D C111717 C7H14O 114.2 902.2 265.453 1.70106 1117.23 ± 546.80 1592.96 ± 307.47 *
17 (Z)-4-heptenal C6728310 C7H12O 112.2 898.9 262.624 1.15065 706.22 ± 133.75 693.12 ± 113.33
18 2-heptanone-D C110430 C7H14O 114.2 893.9 258.375 1.63475 127.34 ± 87.70 223.94 ± 109.79
19 n-Hexanol-M C111273 C6H14O 102.2 872.7 246.48 1.32617 564.98 ± 71.06 544.49 ± 104.32
20 (E)-2-hexenal-M C6728263 C6H10O 98.1 851.9 235.365 1.18317 1160.40 ± 329.61 1239.75 ± 158.51
21 (E)-2-hexenal-D C6728263 C6H10O 98.1 847.6 233.025 1.5206 1069.01 ± 1015.98 1662.32 ± 977.41
22 Hexanal C66251 C6H12O 100.2 790.8 202.605 1.55949 4991.75 ± 600.01 4903.75 ± 318.76
23 pentan-1-ol-D C71410 C5H12O 88.1 770 193.277 1.51613 434.40 ± 117.86 531.57 ± 69.93 *
24 2-ethyl-1-hexanol-D C104767 C8H18O 130.2 1032.7 398.037 1.80573 124.18 ± 43.72 846.93 ± 639.43 **
25 2-pentyl furan C3777693 C9H14O 138.2 997.1 346.84 1.25753 164.73 ± 67.08 232.93 ± 82.24
26 2-ethyl-1-hexanol-M C104767 C8H18O 130.2 1031.2 395.891 1.41016 615.64 ± 225.45 2346.12 ± 1172.02 **
27 β-Ocimene C13877913 C10H16 136.2 1046.2 417.35 1.2186 32.92 ± 6.86 51.02 ± 17.46 *
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Table 6. Cont.

Count Compound CAS# Formula MW RI Rt [sec] Dt [a.u.]
Peak Intensity

M EM

28 pentan-1-ol-M C71410 C5H12O 88.1 766.3 191.798 1.25475 653.56 ± 54.47 607.04 ± 67.51
29 oct-1-en-3-ol-D C3391864 C8H16O 128.2 983.8 335.066 1.60462 114.15 ± 29.48 185.28 ± 50.23 **
30 n-Hexanol-D C111273 C6H14O 102.2 870.6 245.347 1.6415 102.66 ± 26.47 112.21 ± 31.71
31 2-heptanone-M C110430 C7H14O 114.2 893.8 258.277 1.26096 376.60 ± 68.28 426.02 ± 44.28
32 2-Octanol C123966 C8H18O 130.2 993 342.983 1.80374 66.70 ± 20.87 109.93 ± 34.54 **
33 4,5-dihydro-3(2H)-thiophenone C1003049 C4H6OS 102.2 940.8 298.387 1.18131 102.88 ± 47.04 186.07 ± 129.76
34 5-Methyl-2(3H)-furanone C591128 C5H6O2 98.1 878.9 249.833 1.11789 118.59 ± 40.71 171.50 ± 77.70
35 (E)-2-pentenal-M C1576870 C5H8O 84.1 751.9 185.969 1.10931 432.20 ± 106.45 454.48 ± 47.37
36 (E)-2-pentenal-D C1576870 C5H8O 84.1 753.4 186.582 1.36359 742.97 ± 779.75 1300.98 ± 769.26
37 Pentanal-M C110623 C5H10O 86.1 698.1 164.15 1.18501 371.17 ± 17.61 *** 318.41 ± 31.78
38 Pentanal-D C110623 C5H10O 86.1 699.6 164.751 1.42598 484.46 ± 115.69 543.81 ± 64.33
39 2-Pentanone C107879 C5H10O 86.1 687.3 159.943 1.37898 630.06 ± 58.16 955.98 ± 114.13 ***
40 2-methylbutanal-M C96173 C5H10O 86.1 664.3 153.733 1.16001 130.22 ± 19.39 119.90 ± 13.07
41 2-methylbutanal-D C96173 C5H10O 86.1 659.3 152.403 1.39552 84.85 ± 23.11 128.68 ± 36.05 **
42 3-methylbutanal-M C590863 C5H10O 86.1 651.6 150.312 1.17203 262.76 ± 35.38 255.62 ± 28.59
43 3-methylbutanal-D C590863 C5H10O 86.1 656.2 151.553 1.40848 162.28 ± 33.59 212.25 ± 31.97 **
44 Ethyl Acetate-M C141786 C4H8O2 88.1 613.8 140.105 1.10042 232.82 ± 56.67 *** 96.49 ± 12.85
45 Ethyl Acetate-D C141786 C4H8O2 88.1 610.6 139.259 1.3406 242.03 ± 57.78 258.51 ± 72.43
46 2-Butanone C78933 C4H8O 72.1 585.5 132.491 1.24941 2444.76 ± 456.05 3285.25 ± 393.55 ***
47 1-Propanethiol-D C107039 C3H8S 76.2 626.5 143.526 1.36157 106.78 ± 70.85 500.18 ± 146.62 ***
48 1-Propanethiol-M C107039 C3H8S 76.2 620.8 142.008 1.17085 358.20 ± 125.51 550.51 ± 67.43 **
49 3-hydroxybutan-2-one-D C513860 C4H8O2 88.1 719.1 172.675 1.33338 115.23 ± 30.90 212.55 ± 53.40 ***
50 3-hydroxybutan-2-one-M C513860 C4H8O2 88.1 720.3 173.16 1.06435 296.69 ± 50.68 405.20 ± 71.00 **
51 (E)-3-penten-2-one-M C3102338 C5H8O 84.1 728.7 176.54 1.09091 119.00 ± 24.20 158.03 ± 14.62 ***
52 1,1-diethoxyethane C105577 C6H14O2 118.2 726.7 175.748 1.13189 68.33 ± 31.71 45.99 ± 9.48
53 (E)-3-penten-2-one-D C3102338 C5H8O 84.1 725.1 175.11 1.34845 50.96 ± 19.65 99.06 ± 26.14 ***
54 butanoic acid C107926 C4H8O2 88.1 816 216.095 1.16109 42.25 ± 6.81 43.85 ± 4.03
55 2,3-butanedione C431038 C4H6O2 86.1 580.7 131.198 1.17158 103.28 ± 44.52 118.02 ± 18.07

Each row in the figure represents all signal peaks selected in a sample, and each column represents signal peaks
of the same volatile compounds in different samples. -M and -D indicate the monomer and dimer of the same
substance, and these are presented behind some substance. Numbers indicate unidentified peaks. Note: p < 0.05
indicated significant (*), p < 0.01 indicated highly significant (**), and p < 0.001 indicated extremely highly
significant (***) difference.

3.5. Correlation Analysis

To better understand the key factors affecting the flavor and nutritional quality of large-
mouth bass, we performed Spearman’s correlation analysis. As shown in Figure 7A, the
abundance of all volatile substances analyzed was positively correlated with that of DO and
chlorophyta, but negatively correlated with that of TN, TP, and CODMn. In addition, 2-ethyl-1-
hexanol-D and 2-ethyl-1-hexanol-M were significantly and positively correlated with DO and
Chlorophyta but negatively correlated with TN and TP (p < 0.05). Cyanobacteria and CODMn
are important biotic and abiotic factors affecting aquatic animals, respectively, and they were
significantly but negatively correlated with 68% of the analyzed volatile substances (nonanal-M,
nonanal-D, octanal-D, oct-1-en-3-ol-M, 3-furanmethanol, benzaldehyde-M, heptanal-D, oct-1-
en-3-ol-D, 2-octanol, 2-methylbutanal-D, 3-methylbutanal-D, 2-Butanone, 3-hydroxybutan-2-
one-D,3-hydroxybutan-2-one-M, and (E)-3-penten-2-one-D). Regarding nutritional components
(Figure 7B), free and hydrolysable most amino acids were significantly and positively correlated
with DO and Chlorophyta and significantly but negatively correlated with TN and TP (p < 0.05).
ΣPUFAs (C18:2 and C18:3n3) were significantly and positively correlated with DO and Chloro-
phyta (p < 0.05). C20:3n3 levels were significantly but negatively correlated with cyanobacteria
and CODMn (p < 0.05), and C22:6 levels were significantly but negatively correlated with TN
(p < 0.05). Based on these results, cyanobacteria, Chlorophyta, CODMn, DO, TN, and TP may be
the key biotic and abiotic factors affecting the flavor and nutritional value of largemouth bass.
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4. Discussion
4.1. Effects of Submerged Macrophytes on the Growth and Morphology of Largemouth Bass

Water quality is a critical factor in aquaculture, as poor-quality water can significantly
impede growth and production [31]. In the present study, the higher content of TN, TP,
and CODMn in the M group, which lacked submerged macrophytes, led to cyanobacterial
outbreak (1.36 × 107 cells·L−1). Conversely, this phenomenon was not observed in the EM
group, which comprised submerged macrophytes. TN and TP are the two most important
indices of the eutrophication of water bodies [32], while CODMn is an indicator of organic
pollution [33]. Higher values of these indices promote the proliferation of phytoplankton
and outbreak of cyanobacterial blooms [34]. Cyanobacteria can produce abundant toxic sec-
ondary metabolites, such as dermatoxins, hepatotoxins, and cytotoxins [35], which affect the
feeding, growth, and immunity of exposed cultured species [36]. In our experiment, fish in
the EM group showed a significantly higher growth rate, corroborating previously reported
experimental findings. For instance, Yao showed that the inclusion of live submerged
macrophytes in tanks improved the growth of Macrobrachium nipponense [37]. Meanwhile,
in the present experiment, largemouth bass cultured in the presence of submerged macro-
phytes were slender, with a green body. Our observations are consistent with reported
findings in largemouth bass cultured in an aquaculture system using land-based containers
with recycled water [6]. Moreover, fish in the M group showed a significantly higher HSI,
suggesting that largemouth bass cultured in the conventional model produced excess body
energy, which led to lipid and glycogen accumulation in the liver. Our results are consistent
with previous reports from pond and ecological cultures [21]. Overall, aquaculture with
submerged macrophytes significantly affected the growth performance and morphology of
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largemouth bass in the present study, indicating the potential of this model as a reference
for farmers.

4.2. Effects of sSubmerged Macrophytes on the Nutrient Composition of Largemouth Bass Muscles

Amino acids present a high nutritive value and are important regulators of key
metabolic pathways essential for maintenance, growth, feed intake, nutrient utilization,
immunity, behavior, and reproduction [38,39]. In the present study, most free and hy-
drolysable amino acids were more abundant in the EM group; among these, Glu, Asp, Ala,
and Arg are well-known as delicious amino acids and contribute significantly to the charac-
teristic flavor of aquatic products [40]. In addition, amino acid content in fish muscles is
closely related to their living environment [5,40]. In the present study, levels of 65% amino
acids analyzed were significantly and positively correlated with DO and Chlorophyta but
significant and negatively correlated with TN and TP (p < 0.05). Furthermore, a significant
correlation was noted between amino acids and water environmental factors. Chlorella
is highly effective in counteracting fish enteropathy, maintaining a healthy intestine to
balance gene expression [41].

Aquatic products are considered to be nutritionally high-quality foods, because they
are rich in amino acids and are an excellent source of unsaturated fatty acids, which are
beneficial against cardiovascular disease and promote physiological processes [42,43]. In the
present study, the content of C18:2, C18:3n3, C20:3n3, and C22:6 (DHA), which can improve
human health and nutritional status [44,45], was significantly higher in the EM group. In
particular, DHA is beneficial for optimal brain and neuronal development [46] and is an
important indicator for evaluating the nutritional value of fatty acids. Moreover, PUFAs
(C18:2 and C18:3n3) were significantly and positively correlated with DO and Chlorophyta
(p < 0.05). C20:3n3 level was significantly but negatively correlated with cyanobacteria and
CODMn (p < 0.05), while C22:6(DHA) level was significantly but negatively correlated with
TN (p < 0.05). In a previous study on channel catfish, long-term exercise was shown to
increase bacterial diversity and richness as well as alter the intestinal microbial composition
and unsaturated fatty acid and amino acid biosynthesis [47]. Interestingly, water quality
(ammonia) affected swimming activity and feeding behavior [48].

4.3. Effects of Submerged Macrophytes on Volatile Compounds in Largemouth Bass Muscles

Each food product has a distinct odor imbued by hundreds of volatile organic com-
pounds, and odor change is one of the most sensitive indicators of food quality. Thus,
accurately describing the composition of volatile substances can help assess the quality
of agri-food products [23,47]. Various flavor components of largemouth bass meat have
been documented [5,6]. In the present study, 24 aldehydes accounted for 43.64% of all
components and were the most abundant volatile compounds in largemouth bass muscles.
These results confirm that different culture environments indeed affect flavor composition.
Aldehydes are mainly generated through lipid oxidation and considered to make the great-
est contribution to the flavor of meat products because of their higher content and lower
odor detection threshold [49,50].

Compared with values in the M group, the levels of aldehydes, such as nonanal-M,
nonanal-D, octanal-D, benzaldehyde-M, heptanal-D, 2-methylbutanal-D, and 2-methylbutanal-
D, were significantly higher in the EM group. Such differences in aldehydes and other flavor
components have been detected in many aquatic products [51]. Benzaldehyde generates
pleasant almondy, fruity, and nutty notes [52] and is an important source of the special aroma of
crayfish [53]. Meanwhile, the content of hexanal, which was the most abundant aldehyde, was
not significantly different between the two groups. Hexanal has previously been identified as
an aroma-active compound providing a green note [54].

Typically, alcohols produce a relatively soft odor, similar to the aroma of fruits [55].
Oct-1-en-3-ol is mainly responsible for the green, plant-like aroma and mushroom-like odor
and is formed by the oxidation of arachidonic acid by 12-lipoxygenase [56]. Furthermore,
ketones are produced through lipid oxidation and generate creamy and fruity notes [57].
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2-Butanone was abundant in the muscles of largemouth bass in a recirculatory aquaculture
system [6]. In the present study, 2-butanone accounted for approximately 50% of all ketones,
being the most abundant one. Thus, 2-butanone appears to be a characteristic volatile
compound in largemouth bass.

The higher contents of odor compounds in the muscles of fish from the EM group sug-
gest a more pleasant aroma, which may be another reason for their more delicious meat. The
differences in volatile substances between the two culture modes can be explained based
on two aspects: (1) improvement of water quality by submerged macrophytes through ab-
sorption of excess nitrogen and phosphorus, preventing the outbreak of cyanobacteria and
(2) abundance of unsaturated fatty acids in fish muscles. Previous studies have shown that
cyanobacterial density in ponds and unsaturated fatty acids in fish muscle are linked to the
composition of volatile substances [58,59]. In the present study, cyanobacteria and CODMn
were important biotic and abiotic factors affecting fish, respectively, and these factors were
significantly but negatively correlated with 68% of the volatile substances analyzed. Thus,
our data suggest that submerged plants play an important role in improving the nutritional
composition and characteristic flavor profile of Micropterus salmoides.

5. Conclusions

In summary, largemouth bass cultured in an ecological pond with submerged macro-
phytes (Elodea nuttallii) showed optimal growth, with a slender body shape and significantly
higher contents of crude protein, total free and hydrolysable amino acids, and ΣPUFA,
compared with fish cultured in conventional ponds. Seven aldehydes, nine alcohols, and six
ketones were identified as characteristic volatile components in the muscles of largemouth
bass cultured in an ecological pond with submerged macrophytes. Variations in the profiles
of volatile components between the two groups are closely linked to the diverse water
environments caused by the different aquaculture models. Furthermore, cyanobacteria,
Chlorophyta, CODMn, DO, TN, and TP may be the key factors affecting the flavor and nutri-
tional value of largemouth bass. In general, aquaculture with live submerged macrophytes
can not only bioremediate the water in situ without producing aquaculture wastewater but
also improve the nutritional quality and flavor of aquatic products. Therefore, this is an
environmentally friendly and high-value-added ecological aquaculture model worthy of
extensive application and popularization.
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