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The neurophysiology of the subjective sensation of being conscious is elusive; therefore,
it remains controversial how consciousness can be recognized in patients who are
not responsive but seemingly awake. During general anesthesia, a model for the
transition between consciousness and unconsciousness, specific covariance matrices
between the activity of brain regions that we call patterns of global brain communication
reliably disappear when people lose consciousness. This functional magnetic imaging
study investigates how patterns of global brain communication relate to consciousness
and unconsciousness in a heterogeneous sample during general anesthesia and after
brain injury. First, we describe specific patterns of global brain communication during
wakefulness that disappear during propofol (n = 11) and sevoflurane (n = 14) general
anesthesia. Second, we search for these patterns in a cohort of unresponsive wakeful
patients (n = 18) and unmatched healthy controls (n = 20) in order to evaluate their
potential use in clinical practice. We found that patterns of global brain communication
characterized by high covariance in sensory and motor areas or low overall covariance
and their dynamic change were strictly associated with intact consciousness in this
cohort. In addition, we show that the occurrence of these two patterns is significantly
related to activity within the frontoparietal network of the brain, a network known to
play a crucial role in conscious perception. We propose that this approach potentially
recognizes consciousness in the clinical routine setting.

Keywords: consciousness, brain injury, coma, unresponsive wakefulness syndrome, fMRI, anesthesia, propofol,
sevoflurane

INTRODUCTION

From a basic research perspective, the subjective experience of being aware of oneself and
the environment most likely emerges as an epiphenomenon of cerebral information processing
(Dehaene et al., 2003, 2017) and is thus encoded in the activity of the brain and its neurons.
Attempts to identify brain activity specific for state of being consciously focused on the question
of where conscious perception takes place (Dehaene and Changeux, 2011) and how brain regions
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are affected by models for unconsciousness, namely, general
anesthesia, sleep, or unconsciousness after brain injury (Brown
et al., 2010). These approaches were able to link conscious brain
function with widespread brain networks: the frontoparietal
network, default mode network, and ascending reticular
activation system as modulators of these (Boveroux et al., 2010;
Demertzi et al., 2015; Bonhomme et al., 2016; Ranft et al.,
2016). The activity within these networks could be associated
with conscious perception [frontoparietal network, Dehaene
et al. (2003) and He et al. (2007)], mind wandering [default
mode network, Vanhaudenhuyse et al. (2011)], or the level
of consciousness (Gili et al., 2013). In addition, the activity
within these networks was specifically diminished during general
anesthesia irrespective of the anesthetic agent used (Boveroux
et al., 2010; Jordan et al., 2013; Bonhomme et al., 2016; Ranft
et al., 2016). However, measuring the activity only in the named
networks in patients after brain injury only unreliably detected
intact consciousness after brain injury (Vanhaudenhuyse et al.,
2010). We hypothesized that conscious processing in the brain
requires not only specific networks as a common endpoint but
also involves various levels of information processing.

Based on this idea, our data analysis aimed to integrate
different levels of hierarchy and considered information
processing in the human brain to be divided into (Dehaene
et al., 2017) local information processing within specialized
brain areas, for example in the primary visual cortex, and
(Dehaene et al., 2003) global communication reflected by
information exchange between such areas, for instance when
we react to complex external stimuli. Both types of information
processing potentially play an important role in the generation of
consciousness (Barttfeld et al., 2015; Ranft et al., 2016; Demertzi
et al., 2019; Golkowski et al., 2019). In addition, we assumed that
the dynamics of this local and global information processing is a
key feature of consciousness.

Local information processing in unconscious humans is
known to be significantly diminished in the medial prefrontal
cortex, precuneus, posterior cingulate cortex, superior parietal
lobe, and in the dorsolateral prefrontal and inferior parietal
cortices during general anesthesia when analyzed by functional
MRI (fMRI) (Ranft et al., 2016; Golkowski et al., 2019). In
awake humans, these brain areas frequently communicate and
are known as the default mode network and the frontoparietal
network. This data analysis identified this local information
processing through independent maps of a spatial independent
component analysis’ (ICA) resulting in 57 brain regions covering
the whole brain and their time course of activity.

Global communication has been mainly investigated
between specific brain areas using fMRI and EEG. Like local
information processing, differences between consciousness and
unconsciousness were observed mainly in the frontoparietal
network and the default mode network. Specifically, information
exchange between the areas encompassing these networks was
significantly reduced in various studies on unconsciousness (He
et al., 2007; Jordan et al., 2013; Bonhomme et al., 2016; Ranft
et al., 2016; van Vugt et al., 2018). Later, it was demonstrated
that patterns of global brain communication are significantly
altered during unconsciousness and that the transition between

patterns was reduced (Barttfeld et al., 2015; Hudetz et al., 2015;
Ma et al., 2017; Golkowski et al., 2019). Similar results were
obtained in patients suffering from disorders of consciousness
after brain injury, thus showing that the concept of global brain
communication can be generalized to patients with different
reasons for unconsciousness (Luppi et al., 2019). We modeled
this global brain communication by calculating the correlation
between brain regions in a sliding window approach, resulting in
a series of correlation matrices.

We reasoned that specific patterns of global brain
communication and their dynamic change are an absolute
requirement for the emergence of consciousness. In order to
identify specific patterns of global brain communication, we
employed a k-means algorithm on covariance matrices. The
change of covariance matrices over time was regarded as the
dynamics of global brain communication (Figure 1).

MATERIALS AND METHODS

Ethics Statement
The study was conducted in accordance with the Declaration
of Helsinki, and the protocol of the study was approved by
the ethics committee of the medical school of the Technische
Universität München (München, Germany). The volunteers
or the legal surrogates of the enrolled patients were given
detailed information about the procedures and potential risks
prior to written informed consent. Medical history was taken
from every applicant, especially inquiring contraindications for
an examination in a magnetic resonance scanner. Data were
acquired between April 2013 and December 2019.

Participants
Eighteen patients (eight male and 10 female, aged 36–84 years)
were acquired through intensive care units. Inclusion criteria
were patients with unresponsive wakefulness syndrome (UWS)
through any brain damage, i.e., traumatic (n = 3), stroke (n = 13),
anoxia (n = 1), and toxic/metabolic (n = 1). Under stroke, we
summarized ischemic stroke as well as subarachnoid hemorrhage
and intracerebral hemorrhage with no traumatic cause. We
included all types of brain injuries for two main reasons: (1) we
wanted to generalize the approach, and (2) we aimed to define
the AWAKE state by specific brain activity and the UWS state
by the absence of this activity. Based on this, we regarded the
exact brain pathology as secondary. Any preexisting medication
was left unchanged for the measurement accepting oral sedatives
(e.g., low-dose benzodiazepines or neuroleptics). Intravenous
sedatives were not applied. The subjects fasted for 6 h prior to
the measurement. The patients with UWS were rated using the
Coma Recovery Scale Revisited (CRS-R) at least three times (the
day before the measurement, on the day of measurement, and in
one follow-up) by an experienced medical doctor. All the patients
had UWS on the day of measurement. All the other volunteers
[n(propofol) = 11, n(sevoflurane) = 14, n(controls) = 20]
were healthy, male volunteers (aged 20–36 years) and had
no contraindication for general anesthesia using propofol or
sevoflurane (American Society of Anesthesiology I). All the
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FIGURE 1 | Data analysis pipeline. An independent component analysis (ICA) separates the preprocessed signal into 75-time series (top row) and associated
spatially independent components (bottom row). Time courses are sorted into functional groups. Two hundred sixty-seven dynamic covariance matrices are
calculated from the time courses of signal components (n = 57) in 30 frames time windows. K-means clustering sorts the matrices into seven patterns or clusters.
bg, basal ganglia; aud, auditory; sm, somatosensory and motor; vis, visual; def, default mode; att, attentional; cer, cerebellar networks.

subjects with contraindications for MRI or positron emission
tomography (PET) were excluded. We included unmatched
healthy controls for the patients with UWS recorded on the
same PET scanner that was also used for the UWS experiments.
Because of the complex nature of the experiment (e.g., application
of a PET contrast agent), we were unable to record a group
of age-matched patients with cerebral pathology during the
AWAKE state. This approach might introduce a bias since group
differences might be affected by structural brain alterations or
age differences.

Experimental Protocol
Controls and UWS Patients
For AWAKE and UWS resting-state measurement, the
participants lay supine in the scanner and were told not to
fall asleep while keeping their eyes closed.

Propofol Anesthesia
The first resting-state recording was acquired identical to the
control subjects. In the following, this condition is referred
to as AWAKE. The measurement during propofol-induced
loss of responsiveness (PROP) was carried out using a target-
controlled infusion pump (Open TCI; Space infusion system;
Braun Medical, Melsungen, Germany). Propofol concentration
was increased by 0.4 µg/ml steps beginning at 1.2 µg/ml until
volunteers stopped responding to the verbal command “squeeze
my hand” (equivalent to a Ramsay sedation scale score of 5–6).
The concentration was then kept stable for the remaining fMRI
measurement. This point was reached at plasma concentrations
of 2.97 +/− 0.47 µg/ml (mean +/− SD). Ten minutes of
equilibration time were waited before the actual measurement
took place. Throughout this article, this state is referred to
as PROP. Details of the propofol anesthesia protocol can be
found in Jordan et al. (2013).

Sevoflurane Anesthesia
The resting-state was acquired identical to the propofol setting.
Image acquisition during the sevoflurane-induced loss of
responsiveness (in this article: SEVO) was carried out after
intubation with a magnetic resonance tomograph-compatible
laryngeal mask and during artificial ventilation using an
anesthesia machine (Fabius Tiro, Dräger, Germany). Sevoflurane
was kept stable at 2 volume percent end-tidal concentration
during this condition. The subjects were unresponsive to the
command “squeeze my hand” during this condition, tolerated
the laryngeal mask well, and showed reduced movements when
compared with the wakeful state. It is also noteworthy that
clinically, this sedation was deeper when compared with PROP
(corresponding to a Ramsay scale score of 6). All the participants
were asked for any memories of the unresponsive state, and all
reported amnesia for the procedure. Details of the sevoflurane
anesthesia protocol can be found in Ranft et al. (2016).

Data Acquisition
Data from the patients with UWS (n = 18) and healthy controls
(n = 20) were acquired using an integrated Siemens Biograph
mMR scanner (Siemens Medical Solutions, Erlangen, Germany)
capable of registering concurrent positron emission tomography
(PET) and MRI from 3 T data using the vendor-supplied
12-channel phase-array head coil. PET volume, two T2∗-
weighted echo-planar imaging (EPI) MRI, and magnetization-
prepared rapid acquisition gradient echo (MPRAGE) T1-
weighted anatomic volume data were recorded. Scanning
parameters of the EPI included repetition time (TR)/echo time
(TE)/flip angle, 2,000 ms/30 ms/90◦; 35 slices (gap 0.6 mm)
aligned to the anterior-posterior commissure covering the whole
brain; field of view (FoV), 192 mm; matrix size, 64 × 64;
and voxel size, 3 mm × 3 mm × 3.0 mm. Each of the
two measurements consisted of 300 acquisitions in interleaved
mode, with a total scan time of 10 min and 8 s. Scanning
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parameters for the MPRAGE sequence included TR/TE/flip
angle, 2,300 ms/2.98 ms/9◦; 160 slices (gap, 0.5 mm) covering
the whole brain; FoV, 256 mm; matrix size, 256 × 256;
and voxel size, 1 mm × 1 mm × 1 mm. The total scan
time was 5 min and 3 s. The PET data were not further
included in this study.

Both the propofol and sevoflurane image acquisitions were
carried out using a 3-T whole-body magnetic resonance
tomographic scanner (Achieva Quasar Dual 3.0T 16CH;
Philips, Medical Systems International Inc., Best, Netherlands)
employing an eight-channel, phased-array head coil. fMRI was
performed with a gradient EPI sequence (echo time = 30 ms,
repetition time = 1.838 ms, flip angle = 75◦, field of
view = 220 mm × 220 mm, matrix = 72 × 72, 32 slices, slice
thickness = 3 mm, and 1 mm interslice gap; 300 volumes were
acquired in the propofol cohort and 350 volumes were acquired
in the sevoflurane cohort. Of these 350 frames, the last 50 were
discarded). Anatomy was acquired before the functional scan
using a single T1-weighted sequence and 1 mm× 1 mm× 1 mm
voxel size per subject. Only data sets that not exceeded 2 mm of
translation in either z-, y-, or z-direction were included in the
subsequent data analysis.

fMRI Data Analysis
DPARSF 4.0 (Chao-Gan and Yu-Feng, 2010) and SPM12
(Friston, 2007) were used for preprocessing. Functional and
anatomical images were realigned manually along the AC-PC
plane. The first three time points were removed, and slice timing
was corrected. Images were segmented and normalized using
DARTEL to a voxel size of 2 mm × 2 mm × 2 mm. Functional
images were smoothed with a 4 mm full-width at half-maximum
Gaussian kernel. A 2 mm × 2 mm × 2 mm-voxel-size template
was created from a standard epi template in SPM12 (“EPI.nii”).
Both the anatomical and functional images were co-registered to
this template. Six movement parameters (x-, y-, and z-translation
and the corresponding rotations) and their first derivatives were
regressed out using a general linear model. The time series were
de-spiked after the regression and band-pass filtered between 0.01
and.1 Hz. No other global signal removal or scrubbing of the
frame was performed.

In the first step, the preprocessed fMRI data were analyzed
using a group-level spatial iICA (applied on the whole data set,
namely AWAKE, PROP, SEVO, and UWS) as implemented in
the Gift toolbox (version 4.0b, Group ICA/IVA of fMRI Toolbox;
Georgia State University, Atlanta, GA, United States) and GICA3
back reconstruction. The INFOMAX algorithm was employed
together with an ICASSO and 20 repetitions to decompose the
data into 75 spatially independent components. We used the
GICA3 back reconstruction to generate individual spatial maps
and associated (potentially correlated) time courses for each
individual map (Figure 1). We chose ICA because it was able
to identify networks in altered brain anatomy robustly, and it
represents the standard technique of dimensionality reduction/
brain parcellation in altered states of consciousness [see, e.g.,
Demertzi et al. (2014)].

This resulted in two types of data: (1) spatially independent
components for each subject that were z-standardized. We refer

to these maps as Si; and (2) one time course for each component
and each subject. The time courses were also standardized to be
standard normally distributed to account for different scanners
and amplitudes of the raw blood oxygenation level-dependent
signal. We refer to these time courses as Ri.

A signal from neuronal origin was assumed if the component
projected on gray matter showed no similarity to venous
vessels and if it showed a characteristic frequency spectrum
with a clear peak below 0.1 Hz. Noise components usually
showed a flat frequency spectrum similar to Gaussian
noise. Fifty-seven functional networks were identified
and included in the subsequent analysis. These networks
were close to identical to the ones previously published
(Golkowski et al., 2019).

The Ri time courses were despiked and low-pass
filtered < 0.15 Hz (Allen et al., 2014; Golkowski et al., 2019).
Correlation matrices were calculated in a sliding window
manner as implemented in the Temporal dFNC toolbox of
GIFT 4.0b using 30-time points from each measurement,
resulting in 267 correlation matrices per measurement
(which is 300 recorded volumes minus 3 discarded during
preprocessing minus sliding window length). The size of the
resulting matrices was 57 × 57 due to the symmetry of the
correlation matrices they contained 57 × 56/2 independent
data points. To make the correlation matrices more accessible
for visual inspection, we sorted the functional networks into
groups, namely, basal ganglia networks, auditory networks,
somatosensory and motor networks, visual networks, default
mode networks, attentional networks, and cerebellar networks.
It is noteworthy that this sorting into functional groups has
no effect on the later k-means clustering algorithm since
the algorithms only use the L1 distance of the correlation
matrices (i.e., the sum of the absolute differences) as a measure
of distance and is, therefore, independent of the order of
correlation values.

We used the k-means clustering algorithm also implemented
in GIFT 4.0b with the L1-(“Manhattan”)-distance with 20
repetitions to assign the between-network connectivity matrices
to between network-connectivity patterns. These patterns are
not predefined and are generated by the k-means algorithm
as clusters or patterns of the between-network connectivity
matrices. The generally arbitrary number of patterns was defined
to be 7 to make the results comparable to Allen et al.
(2014) and Golkowski et al. (2019).

After variable ranking using the Fisher score, one to
seven variables were chosen for a support vector machine.
The aim was to test whether the information from the
anesthesia experiments can be generalized. For training of
the support vector machine algorithm, the 50 data sets from
the anesthesia experiments were employed. Eighteen data sets
from the patients with UWS and 20 controls were used
for the test data set. We also conducted the support vector
machine algorithm with a random permutation of groups
of the test data set to illustrate chance level. These steps
were carried out with FSLib (Version 5.1). All analysis steps
were carried out in Matlab (R2016a; Mathworks, Natick,
MA, United States).
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Statistical Analysis
All the group comparisons were conducted with the two-
sided Mann–Whitney/rank sum test. P-values were corrected for
multiple comparisons using Bonferroni’s method (multiplication
factor 6). Differences in pattern distribution between the groups
(on the nominal scale of pattern numbers) were tested by using
a chi-square test with Pearson’s chi-square distance. Significance
was assumed if p < 0.05.

Logistic regression was carried out in Matlab using the
“mnrfit” and logit transfer functions. The binary categorical
responses of the appearance of patterns specific for consciousness
(patterns 1 and 3) and all the other patterns were modeled on the
time series of each individual network (n = 57) after smoothing
using the mean of 30 frames sliding window. This was the same
slide window length from which the covariance matrices were
calculated. The time series were transformed to be standard
normally distributed in each recording to remove variance or
amplitude effects. Significance was assumed if p < 0.05.

RESULTS

Baseline Characteristics
Aiming to transfer findings from the model of anesthesia-induced
unconsciousness to disorders of consciousness, we divided the
data into a training data set, namely, subjects during wakefulness
and general anesthesia, and a test data set, namely, patients with
UWS and healthy controls. The training data set undergoing
general anesthesia comprised 11 healthy volunteers during
wakefulness and propofol-induced general anesthesia (PROP)
and of 14 healthy volunteers during wakefulness and sevoflurane-
induced general anesthesia (SEVO). The test data set comprised
20 healthy volunteers and 18 patients with UWS (see Table 1
for baseline characteristics). The one patient with 9 points in
the CRS-R fulfilled no criteria for being minimally conscious on
the day of measurement but showed eye fixation the day before.
We decided to include this patient because the measurement had
a sufficient data quality, and we saw a higher chance to find
patterns specific for intact consciousness in this patient. We do
not think that this introduced a bias to data analysis. Four patients
were more than 100 days after brain injury, and 14 patients were
included in the study during the acute hospitalization with less
than 42 days after brain injury.

Pattern Separation
To test if patterns of global brain communication are specific
for consciousness, we conducted an ICA with 75 components
using the complete data set and separated functional brain
networks (n = 57) from noise sources (n = 18). For each
network, we then calculated the associated covariance matrices
in 30-frame time window each (Figure 1). This resulted in 267
covariance matrices per recording. The k-means clustering of all
the resulting matrices into seven clusters showed that the various
groups had a significantly different distribution across distinct
patterns of global communication (p < 0.001 for AWAKE
vs. PROP, SEVO and UWS, chi2test, uncorrected, Figure 2A).
Patterns 1 and 3 were almost exclusively assumed by the AWAKE

TABLE 1 | Clinical features of the unresponsive, wakeful patients.

Mean ± SD Range

Age, y 62 ± 14 36–84

Time since injury, d 62 ± 60 18–206

CRS-R on day of measurement 4.1 ± 1.9 2–9

Sex 10 female 8 male

Etiology, number

Stroke 13

TBI 3

Anoxia 1

Metabolic 1

subjects (probability: pattern 1:0.5, pattern 3:0.22) and rarely
during PROP (probability: pattern 1:0.015, pattern 3:0.001).
Patterns 1 and 3 did not occur in UWS and SEVO subjects. The
distribution of patterns showed an overlap between the SEVO
group, which was almost exclusive in pattern 7 (probability 0.99),
and the PROP group (probability for pattern 7:0.37). The latter
group also showed an overlap with AWAKE subjects (mainly
pattern 5) and subjects with UWS (pattern 4). Pattern 2 was
only observed during PROP (probability 0.13), and pattern 6
exclusively appeared in the UWS (probability 0.26) group. In
summary, this clustering showed that patterns 1 and 3 are specific
for the AWAKE group.

To test if the appearance of specific connectivity patterns
is sufficient to distinguish consciousness from unconsciousness,
we separated the data into one training data set containing the
subjects from PROP (n = 11), SEVO (n = 14), and AWAKE
(n = 25) and one test data set containing the UWS (n = 18)
and AWAKE subjects from the same MRI scanner (n = 20, these
subjects were not included in the training data set). We classified
the test data set employing a support vector machine and prior
Fisher scoring for feature selection (Figure 2B). We composed
the groups this way because general anesthesia, unlike many types
of disorders of consciousness, is a well-controlled, reversible form
of unconsciousness with intact brain anatomy. As expected from
the k-means clustering, the inclusion of only one pattern (pattern
7) resulted in a chance level result, because this pattern was only
encountered in the SEVO and PROP groups. Combining patterns
1 and 7 resulted in a correct classification rate of 0.97. The one
misclassified data set was from the AWAKE group. Precision
remained constant upon further addition of features and then
declined above 6 features. We concluded that knowledge about
the subjects being either in the PROP, SEVO, or AWAKE group
allowed a precise prediction of whether patients were in the UWS
or the AWAKE group.

Pattern Dynamics
Next, we tested if decreased dynamics of connectivity patterns are
a feature of diminished consciousness (Figure 2C) by analyzing
the absolute number of transitions between the different
patterns of global brain communication as the parameter. The
difference was significant for SEVO and UWS vs. controls
(p < 0.05, Mann–Whitney test, uncorrected) but not for PROP
vs. controls. We also observed a relevant overlap between
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FIGURE 2 | Patterns are specific for intact consciousness. (A) Individual data
points of the pattern matrices arise from different groups of functional
networks: basal ganglia, auditory, somatomotor, visual, default mode,
cognitive control, and cerebellar networks. The radar plot shows the patterns
1–7 and their relative distribution of appearance in the different groups

(Continued)

FIGURE 2 | (Continued)
(AWAKE in blue, PROP in red, SEVO in yellow, and UWS in purple).
(B) Correct classification rate of a support vector machine trained in
anesthesia data and tested on the subjects with UWS (n = 19) and 19 controls
(red) vs. chance level in a random assignment of groups and 100 repetitions
(blue with standard errors). (C) An absolute number of transitions between
patterns in the four groups. (*p < 0.05, Mann–Whitney test, uncorrected).

the groups and the span of values in the AWAKE group
was (0, 13), thus covering the whole range of encountered
values in all the groups. Consequently, the dynamics of global
brain communication could not be used as a specific predictor
of consciousness.

The distribution of patterns of global brain communication
across groups and their dynamics had two further implications:
(1) the AWAKE subjects can be both in patterns specific for
AWAKE and patterns that can also be seen in the other groups,
and (2) the absolute number of transitions is not specific for
AWAKE, while the ability to transition to certain patterns
is. To better understand when these group-specific transitions
happen, we considered L1 distances (the sum of the absolute
difference) of single covariance matrices with respect to a given
pattern. Since the resulting space had seven dimensions (one
dimension for each distance of covariance matrix to one of the
seven clusters), we visualized the data in a pairwise manner
(Figure 3A). This resulted in 21 plots, giving the L1 distances
of covariance matrices from a pair of patterns and the pattern
they were classified as. This visualization demonstrated that
there are different types of separations into patterns: patterns
separated visually by a gap and patterns with a continuous
transition. For example, the AWAKE-specific pattern 1 shows
a continuous transition with patterns 3, 4, and 5. In contrast,
pattern 2 only exhibits this type of transition with pattern 7, two
patterns that were only encountered during general anesthesia.
In summary, the plots show how subjects within a group
move rather continuously from one pattern to another than in
a binary manner.

This observation was further supported by the transition
probability matrix (Figure 3B). The probability to change
between patterns of global brain communication that show a gap
in Figure 3A was zero or close to zero, while pattern separation
without gap showed frequent transitions. Notably, patterns
observed in the AWAKE group showed the highest probability
of transitions. Hence, the absolute number of transitions was not
a characteristic for consciousness but the ability to transition into
specific patterns of global brain communication.

Aiming to identify networks driving these patterns associated
with consciousness, we conducted a logistic regression with
patterns associated with consciousness, namely patterns 1
and 3, as the response variable and the time courses of all
networks as predictors. This regression showed that 6 out of
56 networks had a significant positive slope with respect to
the appearance of conscious-related patterns. These networks
encompassed sensory networks: the bilateral primary auditory
cortex (p < 0.05, B = 0.31), the bilateral calcarine gyrus
(p < 0.05, B = 0.28), and the bilateral fusiform gyrus (p < 0.05,
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FIGURE 3 | State transitions are continuous and specific. (A) Pairwise plots
showing how k-means clustering separated the dynamic covariance matrices
into patterns. The blue pattern number is given in the left-side column, the red
pattern number is in the top row. The x-axis gives the distance from the blue
pattern, while the y-axis gives the distance from the red pattern. For example,
the top left plot shows covariance matrices classified as pattern 2 in red and
covariance matrices classified as pattern 1 in blue. The x-coordinate of a
given data point is the distance from pattern 1, whereas the y-coordinate is
given by distance from pattern 2. Units are omitted since they are arbitrary.
(B) Matrix showing the absolute transition probability from pattern X (top row)
to Y (left-sided column) or vice versa.

B = 0.32), as well as networks of the frontal lobe: the bilateral
dorsomedial prefrontal cortex (p < 0.05, B = 0.37), the bilateral
dorsolateral prefrontal cortex 1 (p < 0.001, B = 0.49), and the
bilateral dorsolateral prefrontal cortex 2 (p < 0.05, B = 0.33,
see Figure 4). Thus, primary auditory and visual cortices as
well as dorsolateral and dorsomedial prefrontal areas’ activity
is positively related to the appearance of patterns associated
with consciousness.

DISCUSSION

In summary, our data analysis demonstrates that patterns of
global brain communication specific for consciousness exist in
the model of general anesthesia, irrespective of anesthetic agent.
The patterns specific for AWAKE were characterized by either a
high correlation across various hierarchical levels of sensory and
motor systems (pattern 3) or by a state of low overall correlation
(pattern 1). This finding could be translated to patients during
unresponsive wakefulness and controls, where the same patterns
reliably identified intact consciousness and were absent in UWS.
One main difference between the model of general anesthesia and
patients with UWS is certainly the altered brain anatomy. The
UWS cohort, however, also included subjects with intact brain
anatomy and only subcortical pathology. The findings were also
applicable to these individuals. In addition, the ICA is largely
independent of the brain anatomy and was able to identify brain
networks outside of lesioned brain tissue. We regard this relative
independence of the data analysis pipeline from anatomical
alterations as an advantage over atlas-based brain parcellations,
allowing the future automatization of this approach. In summary,
we hope that the direct identification of conscious information
processing might be superior when compared with current state-
of-the-art approaches using signal complexity (Casarotto et al.,
2016) or machine learning of large data sets of various states of
consciousness (Demertzi et al., 2015) in the future. Theoretically,
the direct measurement of conscious-specific brain activity might
be more sensitive toward intact consciousness than surrogate
markers that are statistically linked to the clinical state.

Both the models of general anesthesia and UWS showed
reduced dynamics between patterns when compared with the
AWAKE state. However, we encountered a relevant overlap
between the different groups. This result demonstrates that
the AWAKE state is much more characterized by continuous
transitions between patterns specific and not specific for AWAKE
than by the mere number of transitions. How such patterns
arise in the brain has been investigated by computational models
showing that specific patterns and their dynamics arise from
the connectome of the human brain only if the brain works
at a “critical” level (Haimovici et al., 2013; Deco et al., 2017),
a tight balance between excitation and inhibition. In addition,
both focal lesioning (Alstott et al., 2009; Gratton et al., 2012)
and pharmacological manipulation (Tagliazucchi et al., 2016; Lee
et al., 2019) were predicted to lead the activity of the brain
away from this level. These theoretical considerations also gained
experimental support in animals (Ma et al., 2017) and humans
during general anesthesia with different anesthetic agents (Zhang
et al., 2018; Golkowski et al., 2019). Our data illustrate that
both specific patterns and their dynamic change are abolished
during unconsciousness irrespective of the exact cause. Thus,
this study is in line with these theoretical properties of brain
organization and previous experiments further bridging the gap
between theory and the subjective experience of being conscious.

The activity within the dorsal prefrontal cortical areas,
primary sensory networks, was also linked to the appearance
conscious-related patterns of global brain communication. This
observation is not only a mere reproduction of previous findings
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FIGURE 4 | Specific network activity is related to the appearance of conscious-related patterns. Rendering showing the dorsolateral and dorsomedial prefrontal
cortices in blue, primary auditory cortices in yellow, and visual cortices in red. The rendering shows maps of the independent components with a threshold of
p < 0.05 family-wise error correction in SPM12.

on the role of the dorsal attention system in consciousness (Ranft
et al., 2016; Golkowski et al., 2019) but also highlights that the
activity in the dorsal attention system (Mashour et al., 2020) is
temporally related to patterns of global brain communication
specifically for the AWAKE state in both the model general
anesthesia and in the clinical setting.

Limitations of the Study
In our study, the control cohort for the test data set consisted
of healthy volunteers. The separation of the two groups is
presumably easier than between a group of wakeful patients with
severely damaged brains and our UWS group, a setting in clinical
practice where this approach has to prove whether it actually
delivers additional information to the clinical evaluation, i.e., is
able to identify intact consciousness in patients with UWS in a
real-world setting.

In addition, the presented data analysis is very complex and
not yet fully automatized. For an application in clinical routine,
the analysis pipeline needs to be implemented in an automatized
toolbox and made available to the general public.

The limited number of subjects in each group is certainly
another limiting factor. For the anesthesia experiments, it was
already difficult to obtain ethics committee approval for a limited
number of subjects. For the patients with UWS, it took several
years to obtain sufficient data sets of adequate quality in this
single-center study.

These two major flaws should be addressed in a future
study equipped with an easily available analysis tool and a
comprehensive clinical study design.

Conclusion
In summary, the findings of this study show that complex
patterns of global brain communication are capable to separate
consciousness from unconsciousness during both general
anesthesia and disorders of consciousness. Thus, this approach
might not only reveal intact consciousness in seemingly wakeful

but unresponsive patients but also give an insight into the
neurophysiological basis of consciousness itself.
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