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Abstract: The emergence of the SARS-CoV-2 coronavirus pandemic in China in late 2019 led to the
fast development of efficient therapeutics. Of the major structural proteins encoded by the SARS-CoV-
2 genome, the SPIKE (S) protein has attracted considerable research interest because of the central
role it plays in virus entry into host cells. Therefore, to date, most immunization strategies aim at
inducing neutralizing antibodies against the surface viral S protein. The SARS-CoV-2 S protein is
heavily glycosylated with 22 predicted N-glycosylation consensus sites as well as numerous mucin-
type O-glycosylation sites. As a consequence, O- and N-glycosylations of this viral protein have
received particular attention. Glycans N-linked to the S protein are mainly exposed at the surface
and form a shield-masking specific epitope to escape the virus antigenic recognition. In this work,
the N-glycosylation status of the S protein within virus-like particles (VLPs) produced in Nicotiana
benthamiana (N. benthamiana) was investigated using a glycoproteomic approach. We show that 20
among the 22 predicted N-glycosylation sites are dominated by complex plant N-glycans and one
carries oligomannoses. This suggests that the SARS-CoV-2 S protein produced in N. benthamiana adopts
an overall 3D structure similar to that of recombinant homologues produced in mammalian cells.

Keywords: biologics; biopharmaceuticals; vaccine; plant molecular farming; COVID; SPIKE; Nicotiana
benthamiana; N-glycans; mass spectrometry

1. Introduction

The coronavirus SARS-CoV-2 emerged in China in late 2019 and was responsible for
the worldwide COVID-19 pandemic. Among the major structural proteins of SARS-CoV-2,
the SPIKE (S) protein has received considerable interest because of its key role in the entry
of the virus into host cells [1]. Moreover, the S protein is the most attractive SARS-CoV-2
immunogen for induction of an antibody response and is, as a consequence, the main target
for vaccine and therapeutics development. The S protein is a trimeric transmembrane
protein with two functional subunits. The S1 subunit binds to the cellular angiotensin-
converting enzyme 2 (ACE2) of the host cell and the S2 subunit is responsible for the fusion
between viral and host cell membranes. Changes in the protein S structure have been
observed in the different variants of SARS-CoV-2. For example, Omicron is characterized
with 37 amino acids changes in the S protein. Among these modifications, none of them
concerned the N-glycosylation consensus sites of the S protein [1].

Because of its importance in the virus replication cycle, the O- and N-glycosylations of
the S protein have received particular attention. The glycan distribution on the 22 predicted
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N-glycosylation sites (Asn-X-Ser/Thr glycosites) has been investigated either on the S1
and S2 domains or on the full-length recombinant SARS-CoV-2 S proteins produced in
mammalian cells. These studies have concluded that the N-glycan profile is dominated by
polyantennary sialylated N-glycans together to less abundant oligommanosides attached to
specific sites [2–6]. With regards to the O-glycosylation of the S protein, 3 sites of mucin-type
O-glycosylation have also been predicted [7] and up to 9 O-linked glycopeptides have been
identified [2,4]. It is well documented that the glycans of the S protein are mainly exposed
at its surface and form a shield masking specific epitope to escape the virus antigenic
recognition. As a consequence, viral glycosylation sites are under selective pressure that
may explain why SARS-CoV-2 S mutations only rarely affect amino acids of glycosites [3,6].
The presence of the glycans may also be needed for viral entry, as demonstrated by the
inhibition of glycan maturation by chemical methods [8]. In addition, if the overall number
of glycosites is conserved, the detailed analysis of SARS-CoV-2 S protein from coronavirus
variants expressed in mammalian cells has revealed significant variations in their glycan
profiles [5].

With regard to the expression of the SARS-CoV-2 S related proteins expressed in plant
systems, the functional receptor-binding domain (RBD) has been successfully produced
in tobacco [9–12], as well as in a plant glycosylation mutant impaired in core xylosyl- and
fucosyltranferases [12] and in plants expressing glycosyltransferases responsible for the
biosynthesis of human blood group A epitopes [13]. N-glycosylation of RBD in plants was
demonstrated to be important for its proper folding. However, the alteration in the N-glycan
processing has no impact on the protein function [12,14]. Recently, a virus-like particle
(VLP) vaccine candidate bearing at its surface the SARS-CoV-2 S protein (CoVLP under
the name of Covifenz) has been produced in Nicotiana benthamiana plants by Medicago
inc. and protection against the COVID-19 provided by this VLP vaccine candidate was
evaluated [15,16]. The CoVLP vaccine (Covifenz) was demonstrated to efficiently induce
an immune response in humans with a 71% efficacy against various SARS-CoV-2 variants
and was recently approved by Health Canada. To increase yield and stability, the version
of the S protein used in these studies was modified in several ways: it contained point
mutations to stabilize it in the prefusion form, the native signal sequence was replaced with
a plant-derived signal sequence and both the transmembrane domain and the cytoplasmic
tail were replaced with equivalent sequences from influenza haemagglutinin.

For the current study, we have chosen to use a version of the S protein that contains
the native amino acid sequence, including the leader peptide evaluated [17]. This material
is intended as a non-infectious surrogate for the native virus in studies on various aspects
of the viral replication cycle, such as cell attachment. It is therefore important to determine
how the glycosylation pattern on the plant-produced material compares with that of the
native virus. Here, we report on the proteomic and glycoproteomic analysis of this plant-
derived SARS-CoV-2 S protein allowing the determination of the distribution of plant
N-glycans on the 21 N-glycosylation sites, as well as other post-translational modifications.

2. Results
2.1. Post-Translational Modifications of the SARS-CoV-2 S Protein Produced in N. benthamiana

The SARS-CoV-2 S protein produced in N. benthamiana has a molecular weight of about
140 kDa in reducing conditions [17]. Post-translational modifications of this recombinant
protein were investigated by mass spectrometry analysis of peptides generated by endo-
protease digestions. The plant-derived S protein was digested by different endoprotease
cocktails; i.e., trypsin combined to AspN, trypsin combined to GluC or chymotrysin. The
resulting peptides were analysed by nano-liquid chromatography coupled to electrospray
mass spectrometry (LC-ESI MS/MS). The overall protein sequence coverage was calculated
to be about 81%. With regard to termini of the S protein, the intact C-terminus peptide
was observed (Figure S1). For the N-terminal end of the protein, the cleavage of the signal
peptide was found to occur at Leu 10, Val 11 and Val 16. Moreover, partial oxidation of
methionine residues Met 153, Met 731, Met 740, Met 900, Met 1029 and Met 1050 were
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detected, as well as the partial deamination of Asn 30, Asn 501 and Asn 544, pyroglutamate
of Gln 675 and Gln 965, dehydratation of Thr 302 and Ser 1030, dihydroxylation of Trp 152,
ammonia-loss of Asn 907, and methylation of Lys 528 and Glu 1031 (Figure S2). However,
no O-glycosylation of Ser or Thr residues were detected, in contrast to the SARS-CoV-2 S
protein produced in mammalian cells. In plants, O-glycosylation may also occur on hy-
droxyproline residues of hydroxyproline-rich glycoprotein motifs (HRGP) [18]. Moreover,
the LC-ESI MS/MS analysis of SARS-CoV-2 S protein did not reveal any post-translational
modifications of Pro residues.

The SARS-CoV-2 S protein is a highly N-glycosylated protein exhibiting 22 predicted
glycosites distributed all along the protein sequence (Figure S1). Among these glycosites,
only peptide containing the native Asn 1134 residue was identified in the LC-ESI MS/MS
data, thus indicating that this glycosite is not substituted by N-glycans. For other glycosites,
absence of detection of native Asn-containing peptides suggested that they were modified
by the addition of N-glycans.

The N-glycosylation of the SARS-CoV-2 S protein produced in N. benthamiana was
first investigated through the determination of its overall N-glycan profile. The S protein
was digested by trypsin and chymotrypsin and then N-glycans were released from the
resulting glycopeptides by PNGase A, a peptide N-glycosidase able to release N-glycans
from Asn residues, even those carrying a fucose α(1,3)-linked to the proximal GlcNAc
residue [19]. N-glycans were then purified, permethylated to improve their detection
by mass spectrometry (MS) and finally analysed by MALDI-TOF MS. As illustrated in
Figure 1, Gn2XF is the main glycan N-linked to the plant-derived S protein. This complex
plant N-glycan is characterized by the presence of β(1,2)-xylose and α(1,3)-fucose residues
attached to the core GlcNAc2Man3GlcNAc2 and arises from the Golgi processing of the
oligomannose precursor synthetized in the ER [20]. In addition, biantennary N-glycans
terminated with one or two Lewis a (Lea) epitopes detected (Figures 1 and 2). These Lea

epitopes were composed of terminal GlcNAc unit, substituted by both a β(1,3)-galactose
and an α(1,4)-fucose residue and derives from the late processing of N-linked glycans in
the plant trans Golgi network [21].

Figure 1. MALDI-TOF mass spectrum profile of [M+Na]+ molecular ions of permethylated N-glycans
released from the SARS-CoV-2 S protein produced in N. benthamiana. Structures of main oligosaccha-
rides are depicted. Each N-glycan has been drawn according to the international nomenclature [22].
Blue square: GlcNAc; green circle: Man; yellow circle: Gal; red triangle: Fuc and yellow star: Xyl.
Linkages of monosaccharides to the core GlcNAc2Man3GlcNAc2 and linkage of the Lea terminal
antennae are indicated. See legend of Figure 2 for nomenclature of plant N-linked glycans.
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Figure 2. Oligomannoses, hybrid and complex glycans N-linked to the SARS-CoV-2 S protein
produced in plants. Complex N-glycans are named according to the terminal glycan residues attached
to Man3GlcNAc2 N-glycan sequence (i.e., M2XF stands for Man3(Xyl)(Fuc)GlcNAc2). Glycan isomers
differing by their attachment of GlcNAc (Gn) or Lea epitopes on the two α-mannose arms of the
core are represented with a bracket (GnMXF, LeaMXF and LeaGNXF). Each N-glycan has been
drawn according to the international nomenclature [22]. Linkages of monosaccharides to the core
GlcNAc2Man3GlcNAc2 and of the Lea antennae are indicated.

2.2. N-Glycan Distribution on the SARS-CoV-2 S Protein Produced in N. benthamiana

In order to determine the distribution of N-glycans on the 22 N-glycosites of the SARS-
CoV-2 S protein produced in N. benthamiana, a glycoproteomic approach was performed as
previously reported [23]. Three independent digestions of the recombinant glycoprotein
were performed by endoprotease cocktails (trypsin combined to AspN, trypsin combined
to GluC or chymotrypsin). This allows the generation of multiple glycopeptides to improve
the protein sequence coverage and to give better access to all glycosites along the protein.
Analysis by LC-ESI MS/MS of peptides released by endoprotease digestions of the SARS-
CoV-2 S protein produced in N. benthamiana further indicated that 21 glycosites among the
22 N-glycosylation sites were post-translationally modified by attachment of N-glycans
(Table S1). The site-specific distribution of N-glycans on the 22 glycosites was determined
by a targeted LC-ESI MS/MS analysis of the endoprotease digests. To this end, peptides
giving MS/MS spectra exhibit N-glycan diagnostic fragment ions at m/z 204 were analyzed
in details.This diagnostic ion represents the oxonium ion of a HexNAc that in the context of
N-glycan corresponds to a N-acetylglucosamine. A second oxonium ion at m/z 366 that for
N-glycan structure corresponds to the Man-GlcNAc disaccharide was selected for in-deep
MS/MS analysis (Figure 3). Using this strategy, numerous MS/MS spectra assigned to
glycopeptides were extracted from data generated for the three endoprotease digestions.
They all exhibited a major ion assigned to a peptide N-linked to a unique GlcNAc residue,
thus giving easy access of the peptide mass for each selected glycopeptide (Figure 3,
Table S1). In addition to these diagnostic ions, a set of fragment ions detected by LC-ESI
MS/MS allowed to rebuild the glycan sequence. As illustration, in the MS/MS spectrum of
the glycopeptide V341-R346 N-linked to GnMXF from the SARS-CoV-2 S protein, ions at m/z
1056.52 and m/z 1553.70 revealed the presence of an α(1,3)-fucose residue on the proximal
GlcNAc residue and a β(1,2)-xylose residue on the β-Man, respectively (Figure 3b). As
expected, such ions corresponding to modifications of the core N-glycan were not observed
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in peptide attached to a Man-7 oligomannose (Figure 3a). In addition, a diagnostic fragment
ion at m/z 512 was assigned to the Lea epitope and observed in all MS/MS spectra of
glycopeptides exhibiting this glycan motif (Figure 2; Figure 3c, and Figure 4; Table S1).

Figure 3. MS/MS spectra of (a) dicharged ion at m/z 1327.09 assigned to the peptide D228-R237

N-linked to Man-7, (b) dicharged ion at m/z 1041.44 assigned to the peptide V341-R346 N-linked to
GnMXF and (c) dicharged ion at m/z 1296.54 assigned to the peptide V341-R346 N-linked to LeaGnXF.
Structures of fragment ions are depicted. Each N-glycan has been drawn according to the international
nomenclature [22]. Blue square: GlcNAc; green circle: Man; red triangle: Fuc; yellow circle: Gal and
yellow star: Xyl.
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Figure 4. Distribution of main N-glycans on the 22 N-glycosylation consensus sites of the SARS-CoV-2
S protein produced in plants. Distribution of all N-glycans per glycosite are reported in Table S1. Blue
square: GlcNAc; green circle: Man; red triangle: Fuc; yellow circle: Gal and yellow star: Xyl.

Based on the fragmentation ion patterns of glycopeptides selected by the targeted LC-
ESI MS/MS analysis, oligomannose, hybrid and complex plant N-glycans were distributed
on the 21 N-glycosylation sites (Figures 2 and 4, Table S1). These N-glycans differ in the
extent of their processing by Golgi resident glycosidases and glycosyltransferases during
the transport of the S protein through the plant secretory pathway. These data indicated
that N-glycan profiles differ from one site to another with mainly complex Gn2XF and Lea-
containing oligosaccharides (Figure 4, Table S1). Moreover, the number of N-glycans per
site differs from one site to another. In contrast to other glycosites, the peptide containing
the Asn-234 (Figure S1) is glycosylated by oligomannoses and hybrid oligosaccharides
(Figure 4, Table S1).

3. Discussion

As reported for the SARS-CoV-2 S protein manufactured in various expression systems,
expression in N. benthamiana also resulted in the production of a heavily glycosylated
protein with N-glycans located on 21 of the 22 glycosites. The S viral protein produced in
mammalian cells exposes at its surface mature oligosaccharides including tetra-antennary
polysialylated N-glycans [2,3,5,6]. The data reported in this study show that the tobacco-
derived SARS-CoV-2 S protein is also mainly N-glycosylated by mature plant complex
Gn2XF and Lea-containing oligosaccharides. This demonstrates that, like the S protein
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produced in mammalian cells, localization at the surface of the protein makes them easily
accessible to glycosidases and glycosyltransferases located in the plant Golgi apparatus [20].
A similar observation was drawn for the N-glycosylation of the influenza haemagglutinin
protein associated to virus-like particles produced in tobacco plants [24]. In contrast, the
glycosite of the plant-derived S protein at Asn-234 is glycosylated by oligomannoses and
hybrid oligosaccharides as reported for the viral protein produced in mammalian cells [3].
This indicates that after the protein folding in the ER, this site is buried into the protein
sequence and the N-glycan is, as a consequence, not accessible to the Golgi processing
enzymes involved in the N-glycan maturation.

The extent of the Golgi processing of glycans N-linked to a protein mainly results from
its folding acquired in the ER because their maturation depends on their accessibility to
Golgi enzymes as the glycoprotein moves along the secretory system. Thus, glycan matu-
ration and distribution on a protein is indicative of its overall 3D structure. For instance,
antibodies produced in mammalian cells exhibit mainly non-sialylated bi-antennary N-
glycans. Likewise, plant-derived antibodies are N-glycosylated mainly by Gn2XF glycans
and lack Lea extensions. The IgG oligosaccharides are tightly associated with the CH2
domain of the two heavy chains which prevents their accessibility to transferases located in
the trans Golgi apparatus [25–28]. Considering the similar distribution of oligomannoses
and fully processed N-glycans on the 21 glycosites of the viral protein; the data on the
N-glycosylation of the SARS-CoV-2 S protein produced in N. benthamiana suggest that this
viral protein adopt when expressed in plants as a VLP a 3D structure similar to the one of
recombinant homologues produced in mammalian and insect cells [2–6].

With regards to other post-translational events, no modification of the protein back-
bone was detected on the tobacco-derived SARS-CoV-2 S, except for the partial oxidation
of some Met residues; pyroglutamate of two Gln, dehydratation of Thr and Ser, dihydroxy-
lation of Trp, ammonia-loss of Asn, methylation of Lys and Glu, and the deamination of
two Asn residues. In plants, with the exception of the N-glycosylation, post-translational
modifications of proteins largely differ from mammalian ones with regards to the nature
of structural modifications and consensus peptide sequences recognized by the enzyme
machinery of the secretory pathway. Although plant is now widely used as an efficient
platform for the production of human therapeutic proteins, the protein maturations per-
formed in the plant secretory pathway may introduce non-human decorations that may
impair its use in human therapy. For instance, with regards to glycans O-linked to plant
proteins, O-glycosylation of hydroxyproline residues is frequently observed in plants and
gives rise to hydroxyproline-rich glycoproteins (HRGP) [18]. These hydroxyprolines result
from the hydroxylation of Pro residues in the plant ER. Ser residues of specific peptide
motifs may also be glycosylated in plant extensines [18]. As a consequence, plant-specific
O-glycosylation of Ser, as well as hydroxylation and O-glycosylation of Pro residues, have
been reported on biopharmaceuticals produced in plants because peptide motifs within
these recombinant protein sequence have been recognized by the plant Golgi glycosyltrans-
ferases involved in HRGP biosynthesis. This gives rise to unwanted modifications that
could potentially impair the protein functionality or induce immune responses [23,29,30].
Unexpected arabinose residues have also been reported on N-glycans of biopharmaceu-
ticals expressed in glyco-humanized plants. These unforseen glycan decorations likely
arose from the arabinosylation of terminal galactose residues by enzymes involved in
the biosynthesis of cell wall arabinan [31]. LC-ESI MS/MS analysis of the SARS-CoV-2 S
protein produced in N. benthamiana did not reveal any post-translational modification of Ser
and Pro residues resulting from enzymatic machinery involved in the HRGP biosynthesis.
Taken together, the detailed analysis performed in this work indicated that the SARS-CoV-2
S protein produced in N. benthamiana is structurally related to homologous recombinant
protein produced in mammalian and insect cells. The main difference is the structure of
complex N-glycans, which reflects the divergence in Golgi glycosyltransferase repertoires
between eukaryote cells used for the production of this viral protein. As a consequence,
the plant-derived S protein exhibits non-mammalian epitopes such as core β(1,2)-xylose
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and α(1,3)-fucose residues. As these plant glycoepitopes are known to be putative plant
allergen or immunogen motifs, immunogenicity of VLP vaccines bearing hemagglutinin
proteins has been investigated. Ward et al. [15] have demonstrated that subjects enrolled in
Phase I/II trials have not developed any allergy/hypersensitivity symptoms, although this
vaccine protein has been reported to exposed complex and Lea-containing plant N-glycans
at its surface. Altogether, the capability of plants to secrete and correctly fold large vaccine
proteins makes plant-based VLP very powerful tools for the production of viral vaccines.

4. Materials and Methods
4.1. Endoprotease Digestions

VLPs containing the S protein from SARS-CoV-2 isolate Wuhan-Hu-1 (NC_045512.2)
were expressed in N. benthamiana and purified as previously described [17]. As determined
by ELISA measurement of the amount of S protein in the VLP sample, 50 µg of SARS-
CoV-2 S protein were separated by electrophoresis on an 8% (w/v) SDS-PAGE gel. After
staining with Coomassie Blue R250, the band corresponding to the S protein was cut into
small pieces and washed several times with a 1/1 (v/v) solution of acetonitrile/100 mM
ammonium bicarbonate pH 8. The S protein was then reduced with 100 mM dithiothreitol
in ammonium bicarbonate pH 8 for 45 min at 56 ◦C and then cysteine residues were
alkylated with 55 mM iodoacetamide in 100 mM ammonium bicarbonate pH 8 for 30 min
at room temperature and in the dark.

For trypsin and AspN or GluC digestions, the gel pieces were first digested by trypsin
(PROMEGA, Charbonnières-les-Bains, France, reference V511A in a ratio 1:20) in 100 mM
ammonium bicarbonate pH 8 and placed at 4 ◦C for 45 min prior to incubation overnight
at 37 ◦C. The reaction was stopped by heating to 100 ◦C for 10 min and the peptides
and glycopeptides were recovered from the gel pieces by sequential washing with 50%
acetonitrile (v/v), 5% formic acid (v/v), 100 mM NH4HCO3, 100% acetonitrile (v/v) and
finally 5% formic acid (v/v). The five elutions were combined and then dried down in a
SpeedVac centrifuge (Thermo fisher, Waltham, MA, USA). The sample digested by trypsin
was then treated either with AspN (ROCHE, Boulogne-Billancourt, France, reference
11054589001 in a ratio 1:50) in 200 µL of a 50 mM NaH2PO4 solution, pH 8 at 37 ◦C
overnight. For the double trypsin/GluC digestion, the same protocol was used with GluC
(PROMEGA, reference V165A) instead of AspN. As for the chymotrypsin digestion, the gel
pieces were incubated with TLCK-treated chymotrypsin digestion for 3 h (SIGMA, Saint-
Quentin-Fallavier, France, reference C3142, ratio 1:20) in 100 mM ammonium bicarbonate
pH 8 at 37 ◦C. Peptides and glycopeptides were collected as described above. After
digestion, the peptide and glycopeptide mixtures were heated at 100 ◦C for 10 min.

4.2. N-Glycan Profiling

50 µg of SARS-CoV-2 S protein produced in N. benthamiana were separated by elec-
trophoresis on an 8% (w/v) SDS-PAGE gel. After staining with Coomassie Blue R250, the
band corresponding to the S protein was cut into small pieces and washed several times
with a 1/1 (v/v) solution of acetonitrile / 100 mM ammonium bicarbonate pH 8. Then, the
bands of interest were submitted to successive trypsin and chymotrypsin digestions and the
mixture of peptides and glycopeptides were collected as reported above. Then, N-glycans
were released from glycopeptides with 0.02 mU of PNGase A (Roche ref 11642995001) in
50 mM sodium acetate buffer pH 5.5 at 37 ◦C overnight. N-glycans were then purified on a
C18 cartridge (Thermo fisher, reference 60108-303) according to the manufacturer’s instruc-
tions, and permethylated. To this end, 1.8 g of dried sodium hydroxide was ground in 6 mL
of anhydrous dimethylsulfoxyde. 0.5 mL of this mixture and 0.5 mL of iodomethane were
added to the glycan sample and the mixture was incubated for 2 h at room temperature
under agitation. 1 mL of HPLC grade water (Thermo Scientific, Les Ulis, France) was then
added drop by drop in order to stop the reaction. One mL of chloroform and 3 mL of water
were then added to the samples and mixed. The upper aqueous phase was discarded and
3 mL of water were added. This step was repeated until the pH was neutralized. The
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chloroform phase containing permethylated glycans was then dried down. Permethylated
N-glycans were re-suspended in 80% methanol in water (v/v) and purified on a C18 car-
tridge (Thermo fisher, reference 60108-303) by successive elutions with 1.8 mL of 15%, 35%,
50% and 75% of acetonitrile in water. Permethylated N-glycans were recovered in the 50%
acetonitrile fraction.

[M+Na]+ molecular ions of permethylated N-glycans were determined using a MALDI-
TOF UltrafleXtreme mass spectrometer (Bruker Daltonics, Brème, Germany) equipped
with a Nd: YAG laser (λ = 355 nm). The glycan sample was dissolved in 10 µL of acetoni-
trile/0.1% trifluoroacetic acid (70/30 v/v). The matrix was prepared by dissolving 20 mg
of dihydrohybenzoic acid (DHB) in 1 mL of 80% methanol (v/v). 1 µL of the glycan sample
and of the matrix solution were mixed and then spotted on a MALDI plate. MS Spectra
were recorded in positive reflector mode an accumulation of 10,000 laser shots using a laser
intensity above 80% as previously reported [32].

4.3. LC-ESI MS/MS Analysis

All peptide samples were resuspended in 3% acetonitrile/0.1% formic acid buffer/96.9%
H2O (v/v/v). Each sample was then analyzed on a Q-Exactive Plus Mass Spectrometer cou-
pled to an Easy nLC II system (both from Thermo Scientific, Les Ulis, France) and equipped
with a nanoESI source. Peptides were loaded onto an enrichment column (C18 Pepmap100,
5 mm × 300 µm, granulometry of 5 µm, porosity of 100 Å; Thermo Scientific, Les Ulis,
France) and separated on an analytical column needle (NTCC-360/100-5-153, NikkyoTech-
nos, Tokyo, Japan) with a flow rate of 300 µL/min. The mobile phase was composed of
H2O/0.1% formic acid (buffer A) and acetonitrile/H2O/0.1% formic acid (80/20) (buffer B).
The elution gradient duration was 45 min following these different steps: 0–19 min, 2–55%
of B; 19–20 min, 55–100% of B; 20–30 min, 100% of B; 30–45 min, 2% of B. The temperature
of the column was set at 40 ◦C. The mass spectrometer acquisition parameters were: 100 ms
maximum injection time, 20 s dynamic exclusion time, AGC target 1 × 105, intensity thresh-
old 2 × 104, 1.6 kV capillary voltage, 275 ◦C capillary temperature, full scan MS m/z @
400–1800 with a resolution of 70,000 in MS and 17,500 in MS/MS. The 10 most intense ions
were selected and fragmented with HCD (higher-energy collision dissociation mode) and
nitrogen as a collision gas (normalized collision energy set to 27 eV). Raw data are used
for subsequent spectra analysis. Protein DBsearch and PTM identification was performed
by using the PEAKS studio 10.5 build 20,191,120 proteomics workbench (Bioinformatics
Solutions Inc., Waterloo, ON, Canada) with the following specific parameters: enzyme,
trypsin and/or chymotrypsin, AspN, GluC; 3 max missed cleavages; fixed modification,
carbamidomethylation; 314 built-in variable modifications (oxidation (M), deamidation
(NQ), pyro-glu from E and Q cited as example); monoisotopic mass tolerance for precursor
ions, 6 ppm; mass tolerance for fragment ions, 0.02 Da; MS scan mode, FT-ICR/Orbitrap;
MS/MS scan mode, linear ion trap. High confident results with a false discovery rate (FRD)
below 1 only were considered. Only results presenting a −10 log P higher or equal to
30 were considered. For each glycopeptide selected by search for diagnostic ions at m/z
204 (N-acetylglucosamine) and 366 (Man-GlcNAc) as well as 512 corresponding to plant
Lea epitopes, manual analysis and annotation were performed for the determination of the
peptide mass and glycan sequence.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27165119/s1. Figure S1. Amino acids sequence of the
SARS-CoV-2 S protein produced recombinantly in tobacco plants. The 22 predicted N-glycosylation
consensus sites are underlined in black. Figure S2. MS/MS spectra of (A) dicharged ion at m/z 560.22
assigned to the peptide S151-R158 bearing a dihydroxylation of W152 and an oxidation of M153, (B)
dicharged ion at m/z 918.42 assigned to the peptide S494-R509 bearing a deamidation of N501.Table S1.
Distribution of N-linked glycans on the glycosylation sites of the SARS-CoV-2 S protein produced in
N. benthamiana. * See Figure 3 for structure and nomenclature of N-glycans. T: trypsin; A: AspN, C:
chymotrypsin and G: GluC.

https://www.mdpi.com/article/10.3390/molecules27165119/s1
https://www.mdpi.com/article/10.3390/molecules27165119/s1


Molecules 2022, 27, 5119 10 of 12

Author Contributions: Conceptualization, J.-W.J., G.P.L., P.L. and M.B.; methodology, J.B. and P.C.;
validation, P.L. and M.B.; formal analysis, J.B., P.L. and M.B.; writing—original draft preparation, P.L.
and M.B.; writing—review and editing, J.-W.J., J.B., P.C., G.P.L., P.L. and M.B.; supervision, M.B.; funding
acquisition, G.P.L. and M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been performed in the context of the “European Union’s Horizon 2020
Research and Innovation Programme” under Grant Agreement 774078 Pharma Factory project
(https://pharmafactory.org/). At the John Innes Centre this work was additionally supported by
the United Kingdom Biotechnology and Biological Sciences Research Council (BBSRC) Strategic
Programme Grant “Molecules from Nature—Enhanced Research Capacity” (BBS/E/J/000PR9794),
the Core Capability Grant, BB/KEC1740/1 and the John Innes Foundation. This work was further
supported by the Basic Science Research Program through the National Research Foundation of Korea
(NRF) funded by the Korean Ministry of Education (NRF-2021R1A6A3A03038622). Involvement of
GlycoMEV lab in this work was also supported by the Normandy Region and the FEDER European
funds through the OptimALG project. HeRacLeS PISSARO Proteomics Platform was supported by
Rouen University, INSERM, Normandy Region and the European Union. Europe gets involved in
Normandy with European Regional Development Fund (ERDF).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The mass spectrometry raw data are openly available in FigShare at
doi 10.6084/m9.figshare.20209901.

Acknowledgments: The authors are thankful to Elodie Mathieu-Rivet, GlycoMEV lab at URN for
technical help with MALDI-TOF mass spectrometry acquisition. The authors also acknowledge
Julian Ma, coordinator of the “European Union’s Horizon 2020 Research and Innovation Programme”
under Grant Agreement 774078 for introducing the work related to the COVID-19 in the European
Pharma Factory project. This initiated the beginning of this collaborative work. At the John Innes
Centre, we acknowledge the support of Horticultural and Bio-imaging platforms for production and
characterization of the SARS-CoV-2 VLPs.

Conflicts of Interest: G.P.L. declares that he is a named inventor on granted patent WO 29087391
A1 which describes the HyperTrans expression system and associated pEAQ vectors used for the
expression of the SARS-CoV-2 S protein. The funders had no role in the design of the study, in the
collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to
publish the results.

References
1. Akash, K.; Sharma, A.; Kumar, D.; Singh, S.K.; Gupta, G.; Chellappan, D.K.; Dua, K.; Nagraik, R. Molecular aspects of Omicron,

vaccine development, and recombinant strain XE: A review. J. Med. Virol. 2022, 1–16. [CrossRef]
2. Shajahan, A.; Supekar, N.T.; Gleinich, A.S.; Azadi, P. Deducing the N- and O-glycosylation profile of the spike protein of novel

coronavirus SARS-CoV-2. Glycobiology 2020, 30, 981–988. [CrossRef] [PubMed]
3. Watanabe, Y.; Allen, J.D.; Wrapp, D.; McLellan, J.S.; Crispin, M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science

2020, 369, 330–333. [CrossRef] [PubMed]
4. Sanda, M.; Morrison, L.; Goldman, R. N- and O-Glycosylation of the SARS-CoV-2 Spike Protein. Anal. Chem. 2021, 93, 2003–2009.

[CrossRef] [PubMed]
5. Wang, D.; Zhou, B.; Keppel, T.R.; Solano, M.; Baudys, J.; Goldstein, J.; Finn, M.; Fan, X.; Chapman, A.; Bundy, J.; et al.

N-glycosylation profiles of the SARS-CoV-2 spike D614G mutant and its ancestral protein characterized by advanced mass
spectrometry. Sci. Rep. 2021, 11, 23561. [CrossRef] [PubMed]

6. Zhang, Y.; Zhao, W.; Mao, Y.; Chen, Y.; Wang, S.; Zhong, Y.; Su, T.; Gong, M.; Du, D.; Lu, X.; et al. Site-specific N-glycosylation
Characterization of Recombinant SARS-CoV-2 Spike Proteins. Mol. Cell. Proteom. 2021, 20, 100058. [CrossRef] [PubMed]

7. Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat Med. 2020, 4,
450–452. [CrossRef] [PubMed]

8. Yang, Q.; Hughes, T.A.; Kelkar, A.; Yu, X.; Cheng, K.; Park, S.; Huang, W.C.; Lovell, J.F.; Neelamegham, S. Inhibition of
SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration. Elife 2020, 26, e61552. [CrossRef]

9. Rattanapisit, K.; Shanmugaraj, B.; Manopwisedjaroen, S.; Purwono, P.B.; Siriwattananon, K.; Khorattanakulchai, N.; Hanittinan,
O.; Boonyayothin, W.; Thitithanyanont, A.; Smith, D.R.; et al. Rapid production of SARS-CoV-2 receptor binding domain (RBD)
and spike specific monoclonal antibody CR3022 in Nicotiana benthamiana. Sci. Rep. 2020, 19, 17698. [CrossRef] [PubMed]

https://pharmafactory.org/
http://doi.org/10.1002/jmv.27936
http://doi.org/10.1093/glycob/cwaa042
http://www.ncbi.nlm.nih.gov/pubmed/32363391
http://doi.org/10.1126/science.abb9983
http://www.ncbi.nlm.nih.gov/pubmed/32366695
http://doi.org/10.1021/acs.analchem.0c03173
http://www.ncbi.nlm.nih.gov/pubmed/33406838
http://doi.org/10.1038/s41598-021-02904-w
http://www.ncbi.nlm.nih.gov/pubmed/34876606
http://doi.org/10.1074/mcp.RA120.002295
http://www.ncbi.nlm.nih.gov/pubmed/33077685
http://doi.org/10.1038/s41591-020-0820-9
http://www.ncbi.nlm.nih.gov/pubmed/32284615
http://doi.org/10.7554/eLife.61552
http://doi.org/10.1038/s41598-020-74904-1
http://www.ncbi.nlm.nih.gov/pubmed/33077899


Molecules 2022, 27, 5119 11 of 12

10. Diego-Martin, B.; González, B.; Vazquez-Vilar, M.; Selma, S.; Mateos-Fernández, R.; Gianoglio, S.; Fernández-Del-Carmen, A.;
Orzáez, D. Pilot Production of SARS-CoV-2 Related Proteins in Plants: A Proof of Concept for Rapid Repurposing of Indoor
Farms Into Biomanufacturing Facilities. Front. Plant Sci. 2020, 23, 612781. [CrossRef] [PubMed]

11. Mamedov, T.; Yuksel, D.; Ilgın, M.; Gürbüzaslan, I.; Gulec, B.; Mammadova, G.; Hasanova, G. Engineering, production and
characterization of Spike and Nucleocapsid structural proteins of SARS–CoV-2 in Nicotiana benthamiana as vaccine candidates
against COVID-19. Vaccines 2020, 9, 1337. [CrossRef] [PubMed]

12. Shin, Y.J.; König-Beihammer, J.; Vavra, U.; Schwestka, J.; Kienzl, N.F.; Klausberger, M.; Laurent, E.; Grünwald-Gruber, C.;
Vierlinger, K.; Hofner, M.; et al. N-Glycosylation of the SARS-CoV-2 Receptor Binding Domain Is Important for Functional
Expression in Plants. Front. Plant Sci. 2021, 12, 689104. [CrossRef] [PubMed]

13. König-Beihammer, J.; Vavra, U.; Shin, Y.J.; Veit, C.; Grünwald-Gruber, C.; Gillitschka, Y.; Huber, J.; Hofner, M.; Vierlinger, K.;
Mitteregger, D.; et al. In Planta Production of the Receptor-Binding Domain From SARS-CoV-2 With Human Blood Group A
Glycan Structures. Front. Chem. 2022, 9, 816544. [CrossRef] [PubMed]

14. Mamedov, T.; Yuksel, D.; Ilgın, M.; Gurbuzaslan, I.; Gulec, B.; Yetiskin, H.; Uygut, M.A.; Islam Pavel, S.T.; Ozdarendeli,
A.; Mammadova, G.; et al. Plant-Produced Glycosylated and In Vivo Deglycosylated Receptor Binding Domain Proteins of
SARS-CoV-2 Induce Potent Neutralizing Responses in Mice. Viruses 2021, 13, 1595. [CrossRef] [PubMed]

15. Ward, B.J.; Gobeil, P.; Séguin, A.; Atkins, J.; Boulay, I.; Charbonneau, P.Y.; Couture, M.; D’Aoust, M.A.; Dhaliwall, J.; Finkle,
C.; et al. Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19. Nat. Med. 2021, 27, 1071–1078.
[CrossRef] [PubMed]

16. Pillet, S.; Arunachalam, P.S.; Andreani, G.; Golden, N.; Fontenot, J.; Aye, P.P.; Röltgen, K.; Lehmicke, G.; Gobeil, P.; Dubé, C.; et al.
Safety, immunogenicity, and protection provided by unadjuvanted and adjuvanted formulations of a recombinant plant-derived
virus-like particle vaccine candidate for COVID-19 in nonhuman primates. Cell Mol. Immunol. 2022, 19, 222–233. [CrossRef]
[PubMed]

17. Jung, J.-W.; Zahmanova, G.; Minkov, I.; Lomonossoff, G.P. Plant-based expression and characterization of SARS-CoV-2 virus-like
particles presenting a native spike protein. Plant Biotechnol. J. 2022, 20, 1363–1372. [CrossRef] [PubMed]

18. Showalter, A.M.; Basu, D. Extensin and arabinogalactan-Protein biosynthesis: Glycosyltransferases. research challenges, and
biosensors. Front. Plant Sci. 2016, 7, 814. [CrossRef] [PubMed]

19. Tretter, V.; Altmann, F.; März, L. Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with
fucose attached alpha 1–3 to the asparagine-linked N-acetylglucosamine residue. Eur. J. Biochem. 1991, 199, 647–652. [CrossRef]
[PubMed]

20. Lerouge, P.; Cabanes-Macheteau, M.; Rayon, C.; Fitchette-Lainé, A.; Gomord, V.; Faye, L. N-Glycoprotein biosynthesis in plants:
Recent developments and future trends. Plant Mol. Biol. 1998, 38, 31–48. [CrossRef] [PubMed]

21. Fitchette, A.C.; Cabanes-Macheteau, M.; Marvin, L.; Martin, B.; Satiat-Jeunemaitre, B.; Gomord, V.; Crooks, K.; Lerouge, P.; Faye,
L.; Hawes, C. Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cell. Plant Physiol. 1999, 121,
333–344. [CrossRef] [PubMed]

22. Neelamegham, S.; Aoki-Kinoshita, K.; Bolton, E.; Frank, M.; Lisacek, F.; Lutteke, T.; O’Boyle, N.; Packer, N.H.; Stanley, P.; Toukach,
P.; et al. Updates to the Symbol Nomenclature for Glycans guidelines. Glycobiology 2019, 29, 620–624. [CrossRef] [PubMed]

23. Cardon, F.; Pallisse, R.; Bardor, M.; Caron, A.; Vanier, J.; Ele Ekouna, J.-P.; Lerouge, P.; Boitel-Conti, M.; Guillet, M. Brassica rapa
hairy root based expression system leads to the production of highly homogenous and reproducible profiles of recombinant
human alpha-L-iduronidase. Plant Biotechnol. J. 2019, 17, 505–516. [CrossRef] [PubMed]

24. Le Mauff, F.; Mercier, G.; Chan, P.; Burel, C.; Vaudry, D.; Bardor, M.; Vézina, L.-P.; Couture, M.; Lerouge, P.; Landry, N. Biochemical
composition of haemagglutinin-based influenza virus-like particle vaccine produced by transient expression in tobacco plants.
Plant Biotechnol. J. 2015, 13, 717–725. [CrossRef] [PubMed]

25. Cabanes-Macheteau, M.; Fitchette-Lainé, A.-C.; Loutelier-Bourhis, C.; Lange, C.; Vine, N.D.; Ma, J.K.C.; Lerouge, P.; Faye, L.
N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology 1999, 9, 365–372. [CrossRef] [PubMed]

26. Schähs, M.; Strasser, R.; Stadlmann, J.; Kunert, R.; Rademacher, T.; Steinkellner, H. Production of a monoclonal antibody in plants
with a humanized N-glycosylation pattern. Plant Biotechnol. J. 2007, 5, 657–663. [CrossRef]

27. Strasser, R.; Stadlmann, J.; Schähs, M.; Stiegler, G.; Quendler, H.; Mach, L.; Glössl, J.; Weterings, K.; Pabst, M.; Steinkellner,
H. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous
human-like N-glycan structure. Plant Biotechnol. J. 2008, 6, 392–402. [CrossRef] [PubMed]

28. Triguero, A.; Cabrera, G.; Rodríguez, M.; Soto, J.; Zamora, Y.; Pérez, M.; Wormald, M.R.; Cremata, J.A. Differential N-glycosylation
of a monoclonal antibody expressed in tobacco leaves with and without endoplasmic reticulum retention signal apparently
induces similar in vivo stability in mice. Plant Biotechnol. J. 2011, 9, 1120–1130. [CrossRef] [PubMed]

29. Kim, J.; Park, H.; Park, B.T.; Hwang, H.S.; Kim, J.I.; Kim, D.K.; Kim, H.H. O-glycans and O-glycosylation sites of recombinant
human GM-CSF derived from suspension-cultured rice cells and their structural role. Biochem. Biophys. Res. Comm. 2016, 479,
266–271. [CrossRef] [PubMed]

30. Göritzer, K.; Maresch, D.; Altmann, F.; Obinger, C.; Strasser, R. Exploring Site-Specific N-Glycosylation of HEK293 and Plant-
Produced Human IgA Isotypes. J. Proteome Res. 2017, 16, 2560–2570. [CrossRef] [PubMed]

http://doi.org/10.3389/fpls.2020.612781
http://www.ncbi.nlm.nih.gov/pubmed/33424908
http://doi.org/10.3390/vaccines9111337
http://www.ncbi.nlm.nih.gov/pubmed/34835268
http://doi.org/10.3389/fpls.2021.689104
http://www.ncbi.nlm.nih.gov/pubmed/34211491
http://doi.org/10.3389/fchem.2021.816544
http://www.ncbi.nlm.nih.gov/pubmed/35178379
http://doi.org/10.3390/v13081595
http://www.ncbi.nlm.nih.gov/pubmed/34452461
http://doi.org/10.1038/s41591-021-01370-1
http://www.ncbi.nlm.nih.gov/pubmed/34007070
http://doi.org/10.1038/s41423-021-00809-2
http://www.ncbi.nlm.nih.gov/pubmed/34983950
http://doi.org/10.1111/pbi.13813
http://www.ncbi.nlm.nih.gov/pubmed/35325498
http://doi.org/10.3389/fpls.2016.00814
http://www.ncbi.nlm.nih.gov/pubmed/27379116
http://doi.org/10.1111/j.1432-1033.1991.tb16166.x
http://www.ncbi.nlm.nih.gov/pubmed/1868849
http://doi.org/10.1023/A:1006012005654
http://www.ncbi.nlm.nih.gov/pubmed/9738959
http://doi.org/10.1104/pp.121.2.333
http://www.ncbi.nlm.nih.gov/pubmed/10517824
http://doi.org/10.1093/glycob/cwz045
http://www.ncbi.nlm.nih.gov/pubmed/31184695
http://doi.org/10.1111/pbi.12994
http://www.ncbi.nlm.nih.gov/pubmed/30058762
http://doi.org/10.1111/pbi.12301
http://www.ncbi.nlm.nih.gov/pubmed/25523794
http://doi.org/10.1093/glycob/9.4.365
http://www.ncbi.nlm.nih.gov/pubmed/10089210
http://doi.org/10.1111/j.1467-7652.2007.00273.x
http://doi.org/10.1111/j.1467-7652.2008.00330.x
http://www.ncbi.nlm.nih.gov/pubmed/18346095
http://doi.org/10.1111/j.1467-7652.2011.00638.x
http://www.ncbi.nlm.nih.gov/pubmed/21819534
http://doi.org/10.1016/j.bbrc.2016.09.057
http://www.ncbi.nlm.nih.gov/pubmed/27638310
http://doi.org/10.1021/acs.jproteome.7b00121
http://www.ncbi.nlm.nih.gov/pubmed/28516782


Molecules 2022, 27, 5119 12 of 12

31. Bohlender, L.L.; Parsons, J.; Hoernstein, S.N.W.; Bangert, N.; Rodríguez-Jahnke, F.; Reski, R.; Decker, E.L. Unexpected Ara-
binosylation after Humanization of Plant Protein N-Glycosylation. Front. Bioeng. Biotechnol. 2022, 10, 838365. [CrossRef]
[PubMed]

32. Font, G.; Walet-Balieu, M.-L.; Petit, M.; Burel, C.; Maho-Vaillant, M.; Hébert, V.; Chan, P.; Fréret, M.; Boyer, O.; Joly, P.; et al. IgG
N-glycosylation from Patients with Pemphigus Treated with Rituximab. Biomedicines 2022, 10, 1774. [CrossRef] [PubMed]

http://doi.org/10.3389/fbioe.2022.838365
http://www.ncbi.nlm.nih.gov/pubmed/35252146
http://doi.org/10.3390/biomedicines10081774
http://www.ncbi.nlm.nih.gov/pubmed/35892674

	Introduction 
	Results 
	Post-Translational Modifications of the SARS-CoV-2 S Protein Produced in N. benthamiana 
	N-Glycan Distribution on the SARS-CoV-2 S Protein Produced in N. benthamiana 

	Discussion 
	Materials and Methods 
	Endoprotease Digestions 
	N-Glycan Profiling 
	LC-ESI MS/MS Analysis 

	References

