
SAGE-Hindawi Access to Research
International Journal of Alzheimer’s Disease
Volume 2011, Article ID 127984, 17 pages
doi:10.4061/2011/127984

Review Article

Aβ Internalization by Neurons and Glia

Amany Mohamed and Elena Posse de Chaves

Department of Pharmacology, University of Alberta, Edmonton, AB, Canada T6G 2H7

Correspondence should be addressed to Elena Posse de Chaves, elena.chaves@ualberta.ca

Received 23 October 2010; Accepted 23 December 2010

Academic Editor: Anne Eckert

Copyright © 2011 A. Mohamed and E. Posse de Chaves. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In the brain, the amyloid β peptide (Aβ) exists extracellularly and inside neurons. The intracellular accumulation of Aβ in
Alzheimer’s disease brain has been questioned for a long time. However, there is now sufficient strong evidence indicating
that accumulation of Aβ inside neurons plays an important role in the pathogenesis of Alzheimer’s disease. Intraneuronal Aβ
originates from intracellular cleavage of APP and from Aβ internalization from the extracellular milieu. We discuss here the
different molecular mechanisms that are responsible for Aβ internalization in neurons and the links between Aβ internalization
and neuronal dysfunction and death. A brief description of Aβ uptake by glia is also presented.

1. Introduction

Alzheimer’s disease (AD) is the most common form of age-
related dementia in the elderly. The increase of the average
age of the population is causing a significant rise in the
number of people afflicted with this devastating disease, and
it is predicted that the incidence of AD will approximately
triplicate by 2040 [1] if more effective therapeutic strategies
are not made available. In order to develop better therapeutic
approaches, the molecular pathways leading to the patholog-
ical alterations of the disease must be fully understood.

Major neuropathological and neurochemical hallmarks
of AD traditionally included the extracellular accumulation
of amyloid-β peptide (Aβ) in brain senile plaques, the
intracellular formation of neurofibrillary tangles (NFTs)
composed of hyperphosphorylated Tau protein, the loss of
synapses at specific brain sites, and the degeneration of
cholinergic neurons from the basal forebrain [2]. The orig-
inal amyloid cascade hypothesis had proposed that the key
event in AD development is the extracellular accumulation of
insoluble, fibrillar Aβ [3–5]. This “extracellular insoluble Aβ
toxicity” hypothesis was later modified to acknowledge the
role of soluble Aβ oligomers as pathogenic agents. Only more
recently the importance of intraneuronal Aβ accumulation
in the pathogenesis of AD has been recognized, despite
the fact that the original reports showing Aβ accumulation
inside neurons are dated more than 20 years ago. The

“intraneuronal Aβ hypothesis” does not argue against a role
for extracellular Aβ but complements the traditional amyloid
cascade hypothesis [6–8].

The intraneuronal pool of Aβ originates from APP
cleavage within neurons and from Aβ internalization from
the extracellular milieu. Here we focus on the mechanisms
that mediate Aβ internalization in neurons and glia, and we
discuss the consequences of Aβ uptake by brain cells.

2. Intraneuronal Aβ

Evidence from several immunohistochemical studies sug-
gested the accumulation of intraneuronal Aβ in AD. Yet,
the acceptance of this concept was hampered by the fact
that in many studies, antibodies that could not distinguish
between APP and Aβ inside the neurons were used. This
problem and other experimental issues have been addressed
in detail elsewhere [9–11]. Despite these initial technical
complications, several studies using antibodies specific for
Aβ40 and Aβ42 have confirmed the presence of intraneuronal
Aβ and suggested a pathophysiological role for this Aβ
pool [12–14]. In the past few years several excellent reviews
have discussed the evidence available on accumulation of
intracellular Aβ in brains of AD patients and animal models
of AD and its impacts on pathogenesis of AD, synaptic
impairment, and neuronal loss [6, 9, 11, 15–17]. Here we
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just mention the most salient aspects of intracellular Aβ
accumulation without reviewing the evidence exhaustively.

Intraneuronal accumulation of Aβ is one of the earliest
pathological events in humans and in animal models of
AD. Intraneuronal Aβ42 immunoreactivity precedes both
NFT and Aβ plaque deposition [12, 13], and in the triple
transgenic mouse model, Long-Term Potentiation (LTP)
abnormalities and cognitive dysfunctions correlate with the
appearance of intraneuronal Aβ, prior to the occurrence of
plaques or tangles [18, 19]. Moreover, when Aβ is removed
by immunotherapy, the intracellular pool of Aβ reappears
before tau pathology [20]. Importantly, Aβ accumulation
within neurons precedes neurodegeneration in nearly all the
animal models in which intracellular Aβ and neuronal loss
have been reported, and all models in which intracellular
accumulation of Aβ was examined and was present showed
synaptic dysfunction [21]. Studies in cultured cells also
showed accumulation of intracellular Aβ [22–24].

The observation that cortical neurons that accumulate
Aβ42 in brains of AD and Down syndrome patients are
apoptotic [25, 26] and that microinjections of Aβ42 or
cDNA-expressing cytosolic Aβ42 rapidly induce cell death
of primary human neurons [27] indicated the importance
of intracellular Aβ in neuronal death. In support of this
notion, generation of transgenic mice harboring constructs
that target Aβ either extracellularly or intracellularly has
demonstrated that only intracellular Aβ-producing trans-
genic mice developed neurodegeneration [28]. Furthermore,
a recent quadruple-mutant mouse has shown neuronal
loss in association with intracellular accumulation of Aβ
[29]. There is also mounting evidence that intracellular
Aβ accumulation is associated with neuritic and synaptic
pathology [24, 30, 31] and with alterations of synaptic
proteins [32]. Besides, the internalization of Aβ antibodies
reduced intraneuronal Aβ and protected synapses [33] as
well as reversed cognitive impairment [19].

With respect to the specific form of Aβ that accumu-
lates intracellularly, the use of C-terminal-specific antibodies
against Aβ40 and Aβ42 in immunocytochemical studies
of human brains with AD pathology, indicated that it
is Aβ42 the peptide present within neurons [12, 13, 34–
38]. Furthermore, using laser capture microdissection of
pyramidal neurons in AD brains, Aoki and collaborators
showed increased Aβ42 levels and elevated Aβ42/Aβ40 ratio in
neurons from sporadic as well as from familial cases of AD,
whereas Aβ40 levels remained unchanged [39].

An interesting development of the “intracellular Aβ” cas-
cade is the possibility that Aβ plaques would originate from
death and destruction of neurons that contained elevated
amounts of Aβ [13, 40, 41]. Indeed, the release of Aβ from
intracellular stores by dying cells seems responsible for the
reduction or loss of intraneuronal Aβ42 immunoreactivity
in areas of plaque formation [12]. Recently, a model was
presented in which internalized Aβ starts fibrillization in the
multivesicular bodies (MVBs) upon spontaneous nucleation
or in the presence of fibril seeds, thus penetrating the
vesicular membrane causing cell death and releasing amyloid
structures into the extracellular space [42].

The contribution of intracellular Aβ to formation of
NFTs has also been proposed. The intracellular pool of Aβ
associates with tangles [43], and intracellular Aβ may disrupt
the cytoskeleton and initiate the formation of aggregated
intracellular Tau protein [12]. Contrary to the concept
that intracellular Aβ is linked to NFTs, one report found
that intracellular Aβ is not a predictor of extracellular Aβ
deposition or neurofibrillary degeneration, although in this
study mostly an N-truncated form of Aβ was examined [14].

3. Origin of Intraneuronal Aβ

Based on the evidence presented above, it is now well
accepted that two pools of Aβ exist in the brain: intracellular
and extracellular. Both Aβ pools are important, and a
dynamic relationship between them exists [9, 44].

The intraneuronal pool of Aβ has a double origin: slow
production from APP inside the neurons and uptake from
the extracellular space. These two mechanisms are quite
distinct and are regulated differently. Hence, understanding
which pathway, if any, is more relevant to AD pathogenesis
may help in the identification of potential targets to treat
the disease. There is extensive evidence that indicates the
production of Aβ42 from APP “in situ” inside the neurons
[23, 45–53]. We are not going to discuss this mechanism
of intracellular Aβ accumulation, which has been reviewed
recently [9, 15].

Several studies favor a mechanism that involves uptake
of Aβ from the extracellular pool [13, 37, 54, 55]. This
mechanism of internalization occurs selectively in neurons at
risk in AD as demonstrated using organotypic hippocampal
slice cultures in which Aβ42 gradually accumulates and is
retained intact by field CA1, but not by other subdivisions
[40, 56]. Moreover, Aβ from the periphery enters the brain
if the blood brain barrier is compromised and accumulates
in neurons but not in glia [57]. Recent work also favored a
mechanism of Aβ uptake from the extracellular pool based
on the fact that intracellular Aβ was always accompanied
by increased extracellular Aβ, while in subjects without
increased extracellular Aβ there was no detection of intra-
cellular Aβ [10].

Aβ uptake from the extracellular space and Aβ generation
from APP inside neurons have been linked in what can be
considered an autocatalytic vicious cycle or loop. According
to this concept, intracellular accumulation of Aβ42 causes
pronounced upregulation of newly generated Aβ42 within
neurons. Glabe’s group has shown that internalization
of exogenous Aβ42 by HEK-293 cells overexpressing APP
resulted in accumulation of amyloidogenic fragments of
APP [58]. The effect was specific since the amount of
nonamyloidogenic α-secretase carboxy-terminal fragments
was only slightly affected. The accumulation of the amy-
loidogenic fragments did not result from an increase in APP
synthesis, but instead it was due to specific enhancement of
peptides stability, possibly by interaction of the fragments
with stable Aβ aggregates causing evasion of the normal
degradation pathway. Glabe’s group also demonstrated that
the amyloidogenic fragments can be further cleaved to
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produce Aβ, further supporting the hypothesis that amyloid
accumulation is a process mechanistically related to prion
replication [41, 59]. Exogenous Aβ42 might initiate the
cycle in the multivesicular bodies or lysosomes, where
Aβ42 accumulates [40, 58]. The induction of amyloidogenic
APP fragments by Aβ42 was also documented in the field
CA1 of hippocampal slices [40], and the accumulation
of intracellular Aβ upon Aβ42 uptake was demonstrated
in dendrites of primary neurons [60]. Importantly, the
Aβ-induced synaptic alterations demonstrated in this last
study required amyloidogenic processing of APP. Indeed,
the decrease in synaptic proteins caused by extracellular Aβ
[32, 61] is reversed when Aβ is provided together with a γ-
secretase inhibitor or given to APP knockout neurons [60].
A link between extracellular Aβ-induced neuronal death and
APP cleavage has been suggested [60] based on the evidence
that extracellular Aβ causes death of wild type neurons but
not APP-knock out neurons [62] and that point mutations in
the NPXY motif in the C-terminus of APP block Aβ toxicity
[63].

4. Aβ Uptake by Neurons

The molecular events involved in neuronal Aβ internaliza-
tion in AD are unclear. Aβ is internalized by dissociated
neurons, neuron-like cells, and other cells in culture [64–71]
(Song, Baker, Todd, and Kar, resubmitted for publication)
and in cultured hippocampal slices [40, 56, 72]. In neurons,
as in other cells, several forms of endocytosis exist (reviewed
in [73–75]). Clathrin-mediated endocytosis has been con-
sidered the major mechanism of Aβ internalization until
recently but many other endocytic processes independent of
clathrin may mediate Aβ uptake.

4.1. Uptake of Aβ through ApoE Receptors. The first dis-
covered mechanism of clathrin-mediated Aβ endocytosis
involved receptors that bind to apolipoprotein E (apoE) and
belong to the Low-Density Lipoprotein Receptor (LDLR)
family. ApoE is a polymorphic protein that transports
extracellular cholesterol. We [76] and others [77] have
reviewed the role of apoE in AD, including the increased
risk of developing AD in individuals who express the apoE4
isoform. ApoE receptors themselves play important roles in
processes related to AD such as neuronal signaling, APP
trafficking, and Aβ production (reviewed in [78]).

Studies in human brain indicated that intracellular
Aβ accumulation in damaged cells correlates with apoE
uptake [54], and neurons with marked intracellular Aβ42

immunoreactivity also stain positively for apoE [12]. Fur-
thermore, the presence of one or two apoE4 alleles strongly
correlates with an increased accumulation of intraneuronal
Aβ [79]. The finding of apoE inside neurons has been taken
as evidence of receptor-mediated uptake [80, 81]. In support
of this concept, intraneuronal Aβ is significantly decreased in
brains of PDAPP mice lacking apoE [82].

From the several receptors that belong to the LDLR
family and bind apoE, the evidence available points at the
low-density lipoprotein receptor-related protein 1 (LRP1) as
the most important in Aβ uptake. LRP1 is required for Aβ

endocytosis in several cell types including cortical neurons
from Tg2576 mice [67], glioblastoma [68] and neuroblas-
toma cells [83], fibroblasts [72], human cerebrovascular cells
[69], synaptosomes and dorsal root ganglion cells [84], and
brain endothelial cell lines [85]. Moreover, overexpression
of the LRP minireceptor mLRP2 enhanced Aβ uptake
in PC12 cells [82], and increased extracellular deposition
of Aβ (which was considered as indication of reduced
internalization, although this is questionable) was detected
in mice that have reduced levels of LRP1 due to deficiency of
the chaperone receptor-associated protein (RAP) [83].

Binding of apoE to Aβ increases or decreases Aβ endo-
cytosis depending on the cell type and other environmental
conditions [84–90]. ApoE4, in particular, seems to cause a
switch to a mechanism independent of LRP1, mediated by
other receptors, which in the blood-brain barrier seems to
be VLDLR [85, 87]. Whether the formation of a complex
Aβ-apoE is required for the regulation of Aβ uptake is still
unclear. Some studies showed evidence that LRP1 binds and
mediates Aβ endocytosis directly (reviewed in [78, 91]),
thus apoE would not be required. However, Yamada and
colleagues found that Aβ does not interact directly with
LRP1 and suggested that a coreceptor might be needed for
Aβ internalization [85]. A fragment of apoE increased Aβ
uptake without binding Aβ directly or without inducing up-
regulation of LRP1 [92]. As apoE, α2-macroglobulin (α2M)
has been linked to AD and is a ligand of LRP1. α2M promotes
Aβ uptake by cortical neurons [67] and fibroblasts [72] in
culture.

4.2. Uptake of Aβ in the Absence of ApoE. We have speculated
that Aβ would exist in the brain in equilibrium between
a complex with apoE (or other chaperones) and free Aβ
(Figure 1). That equilibrium would be affected by the affinity
of apoE for Aβ, which is isoform specific. In addition,
during AD, especially when soluble Aβ accumulates in the
brain parenchyma, the pool of free Aβ would increase. We
demonstrated that neurons are able to internalize free Aβ in
the absence of apoE [66]. ApoE-free Aβ is endocytosed by
a mechanism that does not involve receptors of the LDLR
family, since it is insensitive to RAP. Interestingly a similar
RAP-independent Aβ uptake mechanism has been previously
observed in synaptosomes, although it was interpreted
as nonspecific internalization by constitutive membrane
endocytosis [84]. In our case however, it occurs selectively
in neuronal axons and, albeit it is independent of clathrin it
requires dynamin suggesting that it is a regulated mechanism
of endocytosis. A common form of clathrin-independent
endocytosis that requires dynamin also involves caveolae,
but in our studies we found that Aβ endocytosis does
not require caveolin [66]. We reached this conclusion not
because neurons do not express caveolin, in fact the neurons
used in our studies (except those isolated from caveolin null
mice) do express caveolin, as demonstrated for many other
neurons [93], but neurons seem to lack caveolae. N2A cells
internalize Aβ by another clathrin-independent, dynamin-
mediated endocytosis that requires RhoA [65] suggesting
that Aβ might also use the pathway of the IL2Rβ receptor
[74].
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Figure 1: Mechanisms of Aβ internalization in neurons and glia.
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4.3. Lipids and Aβ Endocytosis. Our work implied that at
least one mechanism by which neurons internalize apoE-
free Aβ involves noncaveolae, GM1-containing rafts [66].
Lipid raft endocytosis occurs in cells with and without
caveolae [94]. Aβ uptake by this mechanism is impaired by
the simultaneous inhibition of cholesterol and sphingolipid
synthesis, and, under these conditions, there is also decreased
uptake of cholera toxin subunit B (CTxB). CTxB binds
specifically to the ganglioside GM1 and is a known marker
for clathrin-independent endocytosis in many cells [73].
Raft-mediated endocytosis is regulated by plasma membrane
cholesterol and sphingolipid. Cholesterol regulates several
processes that take place in AD including APP cleavage,
Aβ production and/or aggregation, and intracellular APP
trafficking [95, 96]. Likewise, sphingolipids and gangliosides
participate in key events that involve Aβ [96, 97]. Previous
work demonstrated that the level of cholesterol at the cell
surface regulates Aβ binding and Aβ toxicity [98–100].
None of these studies investigated the role of cholesterol
in Aβ internalization. The inhibition of Aβ uptake under
low cholesterol and sphingolipid levels could be explained
by the disorganization of lipid rafts with the consequent
misslocalization of a putative Aβ receptor. Alternatively, Aβ
could be internalized in a complex with GM1. Our studies
support this last possibility for two reasons; internalized
Aβ partially colocalizes with CTxB, and treatment with
fumonisin B1 causes decrease of GM1 synthesis [101] and
blocks Aβ endocytosis [66]. Our results argue for a concerted
role of sphingolipids/gangliosides which is in agreement with
extensive evidence and with the model proposed by Dr.
Yanagisawa’s group [97].

4.4. Nicotinic Acetylcholine Receptors. Other receptors impli-
cated in Aβ internalization are the nicotinic acetylcholine
receptors (nAChRs), which have been linked to AD in several
other ways (reviewed in [102, 103]). The most vulnerable
neurons in AD appear to be those that abundantly express
nAChRs, particularly neurons of the hippocampus and
cholinergic projection neurons from the basal forebrain that
express the α7nAChR. α7nAChR colocalizes with amyloid
plaques and more importantly, α7nAChR regulates calcium
homeostasis and acetylcholine release, two key events in
cognition and memory. In addition, α7nAChR seems to
mediate at least some of the toxic effects of Aβ and Aβ-
induced tau phosphorylation.

nAChRs seem to be internalized by endocytosis indepen-
dent of clathrin and dynamin, in a process that requires the
polymerization of actin through activation of Rac-1 [104].
Several studies have suggested the involvement of α7nAchR
in the internalization of Aβ42. Work in brains from patients
with AD and in neuroblastoma cells expressing α7nAChR
suggested that Aβ42 accumulates selectively in neurons that
express this receptor as the result of internalization of the
Aβ in a complex with α7nAChR [55]. It is unclear if the role
of α7nAChR on Aβ uptake depends on the direct binding of
Aβ to the nAChR, although Aβ interacts with α7nAChR with
high affinity [105, 106]. S 24795, a novel selective α7nAChR
partial agonist decreases the interaction between Aβ and
α7nAChR in vitro and reduces the intraneuronal Aβ load

in organotypic frontal cortical slices [107]. However, in our
studies using cultured primary rat neurons, Aβ42 was unable
to compete with α-BTx nicotinic receptor binding sites in
neuronal membranes, and α-BTx did not affect Aβ42 inter-
nalization, despite the expression of α7nAChR, especially in
the axons of these neurons [66]. Our results are in agree-
ment with evidence obtained using three different systems
namely membrane preparations from rat hippocampus,
brain slices and neuroblastoma cells expressing α7nAChR
[108]. The difference in the results may be explained by
the use of different Aβ preparations and the presence or
absence of lipoproteins (and therefore Aβ chaperones) in
the different studies. Recently, it was shown that the loss
of α7nAChR in Tg2576 mice (A7KO-APP mice) enhances
Aβ oligomer accumulation in the extracellular space and
increases early cognitive decline and septohippocampal
pathology in young animals [109], but improves cognitive
deficits and synaptic pathology in aged A7KO-APP mice
[110]. It would be interesting to assess the intraneuronal
levels of Aβ in the brain of those animals at different
ages.

4.5. Integrins and NMDA Receptors. Two receptors present
in many synapses are integrins and N-methyl-D-aspar-
tate (NMDA) receptors. Both receptors regulate clathrin-
mediated endocytosis. Several links between Aβ and NMDA
receptors have been reported. Aβ-induced neurodegenera-
tion [111, 112], disruption of axonal transport [113], and
impairment of synaptic transmission [61] are mediated, at
least in part, by NMDA receptors. In agreement, neurons
are protected against neuronal degeneration and Aβ toxicity
by transient inactivation of NMDA receptors [114, 115].
Memantine is a noncompetitive NMDA receptor antagonist
used for the treatment of moderate to severe AD patients.
Memantine protects against neuronal degeneration and Aβ
toxicity [111, 116]. Importantly, new evidence from Kar’s
laboratory indicated that the protective role of memantine
in cultured cortical neurons are independent of endocytosis
since memantine was unable to inhibit Aβ uptake (Song,
Baker, Todd, and Kar, resubmitted for publication). In other
systems, however, the uptake and the effects of Aβ42 on
hippocampal neurons were blocked by the NMDA receptor
antagonist APV [56]. Moreover, it has been reported that Aβ
mediates and promotes NMDA receptor endocytosis possibly
via the α7nAChR [61, 117].

The uptake of Aβ by neurons in hippocampal slices is
also regulated by integrins. Bi and colleagues found that
integrin antagonists enhance Aβ uptake [56]. They propose
the following mechanisms of action for integrin antagonists:
(i) the increase in peptide availability for uptake, due to
disruption of the interaction of Aβ with integrins, which
might represent the first step in Aβ extracellular proteolysis,
(ii) the facilitation of endocytosis, by reducing the binding
of integrins to the extracellular matrix and submembrane
cytoskeleton which would slow invagination and endocytosis
and (iii) a change in lysosomal proteolysis of Aβ since
adhesion receptors can change the rate at which primary
lysosomes are formed. Moreover, they suggested that the
selectivity in Aβ uptake could be explained by the different
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types of integrin subunits expressed in each area of the brain
or even in specific neurons.

4.6. Receptor for Advanced Glycation End Products (RAGEs).
The receptor for advanced glycation end products (RAGEs)
is considered a primary transporter of Aβ across the blood-
brain barrier into the brain from the systemic circula-
tion [118], but some evidence exists that RAGE binds
monomeric, oligomeric, and even fibrillar Aβ at the surface
of neurons [119–121]. Recently, it was reported that RAGE
cointernalizes with Aβ and colocalizes with Aβ at the
hippocampus of mouse model of AD and that blockade of
RAGE decreases Aβ uptake and Aβ toxicity [122].

5. Consequences of Intraneuronal
Accumulation of Aβ

The cellular uptake and degradation of Aβ have been
originally considered as mechanisms that reduce the concen-
tration of Aβ in interstitial fluids. However, Aβ42 is degraded
poorly, and its accumulation inside neurons has dramatic
consequences. Intraneuronal Aβ accumulates within the
endosomal/lysosomal system, in vesicles sometimes identi-
fied as lysosomes [13, 40, 56, 64, 71, 82, 123] and some
others as late endosomes/multivesicular bodies (MVBs) [30,
124–126]. In sympathetic neurons we found that Aβ42

causes sequestration of cholesterol (Figure 2(a)), which
colocalizes with LAMP-1 and is the site of Aβ accumulation
(Figure 2(b)).

Aβ42 internalized from the extracellular milieu is quite
resistant to degradation possibly due to formation of pro-
tease resistant aggregates. Shorter Aβ peptides are degraded
and do not accumulate after endocytosis [58, 59, 123, 127].
In one study Aβ42 was shown to be cleared rapidly after
delivery to lysosomes, although it previously concentrated
and aggregated within the cells, possibly serving as a seed for
further Aβ aggregation [71].

Aβ accumulation in lysosomes may cause loss of lyso-
somal membrane impermeability and leakage of lysosomal
content (proteases and cathepsins) causing apoptosis and
necrosis [13, 55, 123, 128–130] (Song, Baker, Todd, and
Kar, resubmitted for publication). The release of lysosomal
contents into the cytoplasmic compartments has been
considered one of the earliest events in intracellular Aβ-
mediated neurotoxicity in vitro [123], and inhibition of
lysosomal enzymes protects against Aβ toxicity in cultured
cells [131]. ApoE4 potentiates Aβ-induced lysosomal leakage
and apoptosis in N2A cells by a mechanism that requires
endocytosis by LRP1 [132]. Immunogold studies suggested
that the disruption of MVBs could release enough Aβ42 to
induce neurotoxicity [30].

An increase in cathepsin D levels secondary to Aβ
internalization has been reported in hippocampal slices [56,
133] and cultured cortical neurons (Song, Baker, Todd, and
Kar, resubmitted for publication). Elevation of cathepsin D
levels is a characteristic of AD brains [134–136]; endosome
dysfunction occurs early in AD, before amyloid deposition
(reviewed in [128]) and is enhanced in persons expressing

apoE4 [137]. Abnormal endosomes are also detected in
Down syndrome and Niemann-Pick type C, in which Aβ
peptide accumulates intracellularly [138].

Endosomal dysfunction, however, might not necessarily
involve lysosomal leakage in all cases but could involve
defects in intracellular trafficking. MVBs are considered late
endosomes, which form by fusion of early endosomes with
signaling endosomes and serve as vehicle for the transport of
receptors and signaling molecules [139]. MVBs are impor-
tant vesicles in retrograde transport, and accumulation of Aβ
within MVBs would impair their degradative and trafficking
functions. MVBs contain inner vesicles with lower pH in
the lumen. Aβ interacts with, and partitions into negatively
charged membranes [140] and there is evidence that Aβ42 is
localized to the outer membrane of the MVBs in brains of
patients with AD [30], and is inserted in the membrane of
lysosomes in cultured cells that internalized Aβ [130]. The
MVBs represent a good location for Aβ aggregation because
MVBs are rich in membranes and have low pH [30]. In
addition, Aβ accumulation in MVBs membranes will likely
disrupt intracellular trafficking as mentioned above.

In neurons, axonal retrograde transport is essential for
neuronal life since it secures the delivery of growth factors
and/or their survival signals to the soma. This requires
the normal function of the endosomal system in axons
[141, 142] and will likely be affected by Aβ accumulation in
axonal MVBs. We demonstrated that axons are entry points
of Aβ and apoE [66, 143] suggesting that accumulation
of Aβ in axonal MVBs could impair retrograde transport.
Our new evidence suggests that cholesterol accumulation in
MVBs could worsen intracellular trafficking in neurons. The
impairment of retrograde transport has been proposed to
play an important role in degeneration of basal forebrain
cholinergic neurons in AD [144, 145]. Recent work has
shown impairment of BDNF-mediated TrkB retrograde
transport in Tg2576 axons and in cultured neurons treated
with Aβ [146].

Protein sorting into MVBs is a highly regulated event.
One of the mechanisms of MVB sorting is the ubiquitin
proteasome system (UPS) [147]. Aβ inhibits the proteasome
[148–150]. Important in the context of this review, part of Aβ
internalized by neurons appears in the cytosol, where it could
get in contact with the proteasome [149]. LaFerla’s group
demonstrated an age-dependent proteasome inhibition in
the triple transgenic mice model of AD [150]. This inhibition
was responsible for tau phosphorylation and was reversed by
Aβ immunotherapy. Inhibition of the UPS was responsible
for impairment of the MVB sorting pathway in cultured
Tg2576 neurons challenged with Aβ [124]. Inhibition of fast
axonal transport by Aβ by mechanisms that do not involve
MVBs directly has also been reported [151].

6. Neuronal Death Secondary to Aβ Uptake

The role of Aβ in neuronal death and dysfunction has been
investigated extensively. The attention has focused mainly
on how extracellular Aβ causes neuronal death. On the
other hand, whether the intracellular accumulation of Aβ
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is a cause of neuronal death has been a matter of debate.
Some groups consider that intracellular accumulation of
Aβ is not responsible for neuronal loss. For instance, the
appearance of Aβ immunoreactivity in neurons in infants
and during late childhood, adulthood, and normal aging,
suggests that this is part of the normal neuronal metabolism
[14]. Moreover, Aβ did not produce clear signs of cell
death upon infusion in hippocampal slices [40] although
in combination with transforming growth factor-β (TGF-
β) it induced neuronal degeneration in field CA1 [152]. On
the other hand, evidence that supports the importance of
intracellular Aβ in cell death includes the observations that
different mice models of AD show dramatic intraneuronal
Aβ accumulation and neuronal cell death that correlates with
intraneuronal Aβ accumulation and precedes Aβ deposition
[7, 26, 29, 55, 126, 153]. Moreover, the abnormalities and
cognitive dysfunctions in several models of AD correlate with
the appearance of intraneuronal Aβ, before the appearance
of plaques or tangles [18, 19]; markers of apoptosis are
present in the subset of neurons that accumulate Aβ in
Down syndrome brains [25], and microinjections of Aβ42

or a cDNA-expressing cytosolic Aβ42 rapidly induces cell
death of primary human neurons [27]. In addition, treat-
ment of cultured neurons or neuron-like cells with Aβ42

causes Aβ internalization and death [55, 65, 66, 116, 123,
154, 155] (Song, Baker, Todd, and Kar, resubmitted for
publication).

The evidence above opens the question whether Aβ
internalization is required for toxicity. Inhibition of Aβ
endocytosis in N2A cells [65], primary cortical neurons
(Song, Baker, Todd, and Kar, resubmitted for publication)
and sympathetic neurons (Saavedra and Posse de Chaves,
unpublished observations) resulted in significantly less intra-
cellular Aβ accumulation and reduced Aβ toxicity. Besides,
the selective toxicity of Aβ oligomers versus Aβ fibrils has
been explained by the preferential oligomeric Aβ uptake by
receptor-mediated endocytosis [156]. As indicated above, the
endocytic mechanisms used by Aβ in different cells or under
different conditions seem to be different, but in all cases the
fate of internalized Aβ is similar, being delivered to MVBs or
lysosomes.

7. Aβ Internalization by
Astrocytes and Microglia

The accumulation of activated astrocytes and microglia
close to Aβ deposits suggests that these cells play a role
in AD pathology [157–159]. Astrocytes are the most abun-
dant type of cells in the CNS. Upon exposure to Aβ,
they become activated and play a neuroprotective role
by extending their hypertrophic processes to physically
separate the neurons from Aβ fibrils [160]. In addition,
activated astrocytes can internalize and degrade Aβ [161],
possibly in an attempt to reduce Aβ availability to neurons.
Nevertheless, exposure of astrocytes to Aβ could have
detrimental consequences. Aβ upregulates inflammatory
cytokines and increases the release of nitric oxide in cultured
astrocytes [162]. Moreover, Aβ induces not only astrocytic

cell death [163], but also neuronal cell death indirectly
[164].

Microglia are mononuclear phagocytes of the innate
immune system in the CNS. MicrogIia can act as a dual
sword in AD pathology. Aβ deposition activates microglia,
which release proinflammatory cytokines and other cyto-
toxic compounds that cause neurodegeneration [165, 166].
Some studies, however, suggested a neuroprotective role of
microglia via their ability to internalize and degrade Aβ
[167–170].

The evidence of Aβ accumulation in brain glia in AD
is contentious. Aβ accumulation in areas with high Aβ
deposition has been shown in astrocytes and microglia
[171] or astrocytes but not microglia or neurons [172, 173].
Blood-derived Aβ42 is able to cross a compromised blood-
brain barrier, is internalized, and accumulates in cortical
pyramidal neurons but not in glia [57]. But continuous
intracerebral infusion of Aβ in rat brain resulted in Aβ
accumulation in astrocytes but not microglia [174]. The
lack of intracellular Aβ in microglia cannot be interpreted
as microglia being unable to take up Aβ, since it could
also reflect that they are highly efficient in degrading it
[174]. A theory that opposes this concept establishes that,
instead of accumulating Aβ intracellularly, microglia release
fibril Aβ contributing to the growth of amyloid plaques
[160, 175]. Aβ internalization by microglia in vitro has been
shown in several studies [176, 177]. 3D reconstruction of
ultrathin sectioning of microglia cells in the vicinity of dense-
core amyloid plaque showed that amyloid plaques were
exclusively extracellular deposits suggesting that microglia do
not internalize fibril Aβ [178]. On the contrary, Bolmont
et al. found that plaque-associated microglia internalize a
fluorescent dye binding amyloid injected systemically. The
intracellular dye particles were positive for Aβ and were
not continuous with the amyloid plaque, suggesting true Aβ
internalization by microglia [179].

As discussed for neurons, the intracellular pool of Aβ
in microglia and astrocytes could be derived from increased
endogenous production or increased internalization of
exogenous Aβ. Some studies showed that Aβ production in
these cells is very low due to reduced APP expression in
microglia and reduced beta-secretase activity in astrocytes
compared to neurons [180–182]. Nevertheless some stimuli
induce expression of APP, beta-secretase, γ-secretase and
production of Aβ in astrocytes and microglia [183–185].

7.1. Aβ Internalization by Astrocytes. The involvement of
LDLR/LRP1 in Aβ internalization by astrocytes is contro-
versial. The ability of astrocytes to degrade Aβ deposits
demonstrated in brains of transgenic PDAPP mice depends
on apoE secretion and is blocked by RAP suggesting a
mechanism mediated by a member of the LDLR family
[186]. Unfortunately, Aβ internalization by astrocytes was
not examined in this study [186], and in view that Aβ
degradation by astrocytes could be mediated by extracellular
matrix metalloproteinases [187], Aβ internalization in this
paradigm is not granted. One study showed that Aβ-induced
activation of cultured astrocytes is mediated by LRP [188]
suggesting that LRP participates in Aβ uptake, although
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Aβ internalization was not directly examined under these
conditions either. Conversely, another study demonstrated
that Aβ internalization by astrocytes is not affected by
RAP treatment [69] arguing against the involvement of
LDLR/LRP1.

The accumulation of fibrillar Aβ in cytoplasmic vesicles
of human astrocytes is associated with increased cellular
level of apoJ/clusterin [189]. Since apoJ/clusterin binds to
fibrillar Aβ [190] and is involved in LRP1- and scavenger-
receptor-mediated endocytosis/phagocytosis [191], it was
hypothesized that human astrocytes can take up fibril Aβ via
apoJ/clusterin-mediated endocytosis [189]. Recently, it has
been shown that astrocytes can take up oligomeric Aβ better
than fibrillar Aβ [192]. ApoE and apoJ/clusterin reduced
oligomeric Aβ positive astrocytes without affecting fibril Aβ
uptake [192]. This indicates that Aβ uptake by astrocytes
depends on Aβ aggregation status and that oligomeric Aβ
internalization by astrocytes could be mediated by the LDLR
family.

Scavenger receptors (SRs) are cell surface receptors
expressed by diverse cell types that bind to a variety of
unrelated ligands [193]. Based on the ability of fucoidan
and polyinosinic acid, known ligands for SR, to reduce Aβ
binding to and internalization by astrocytes SRs have been
recognized as possible mediators of Aβ internalization by
astrocytes [164, 194, 195].

Formyl peptide receptor-like 1 (FPRL1) is a G protein-
coupled receptor regulating the immune responses [196].
FPRL1 mediates Aβ internalization in astrocytes. Immunos-
taining of Aβ-treated astrocytes shows colocalization of
internalized Aβ and FPRL1. In addition, cotreatment with
a FPRL1 agonist (fMLF) or antagonist (WRW4) reduces
Aβ internalization. This indicates that Aβ binds to FPRL1
stimulating the complex internalization [197].

Another type of receptors that has shown to be involved
in Aβ internalization by astrocytes is leucine-rich glioma
inactivated protein 3 (LGI3), a type I transmembrane
protein containing leucine rich repeat (LRR) [198, 199].
Aβ induces the expression of the Lib gene in astrocytes,
which encodes for LRR-containing type I transmembrane
proteins [200]. These LRR containing proteins are thought
to mediate protein-protein or protein-matrix interactions
[201]. LGI3 colocalizes with Aβ at the plasma membrane
and intracellularly in astrocytes suggesting that LGI3 could
be playing a role in Aβ internalization [198]. This was
supported by the ability of LGI3 downregulation to reduce
Aβ internalization by astrocytes [199]. LGI3 is involved in
clathrin-mediated endocytosis in astrocytes and neuronal
cell lines [199]. It interacts with flotillin regulating APP
intracellular trafficking in neuronal cells [202].

Phagocytosis is another mechanism that could mediate
Aβ internalization by astrocytes. Astrocytes that accumu-
late Aβ in AD brains also have high levels of neuron-
specific choline acetyltransferase (ChAT) and α7nAChR
[163], which suggest that astrocytes are able to internalize
Aβ-loaded neurons via phagocytosis. However, the evidence
that cytochalasin B, an inhibitor of phagocytosis, does not
block Aβ internalization in astrocytes is in conflict with this
notion [203].

7.2. Aβ Internalization by Microglia. With respect to the
mechanisms that mediate Aβ uptake in microglia, the
evidence suggest that different mechanisms exist for soluble
and aggregated Aβ (reviewed in [204]). Soluble Aβ inter-
nalization by microglia does not depend on the presence
of apoE [205] and is not blocked by RAP treatment [168,
170] excluding the involvement of LDLR/LRP-1. Internalized
soluble Aβ does not colocalize with internalized transfer-
rin further excluding clathrin-mediated endocytosis [168].
Moreover, soluble Aβ internalization by microglia is non-
saturable excluding receptor-mediated internalization [168,
170]. Soluble Aβ internalization by microglia has been clas-
sified as fluid phase macropinocytosis, a process dependent
on cytoskeletal structures. Aβ-containing macropinocytic
vesicles fuse with late endosomes and later with lysosomes,
where they are degraded [168]. Blocking microglial surface
receptors that mediate fibril Aβ internalization do not affect
internalization of soluble Aβ [168] confirming that the two
mechanisms are different.

Fibril/aggregated Aβ internalization by microglia seems
to proceed by receptor-mediated endocytosis and receptor-
mediated phagocytosis [177, 206]. The surface receptors
involved are Pattern Recognition Receptors (PRRs). These
are the receptors used by the innate immune system to
recognize pathogen associated molecular pattern, including
SR-type A, CD14, CD47, SR-type B (CD36), α6β1 integrin,
and toll-like receptors (TLRs) [177, 206–211]. Microglia
take up fibril Aβ into phagosomes, which then enter the
endosomal-lysosomal system for degradation [177, 206,
207]. Fibril Aβ internalization by microglia is blocked by the
scavenger receptor agonists Ac-LDL or fucoidan, but not by
RAP indicating the involvement of scavenger receptors but
not LDLR/LPR-1 [177]. Microglia that do not express CD14
have lower ability to take up Aβ [207]. The microglial Aβ cell
surface receptor complex, composed of α6β1 integrin, CD47
(integrin-associated protein), and the B-class scavenger
receptor CD36 [210], mediates microglial uptake of fibril
Aβ via a receptor mediated nonclassical phagocytosis [206].
Activation of toll-Like Receptors (TLRs) increases microglial
ability to internalize Aβ [207–209, 212]. TLRs activation
increases the expression of G protein-coupled mouse formyl
peptide receptor 2 (mFPR2), mouse homologue of FPRL1,
in microglia. Increased Aβ uptake by microglia upon TLRs
activation was blocked by pertussis toxin PTX, Gαi-protein
coupled receptor deactivator, W peptide, mFPR2 agonist,
anti-CD14, as well as scavenger receptors ligand. This
indicates that mFPR2, CD14 and scavenger receptors work
together to increase Aβ internalization by microglia upon
TLR activation [208, 209]. In addition, formyl peptide
receptor-like 1 (FPRL1) was also found to mediate Aβ
internalization in microglia [197].

In addition, microglia can internalize fibril Aβ by
phagocytosis stimulated by Aβ-antibody complex interaction
with Fc-receptor [177, 213] and/or fibril Aβ interaction with
the complement system C1q (antibody dependent) or C3b
(antibody independent) [204, 214–216].
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8. Conclusions

The intracellular accumulation of Aβ has been confirmed,
and evidence of Aβ internalization from outside the cells
exist. Neurons seem to use different mechanisms than
glia to take up Aβ. The existence of phagocytic processes
in glia suggests that these cells participate mostly in the
clearance of Aβ. More research is required to understand
if neurons take up Aβ under physiological conditions and
whether this is part of Aβ normal metabolism. Regulated
endocytosis is the main process by which neurons internalize
Aβ. The participation of a number of receptors suggests
that more than one mechanism exists. The challenge ahead
is to understand the significance of this diversity in the
development and progression of AD.
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