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In‑vitro cytotoxicity assessment 
of carbon‑nanodot‑conjugated Fe‑aminoclay 
(CD‑FeAC) and its bio‑imaging applications
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Abstract 

We have investigated the cytotoxic assay of Fe-aminoclay (FeAC) nanoparticles (NPs) and simultaneous imaging in 
HeLa cells by photoluminescent carbon nanodots (CD) conjugation. Non-cytotoxic, photostable, and CD NPs are 
conjugated with cationic FeAC NPs where CD NPs play a role in bio-imaging and FeAC NPs act as a substrate for CD 
conjugation and help to uptake of NPs into cancer cells due to positively charged surface of FeAC NPs in physiologi‑
cal media. As increase of CD-FeAC NPs loading in HeLa cell in vitro, it showed slight cytotoxicity at 1000 μg/mL but 
no cytotoxicity for normal cells up to concentration of 1000 μg/mL confirmed by two 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) and neutral red (NR) assays, with further observations by 4′,6-diamidino-
2-phenylindole (DAPI) stained confocal microscopy images, possessing that CD-FeAC NPs can be used as potential 
drug delivery platforms in cancer cells with simultaneous imaging.
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Background
Over and beyond the various organic [1–6] and inorganic 
[7–10] nanoparticles (NPs), many hybrid organic–inor-
ganic [11–16] NPs have been intensively researched in 
biomedical, environmental, and energy applications for 
their size, shape, charge, and surface chemistry includ-
ing diverse functionalities. Specific organic-functional 
groups in many hybrid NPs offer usually unique proper-
ties in terms of the accessability and bioactivity of target-
ing cells or biomolecules in bionanotechnology without 
some post-functionalization in nanotechnology [17–20].

One candidate of organic–inorganic NPs with cova-
lent-bonded primary amines, namely 3-aminopropyl- 

functionalized magnesium phyllosiliate [i.e., Mg-amin-
oclay, formulated as [H2N(CH2)3]8Si8Mg6O12(OH)4] was 
developed by one-pot sol–gel reaction under ambient 
conditions by Mann et al. [21, 22], showing unique inter-
actions of organic-pendents with cell or other molecules 
[23, 24] in biomedical fields, as well as with heavy met-
als [25] in environmental applications. This aminoclay 
structure is composed of tetrahedral brucite (MgO) in 
the middle, sandwiched by octahedral silica (SiO2) as the 
unit structure in the vertical direction (i.e., 2:1 trioctahe-
dral clay) and a repeated tetrahedral/octahedral structure 
in pairs, known as the 1:1 dioctahedral structure. Diverse 
high-density primary amines [–(CH2)3NH2] in octahe-
dral structures have been coined aminoclays [26], accord-
ing to the cationic metals used in their preparation [27, 
28].

Recently, organo-building blocks of Mg- and Ca-ami-
noclays were tested for possible use as drug-delivery 
carriers, and were found to result in neither cytotoxic-
ity nor inflammation [29]. Further, protonated clusters 
of Mg-aminoclay with positively charged zeta poten-
tial in the wide pH range of 2.0–12.0 [30] were tested as 
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biodistribution and elimination pathways in in vivo mice 
after Cy 5.0 conjugation with organo-building blocks 
in delaminated Mg-aminoclay. The results showed fast 
elimination or excretion of Mg-aminoclay in mice after 
oral or intravenous injection, respectively, without tox-
icity [31]. With the exceptions of transparent Mg- and 
Ca-aminoclays in aqueous solutions, other colored amin-
oclays have not been tested for cytotoxicity to determine 
the feasibility of their use in biomedical applications. 
Importantly, the lack or weak fluorescent-emission inten-
sity of aminoclays has driven research to explore fluo-
rescent imaging for promising drug-delivery-carrier and 
simultaneous bio-imaging applications in diagnostics and 
therapeutics.

Carbon nanodots (CD) in zero-dimensional (0D) car-
bon materials [32–34] in the form of biocompatible and 
non-toxic fluorescent NPs with properties distinct from 
those of one-dimensional (1D) carbon nanotubes (CNTs) 
[12, 35, 36] and two-dimensional (2D) graphene [37–39], 
are especially intriguing for their photostability and bio-
imaging, and contrast-agent applicabilities, Also, CD has 
a potential of their mass production from organic mol-
ecules using eco-friendly preparation methods [34].

Results
CD conjugated FeAC (CD‑FeAC) NPs
In the present study, characterizations of water-solu-
bilized FeAC NPs [27, 40–42] and photoluminescent 
(PL) CD-conjugated FeAC (CD-FeAC) NPs was per-
formed to determine their cytotoxicities in designed 
cell lines (Table  1). Particularly, the uptake of CD-
FeAC NPs in HeLa cells, which is two different-sized 
and multifunctional NP platforms, was bio-imaged. 
Schematically (Fig.  1), mesolamellar-stacked FeAC 
NPs were delaminated in aqueous solution by repul-
sion of protonated-amine-enriched organo-building 
blocks of FeAC sheets. CD NPs, contrastingly, were dis-
persed in aqueous solution by 10  min bath sonication. 
1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-
hydroxysulfosuccinimide (EDS/NHS) conjugation at 
low temperature afforded organic pendent groups of 

organo-building blocks of FeAC (i.e., CD-FeAC) NPs 
without reforming mesolamellar layers.

Rudimental characteristics of FeAC, CD, and CD‑FeAC NPs
The PL spectra of FeAC, CD, and CD-FeAC NPs at 290–
410 nm excitation wavelengths were recorded with emis-
sion spectra (Fig. 2). The PL intensity of FeAC NPs was 
very weak (Fig. 2a), whereas CD NPs, at an 8.4 % inter-
nal quantum yield, showed suitable PL (Fig.  2b). The 
CD-FeAC NPs also showed good PL data for the pur-
poses of bio-imaging (Fig. 2c). In corresponding Raman 
spectra, due to the stong PL interference in the CD NPs, 
CD-FeAC NPs peaks showed indistinguishable D and G 
bands (Additional file  1: Figure S1) [43]. Transmission 
electron microscopy (TEM) images of FeAC, CD, and 
CD-FeAC NPs dispersed in aqueous solution showed 
successful conjugation of CD NPs with FeAC NPs, with 
clear contrasts (Fig. 3), compared to only carbon coated 
copper grid. FeAC NPs displayed the amorphous phase 
in the entire several-layer morphology, with distinct con-
trasts (Fig. 3a, b), which result is consistent with the rel-
evant previous study [40–42] and CD NPs manifested 
2–5  nm spherical and semicrystalline sizes but with 
some aggregated NPs with ~20 nm size (Fig. 3c, d), in the 
obtained atomic force microscopy (AFM) image show-
ing a rough root mean square (RMS) of 1.865 (Additional 
file 1: Figure S2). As for CD-FeAC NPs, CD NPs seemed 
to be uniformly distributed in the FeAC sheets, and FeAC 
NPs had an dispersion ability of CD NPs (Fig. 3e, f ), espe-
cially in light of the containment of CD NPs in the FeAC 
matrix [44].

For additional information relevant to in  vivo mice 
experimentation and further clinical trials, the aque-
ous behaviours of FeAC, CD, and CD-FeAC NPs also 
are needed. Thus, their surface chemistries (e.g., zeta 
potentials) and hydrodynamic sizes were measured in 
PBS buffer and serum-free RPMI media at neutral pH 
(Table  2). The surface charges of FeAC NPs in the PBS 
buffer and serum-free RPMI media were, respectively, 
approximately +8 and +2.3  mV of the zeta poten-
tials, whereas that of CD was approximately –30  mV. 

Table 1  Designed system of cell lines used in this study

Cell name Organism Tissue Cell type (morphology) Disease

HeLa Homo sapiens, human Cervix Epithelial (Epithelial) Adenocarcinoma

A549 Homo sapiens, human Lung – (Epithelial) Carcinoma

WI-38 Homo sapiens, human Lung Fibroblast (Fibroblast) Normal

WM-266-4 Homo sapiens, human Derived from metastatic site: skin Melanoma (Epithelial) Malanoma

CCD-986SK Homo sapiens, human Skin Fibroblast (Fibroblast) Normal

RAG Mus musculus, mouse Kidney Amoeboid Adenocarcinoma
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These results were ascribed, respectively, to the abun-
dance of protonated amine groups (i.e., cationic clus-
ters) and carboxylated groups. Accordingly, the zeta 
potentials of CD-FeAC NPs in PBS buffer and nutrient 
media were approximately −4.0 and −7.0  mV, respec-
tivley. The hydrodynamic sizes of FeAC, CD, and CD-
FeAC NPs averaged ~202/~337, ~10.5/~20.61, and 
~362.3/~519.4 nm in PBS buffer/serum-free RPMI media 
at neutral pH, respectively. Generally in serum-free RPMI 
media, the hydrodynamic size was increased due to the 
strong ionic effects related to the aggregation behavior 
of NP colloidals. As a result, the NP’s aggregation was 
induced. In comparison with TEM imaging analysis, DLS 
data showed relatively less aggregates. It may be related 
to drying effect for TEM sample preparation [41, 45].

XRD patterns and FT‑IR spectra of FeAC, CD, and CD‑FeAC 
NPs
For identification and confirmation of the crystalline/
amorphous phase, the power X-ray diffraction (XRD) 
patterns of FeAC, CD, and CD-FeAC NPs were recorded 
(Fig.  4a). The regular distance in the mesolamellar-
structured FeAC at d001 was calculated to ~14.26 Å at 
2θ  =  6.24°, and in the broad peaks at higher angles, 
the distances were ~7.83, ~3.92, ~2.77, and ~1.50 Å at 
2θ = 11.35, 22.69, 32.34, and 62°, respectively (Fig. 4ai), 
resulting in the 1:1 dioctahedral phyllosilicate [40–42]. 
In Fig.  4aii, the CD NPs show conventional peaks at 
2θ =  24.04 and 42.87° corresponding the assignment of 
(002) and (101) planes of graphitic carbon. The interlayer 
spacing for those planes was calculated as 3.71 and 2.11 
Å, respectively, indicating that the interlayer spacing of 
(002) was slightly shifted relative to that (3.44 Å) in bulk 
graphite [33]. The XRD diffraction peaks in CD-FeAC 
NPs matched only those in FeAC NPs (Fig.  4aiii). This 
can be explained by the facts that the CD NPs peaks were 
relatively weak and hidden.

Fig. 1  Schematic representation of CD conjugation with organo-
building blocks of delaminated FeAC NPs in PBS buffer (0.01 M and 
pH 7.2) by amide linkage
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Fig. 2  Fluorescent emission spectra of a FeAC, b CD, and c CD-FeAC 
NPs according to excitation wavelength ranging from 290 to 410 nm 
with 20 nm wavelength intervals
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(f)(e)

(c) (d)

(b)(a)

Fig. 3  Transmission electron microscopy (TEM) images of a, b FeAC, c, d CD, and e, f CD-FeAC NPs dispersed in PBS buffer at 2.5 mg/mL. Note that 
in a, b, the arrows indicate the edges of the organo-building blocks of FeAC NPs, and that in c–f, the red dotted circles stand for CD NPs. Scale bar a 
100 nm, b 10 nm, c 50 nm, d 5 nm, e 100 nm, f 10 nm
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The covalent bindings of organic-functional groups were 
detected by the Fourier transform infrared (FT-IR) spectra 
(Fig. 4b). The FT-IR peak assignments in FeAC NPs were 
as follows: –OH (3384 cm−1), –CHx (3000 cm−1), –NH3

+ 
(2020 cm−1), H2O (1609 cm−1), –CH2 (1487 cm−1), Si–C 
(1121  cm−1), Si–OH (1034  cm−1), Si–O–Si (1014  cm−1), 
Si–O–C (770  cm−1), Fe–O–Si (679  cm−1), and Fe–O 
(481 cm−1) (Fig. 3bi), which are in line with those reported 
[40–42]. The CD NPs FT-IR peak assignments were –OH 

(3397 cm−1), C=O (1599 cm−1), and C–O–C (1446 cm−1) 
(Fig. 4bii), indicating the abundance of oxygen-rich groups 
and the resultantly hydrophilic surface and partial oxida-
tion state of the CD NPs. Significantly, in the case of CD-
FeAC NPs, most of the FeAC and CD NPs peaks were 
recorded as overlapped. The amide-bonding characteris-
tics in CD NPs at C=O (1620 cm−1) and N–H and C–N 
(1499  cm−1) were confirmed by the slight peak shift at 
C=O (1599 cm−1) [45–48].

(a)

20 40 60

In
te

ns
ity

 (C
ou

nt
s)

0

200

400

600

800

1000

1200

20 40 60

In
te

ns
ity

 (C
ou

nt
s)

0

10

20

30

40

50

2θ/ degree
10 20 30 40 50 60 70

In
te

ns
ity

 (C
ou

nt
s)

0

200

400

600

800

1000

1200

1400

Tr
an

sm
is

si
on

 (%
)

20

40

60

80

100

Tr
an

sm
is

si
on

 (%
)

20

40

60

80

100

Wavelength (cm-1)

5001000150020002500300035004000

Tr
an

sm
is

si
on

 (%
)

40

50

60

70

80

90

100

(b)

( )

( )

( )

d001

d002
d020,110

d130,200

d060,330

d002

d101

-OH
-CHx-

-NH3
+

-NH2
-CH2

-C-O-C-

-C=O

-CH2

-Si-O-Si-
-Si-C-

-C-N-

-Fe-O-( )

( )

( )

Fig. 4  a Power X-ray diffraction (XRD) patterns and b Fourier transform infrared (FT-IR) spectra of i FeAC, ii CD, and iii CD-FeAC NPs in KBr-pellet 
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Cytotoxicity results of FeAC, CD, and CD‑FeAC NPs
Based on the characterization data for FeAC, CD, and 
CD-FeAC NPs, MTT cytotoxic assay [29, 49] was tested 
according to the sample loading concentrations (Fig. 5a–
c). FeAC NPs resulted in negligible cytotoxicity in nor-
mal cells but a slight (20  %) cytotoxic effect in cancer 
cells up to 1000 μg/mL. CD showed no cytotoxicity up to 
1000 μg/mL. In CD conjugated FeAC (CD-FeAC) NPs, it 
was also reduced cytotoxicity due to biocompatible CD 
property and decreasing accessibility with Fe source in 
FeAC NPs. To see FeAC NPs cytotoxicity in detail, FeAC 
NPs were evaluated for other cancer and normal cell lines 
(Fig. 6), it resulted in slightly cytotoxic effects by reduced 
cell viability (%). Beyond mitochondria-based MTT 
assay, chromatin-based NR assays of FeAC, CD, and CD-
FeAC according the loading concentrations in HeLa cells 
showed similar trends (Fig. 7).

NPs’s observation of cellular uptake in HeLa cells
Remarkably, the cytotoxicity of CD-FeAC NPs in HeLa 
cells was slightly decreased at <1000  μg/mL, owing to 
the biocompatible CD conjugation, compared to that 
of FeAC treatment. Confocal microscopy images of the 
uptaken CD-FeAC NPs in HeLa cells and RAG cells 
showed a clear blue emission (Fig.  8a; Additional file  1: 
Figure S3a) in comparison with photos of fresh HeLa 
cells (Fig.  8b) and RAG cells (Additional file  1: Figure 
S3b). Because FeAC NPs without fluorescent materi-
als were discerned by contrast in cross-sectioned TEM 
image, the intracelluar location of only FeAC clusters in 
cross-sectioned HeLa cells was confirmed as the cyto-
plasm (Fig.  8c), indicating that the uptaken FeAC NPs 
showed no acute cytotoxicity to the living cell’s mor-
phology. Furthermore, it was confirmed by elemental 
mapping of the uptaken FeAC NPs into a single HeLa 
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Fig. 5  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability (%) of a FeAC, b CD, and c CD-FeAC NPs loading concentra‑
tions where yellow dotted lines indicate as 100 % cell viability guides
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cell, showing markedly contrasted or sharp elemental 
peaks of Fe and Si in the presence of FeAC NPs (Fig. 9). 
In addition, confocal microscopy images of DAPI stained 
nucleus in the absence and presence of FeAC NPs were 
observed (Fig. 10). Only DAPI stained HeLa cells showed 
slightly scattered blue emission in nucleus sites (Fig. 10a) 
but clear blue emission in the presence of FeAC NPs 
showed spherical or elliptical morphology (Fig.  10b–e), 
interestingly, FeAC NPs may show a negligible change 
while nucleus staining, retaining nuclear integrity.

Discussion
The cytotoxic results of Mg- and Ca-aminoclays were 
researched as non-toxic nanomaterial for bio-medical 
and bio-imaging [29–31]. In this study, cytotoxicity of 
FeAC resulted in slightly cytotoxic effects by reduced cell 

viability (%), due to the oxidation of H2O2 in cancer cells 
as a result of coordinated Fe3+ source to hydroxyl free 
radicals (∙OH) like Fenton-like reaction [50–52]. These 
∙OH induced death in the cancer cell or apoptosis in vitro 
due to the radical-induced DNA- and cell-membrane 
damage. CD conjugation why it reduced cytotoxicity in 
FeAC NPs may be related to decreasing probability in 
accessibility of Fe source with cells. In detail, the reduced 
toxicity may be related to CD blocked the entrance or 
contact sites of FeAC for reactive oxygen species (ROS) 
generation, rather than the negatively charged surface 
property in CD-FeAC NPs.

In generally, anticancer agents delivered into cytosol 
and then, reached nucleus and directly effected in cell 
death [34]. So, tracking studies of CD-FeAC or FeAC 
NPs carriers into cells is important. As shown in Fig. 8c, 

FeAC (µg/mL)
0 200 400 600 800 1000

C
el

l v
ia

bi
lit

y 
(%

 o
f c

on
tr

ol
)

0

20

40

60

80

100

120

FeAC (µg/mL)
0 200 400 600 800 1000

C
el

l v
ia

bi
lit

y 
(%

 o
f c

on
tr

ol
)

0

20

40

60

80

100

120
(a)

FeAC (µg/mL)
0 200 400 600 800 1000

C
el

l v
ia

bi
lit

y 
(%

 o
f c

on
tr

ol
)

0

20

40

60

80

100

120

FeAC (µg/mL)
0 200 400 600 800 1000

C
el

l v
ia

bi
lit

y 
(%

 o
f c

on
tr

ol
)

0

20

40

60

80

100

120

(b)

(d)(c)

Fig. 6  MTT cell viability assays (%) of FeAC NPs loading concentrations for a A549, b WI-38, c WM-266-4, and d CCD-986SK. Note that yellow dotted 
lines indicate as 100 % cell viability guides



Page 9 of 14Kang et al. J Nanobiotechnol  (2015) 13:88 

FeAC NPs were existed into nucleus neighbors in HeLa 
cells abundantly, indicating CD-FeAC or FeAC NPs car-
riers can be successfully delivered target compounds into 
cytosol or nucleus in cells. In addition, nucleus site was 
negligibly damaged by FeAC NPs (Fig. 10). It is indicated 
that intact FeAC NPS have little cytotoxic effects for 

nucleus sites as well as an ability of transfection carriers 
[53–55]. As therapeutic agents, thus, taking into consid-
eration the practical concentration in this study, <500 μg/
mL concentration of CD-FeAC is suitable to develop-
ment of transfection reagent [29, 31]. In conclusion, CD-
FeAC NPs can be a useful diagnostic and therapeutic 
agent in providing drug-delivery-carrier with simultane-
ous fluorescent bio-imaging and tracking functionalities, 
although the use of only FeAC NPs can be given up the 
simultaneous bio-imaging.

Conclusions
In summary, it has dealt that CD-FeAC NPs plays roles 
both in bio-imaging and as a drug-delivery carrier into 
human cells with little cytotoxicity as simple preparation 
and inexpensive sources. In close future, cinnamic acid 
derivatives as anticancer agent can be loaded for target 
cargos [56] by amide bonding between carboxylic groups 
in cinnamic acid derivatives and amine groups in FeAC 
NPs. Taking into consideration that, as noted above, the 
practical applied dosage of NPs is <500 μg/mL, CD-FeAC 
NPs is feasible for trapping of targeting drugs and pro-
teins, because it shows cytotoxicity only to cancer cells. 
Conclusively, a CD-FeAC-based hybrid agent for imag-
ing/selective anticancer platform in in vivo is currently in 
the planning stage.

Experimental section
Preparation of Fe‑aminoclay (FeAC) NPs
Synthesis of FeAC NPs was carried out according to the 
method available in the literature [40–42]. To a 500 mL-
beaker solution containing 200  mL of ethanol, 8.4  g 
(31.08  mmol) of FeCl3∙6H2O salt (Sigma-Aldrich, USA) 
was added. After complete dissolution by 10  min mag-
netic stirring, 13.0 mL (58.73 mmol) of 3-aminopropyltri-
ethoxysilane (APTES, Sigma-Aldrich, USA) was added to 
the ferric (Fe3+) ethanolic solution. In the course of mix-
ing preparatory to the sol–gel reaction, brown slurry was 
formed. After 6  h equilibrium in production, the FeAC 
product was collected by 10 min 6000×g centrifugation. 
Then, after two ethanol-washing steps, the FeAC product 
was oven-dried at 50 °C for 1 day. Finally, preparatory to 
its use, the FeAC product was ground by pestle and mor-
tar into a brown powder.

Preparation of carbon nanodots (CD) NPs
Organic waste solution (100  g of dried animal feces’s 
wastes per 10 L of three double distilled water) at 45 °C 
was treated by 40  kHz ultrasound for 90  min (Ultra-
sonics UC-05, Lab Companion, Korea) [33, 34]. It was 
then centrifuged at 2500 rpm for 5 min to remove large 
or agglomerated particles. The CD-containing super-
natant was filtered twice through a 0.22  μm pore sized 
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Fig. 7  NR cell viability assays (%) of FeAC (a), CD (b), and CD-FeAC (c) 
NPs loading concentrations in HeLa cells. Note that yellow dotted lines 
indicate as 100 % cell viability guides
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membrane to remove any remnant large particles, and 
finally dried at 45 °C.

Conjugation of CDs with FeAC (CD‑FeAC) NPs
For conjugation on the surface of FeAC NPs, CD NPs 
(5.0 mg) were dissolved in 1.0 mL of phosphate-buffered 
saline (PBS buffer, 0.01 M and pH 7.2). To induce forma-
tion of labile intermediates on the CD surfaces, 1-ethyl-
3-[3-dimethylaminopropyl]carbodiimide (EDC) (2.2  mg, 
11.2 μmol) and N-hydroxysulfo-succinimide (sulfo-NHS) 
(2.44  mg, 11.2  μmol) were added, and the solution was 
stirred in darkness for 30 min at room temperature (RT). 
The thus-activated CD solution (200 μL) subsequently 
was mixed with 1 mL of FeAC solution (10.0 mg/mL in 
PBS buffer) and stirred for 3  h at RT. After completion 
of amide-bonded conjugation, the reacted sample was 
washed twice with PBS buffer and incubated in 0.1  M 
Tris–HCl buffer (pH 7.4) for 1  h at RT with shaking 
(250 rpm), to cap the unreacted sulfo-NHS functionality 
[31, 40]. The final product (10 mg/mL) was re-suspended 
in PBS buffer and stored at 4 °C until use.

Characterizations of FeAC, CD, and CD‑FeAC NPs
Transmission electron microscopy (FE-TEM, Tecnai 
TF30 ST, FEI company, USA) images were examined. 
Samples had been prepared for TEM imaging by drop-
ping a tiny pipetted amount on a carbon-coated Cu grid 
(300-mesh) and oven-drying at 50  °C. After 2  h bath-
sonication of 2.0 mg/mL of FeAC and CD-FeAC NPs in 
PBS buffer and serum-free Roswell Park Memorial Insti-
tute (RPMI) media, respectively, their hydrodynamic 
diameter sizes and zeta potential values were measured 
using particle size analyzer (Zetasizer nano zs, Malvern, 

UK). For CD’s height and surface roughness, after 100 
μL of the CD solution was placed on a silicon wafer 
and air-dried overnight, it was scanned by atomic force 
microscope (AFM, VEECO Instrument, USA). Disorder-
induced D and first-order graphite G bands in samples 
were recorded by Raman microscopy system (NT-MDT 
NTEGRA Systems, USA), utilizing photoluminescence 
(PL) spectroscopy with a changeable UV transillumi-
nator (DUT-260, Core Bio Systems, Korea) within the 
290–410 nm excitation range. In order to check intrinsic 
property of quantum-like structure of CD, the quantum 
yield of pristine CD at 3 mg/mL was examined by spec-
trofluorometer (FP-8500, Jasco, Japan) following the lit-
erature [33].

The powder X-ray diffraction (XRD) patterns from 
3° to 70° were obtained in 0.01 increments by micro-
area X-ray diffractometry (D/MAX-2500, Rigaku, 40 kV 
and 300  mA) [42]. Additionally, the organic functional 
groups in the samples were determined according to 
the recorded Fourier transform infrared (FT-IR) spec-
tra using FT-IR spectrophotometer (FT-IR 4100, Jasco, 
Japan) (composition: 90 wt% KBr plus 10 wt% sample in 
KBr-pellet mode).

Cytotoxic evaluations of by 
3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium 
bromide (MTT) and neutral red (NR) assays
In order to examine cytotoxic effect of samples, two 
assays such as mitochondria—MTT and chromatin-
based NR means were approached. The designed cell 
line systems were organized with cancer and normal 
cells (Table 1). The cytotoxicities of FeAC, CD, and CD-
FeAC were measured using the EZ-Cytox Cytotoxicity 

Nucleus

(c)(b)(a) Membrane

Fig. 8  Confocal microscopy images of CD-FeAC NPs treatment in HeLa cells (a) and fresh HeLa cells (b) and where is fluorescent image in upper-left 
panel, bright field image in upper-right panel, and overlapped image in bottom-left panel, and c cross-sectioned transmission electron microscopy 
(TEM) image of FeAC NPs treatment in HeLa cells. In b, the arrows and red dotted circles indicate the boundary of cell membrane and the uptaken 
FeAC NPs, respectively, in a single HeLa cell
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Fig. 9  Cross-sectioned transmission electron microscopy (TEM) image (a) and its Fe elemental mapping with green color (b), and scanning trans‑
mission electron microscopy (STEM) image (c), d enlarged image of c, and its energy-dispersive X-ray (EDX) analysis (e) in Z-contrast mode of a 
single HeLa cell with treatment of FeAC NPs (200 μg/mL)
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assay Kit (MTT assay, Daeillab Service, South Korea) 
[29] and neutral red (NR) solution (Sigma-Aldrich, USA) 
[49]. Cells were seeded in 96-well plates to a concentra-
tion of 1 × 104 cells per well with RPMI culture media. 
After 24  h, the RPMI culture media was replaced with 
various concentrations of FeAC, CD, and CD-FeAC NPs 
in cell free culture media prepared by two-times washing, 
followed by immediate 2  h bath-sonication. Cells were 
incubated for 24, 48, and 72 h at 37 °C, after which they 
were washed twice with PBS buffer. Next, 100 μL of EZ-
Cytox solution (MTT assay) or NR solution (NR assay) 
with 25 μg/mL in serum-free RPMI media was added and 
incubated for 3 h. The NR solution was washed with PBS 
buffer before adding 100 μL of lysis solution including 
acetic acid, ethanol, and water (1:50:49). The absorbance 
spectra of formazan (MTT assay) and the released NR 
(NR assay) were measured with the Infinite® 200 PRO 
(TECAN) at wavelengths of 450 and 542  nm, respec-
tively. Cytotoxicity is expressed corresponding to MTT 
and NR release by untreated control cells.

Cellular uptake observation by confocal microscopy 
and cross‑sectioned transmission electron microscopy 
(TEM)
HeLa cells and RAG cells were cultured on an 8-well 
chamber slide with a concentration of 2 ×  104 cells per 
well and on a 6-well chamber slide with a concentra-
tion of 2  ×  105 cells per well for confocal microscopy 
(LSM510 META NLO, Carl Zeiss, Germany) and field 
emission transmission electron microscopy (FE-TEM, 
Tecnai TF30 ST, FEI company, USA), respectively. After 
24  h incubation, cells were exposed to FeAC or CD-
FeAC NPs for a further 24 h, and were then washed sev-
eral times with PBS buffer. After drying the PBS on the 
8-well chamber slide, the slide was covered with cover 
glass using fluorescent mounting media (DaKo). The 
fluorescence of CD-FeAC NPs in cells was measured 
under LSM510 META non-linear optic (NLO) con-
focal microscopy at excitation 345  nm and emission 
460  nm wavelength. Cells in the 6-well plate were col-
lected using trypsin–EDTA and washed twice with PBS 
buffer. Another observation of the nucleus in the FeAC 
NPs-treated and absence of FeAC NPs with HeLa cells, 
4′,6-diamidino-2-phenylindole (DAPI, 1 μg/mL, 10 min-
incubation) staining protocol was followed and observed 
under confocal microscopy.

As for the cross-sectioned TEM imaging, it followed 
the procedure available in the literature [45]. In detail, 
the FeAC NPs-treated HeLa cells were fixed in a 2.5  % 
paraformaldehyde-glutaraldehyde mixture buffered with 
phosphate (0.01  M and pH 7.2) for 2  h, post-fixed in 
1.0 % osmium tetroxide in the same buffer for 1 h, dehy-
drated in graded ethanol and propylene oxide (PPO), 
and embedded in Epon-812. Ultra-thin sections, cut by 
the ULTRACUT E (Leica, Austria) ultramicrotome, were 
stained with uranyl acetate and lead citrate and examined 
under CM 20 electron microscopy (Philips, Netherlands).
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