
Citation: Tsibulnikov, S.; Drefs, N.M.;

Timashev, P.S.; Ulasov, I.V. To Explore

the Stem Cells Homing to GBM: The

Rise to the Occasion. Biomedicines

2022, 10, 986. https://doi.org/

10.3390/biomedicines10050986

Academic Editors: Noemí Eiró,

Francisco José Vizoso and David

R. Wallace

Received: 3 February 2022

Accepted: 20 April 2022

Published: 24 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Review

To Explore the Stem Cells Homing to GBM: The Rise to
the Occasion
Sergey Tsibulnikov 1 , Natalya M. Drefs 2, Peter S. Timashev 3,4 and Ilya V. Ulasov 1,3,*

1 Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine,
Sechenov First Moscow State Medical University, Trubetskaya 8-2, 119991 Moscow, Russia;
ser-tsibulnikov@yandex.ru

2 TS Oncology, 125047 Moscow, Russia; natalia.drefs@tsoncology.com
3 World-Class Research Center “Digital Biodesign and Personalized Healthcare”,

Sechenov First Moscow State Medical University, Trubetskaya 8-2, 119991 Moscow, Russia;
timashev_p_s@staff.sechenov.ru

4 Department of Advanced Materials, Institute for Regenerative Medicine,
Sechenov First Moscow State Medical University, 119991 Moscow, Russia

* Correspondence: ulasov_i_v@staff.sechenov.ru; Tel.: +7-901-797-5406

Abstract: Multiple efforts are currently underway to develop targeted therapeutic deliveries to
the site of glioblastoma progression. The use of carriers represents advancement in the delivery of
various therapeutic agents as a new approach in neuro-oncology. Mesenchymal stem cells (MSCs) and
neural stem cells (NSCs) are used because of their capability in migrating and delivering therapeutic
payloads to tumors. Two of the main properties that carrier cells should possess are their ability to
specifically migrate from the bloodstream and low immunogenicity. In this article, we also compared
the morphological and molecular features of each type of stem cell that underlie their migration
capacity to glioblastoma. Thus, the major focus of the current review is on proteins and lipid
molecules that are released by GBM to attract stem cells.
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1. Introduction

Glioblastoma (GBM) is the most common and aggressive primary tumor in adults.
According to the classification of the World Health Organization (WHO), glioblastoma
belongs to the fourth type of malignancy of intracranial neoplasms. Even though this type
of tumor is the most common representative of primary brain tumors, the incidence of
the disease in humans is relatively low—3.1 cases per 100,000 population (for comparison,
171.2 and 201.4 cases per 100,000 population were noted for breast and prostate tumors,
respectively) [1]. It is well-established that the uncontrolled growth of glial cells stimulates
aggressive tumor growth that may lead to the death of patients. Anticancer therapy could
increase the survival of patients with neoplasms. A group of scientists demonstrated
that the survival rate within five years does not exceed 5%, and the median survival
rate reaches 15 months after treatment, including surgery combined with radiation and
chemotherapy. As shown earlier [2], the low survival rate of patients with GBM is based on
the adaptive response of tumor cells to therapy. An adaptive response is expressed in the
activation of the growth of tumor cells by an autocrine mechanism and the induction of
cellular factors that cause inflammation and immunosuppression of the tumor [3–5]. The
standard methods of treatment do not increase the survival rate. Experimental methods
of glioblastoma therapy are being actively developed that reach the effectiveness of the
existing ones. On the other hand [6], the use of cancer vaccines, which are based on the
activation of the acquired immunity of a patient in response to tumor-specific antigens [7],
is promising for experimental oncology. A vaccine can be both individual peptides [8,9],
which is promising for experimental oncology, and whole autologous antigen-presenting
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cells [10]. However, the use of a platform based on human and animal viruses seems to be
a more effective approach to inducing an immune response in tumors. This is explained
by the fact that the virus can be used to deliver and express a library of tumor antigens
and succinates the activation of the immune response and the elimination of tumors and
metastases. On the other hand, the natural mechanism of viral replication makes it possible
to obtain recombinant proteins in significant volumes. There are approaches involving
the use of viruses, both as vectors for gene therapy [11] and as oncolytic agents [12],
delivering immunogenic proteins or antisense RNAs to tumor proteins that promote
carcinogenesis [13]. At the same time, native immune responses can be one of the obstacles
that decrease the anticancer efficacy of viral vectors against cancer cells [6]. For example,
the pool of the neutralization of antibodies against human adenovirus type 5 decreases the
efficacy of CRAd (Conditionally replicated adenoviruses)-based vectors using the human
adenovirus type 5 genome [14,15]. Additionally, low diffusion through the tumor mass [16]
and the activation of cellular protein kinases [17], for example, modulate the inflammatory
immune response and overall decrease the therapeutic response to the selected vectors. To
overcome those issues and still specifically deliver a gene therapy vector to the target cells,
stem cell carriers can be of interest.

It is known that delivering proteins to pathological areas minimizes the possible
off-target effects of drugs and highlights the advantages of such carriers for anti-GBM
therapy [18,19]. Therefore, the design of approaches that seek GBM tumors and lack a
strong immune response [20,21] can be a promising anticancer advancement. Consequently,
using such promising candidates as mesenchymal and neural stem cells, demonstrat-
ing tumor chemotaxis and the ability to deliver therapeutic payloads to glioblastoma,
seems convenient.

2. General Characteristics of Mesenchymal Stem Cells (MSC)

Mesenchymal stem cells (MSCs) are a heterogeneous population of fibroblast-like
cells. MSCs represent a small population (0.01% of all nucleated cells found in bone
marrow) [22]. MSCs are multipotent and differentiate into chondrocytes, skeletal myocytes,
and neurons, if applicable. As noted earlier, more than 95% of MSCs express a high level
of CD73, CD90, and CD105 and a low level of protein II (the major histocompatibility
complex (MHC-II)) and CD45, CD34, CD14, CD11b, and CD19 on their surface. MSCs
can express other markers in various combinations dependent on the tissue specificity. In
2011, Ode et al. provided a mechanistic insight into the biological significance of surface
receptors for MSC migration. CD73/CD29 were among the antigens that were described in
the study and implemented in MSC migration. It turns out that MSC migration is controlled
by CD73/CD29 and their downstream targets such as Lck, Fyn, and Src-family kinase
activation [23].

3. MSC—Cell Vectors for Migration and Delivery of Therapeutic Proteins

MSCs expressing protein molecules have been used in preclinical studies to success-
fully deliver antigens and induce a therapeutic effect in human and animal glioblastoma
cells. As previously stated, stem cells were used to deliver viruses [24–26], suicide proteins
from herpes simplex viruses like thymidine kinase (TK) [27–29], cellular miRNA [30], exo-
somes [31], apoptosis-induced proteins like TNF (tumor necrosis factor)-related apoptosis-
inducing ligand (TRAIL) [32], cytosine deaminase (CD) [33], carboxylesterase 2 (sCE2,
a prodrug-activating enzyme) [34], antiangiogenic thrombospondin-1 [35], and chemi-
cal agents such as paclitaxel [36] that activates the T-cell response in glioblastomas [37]
(Figure 1).

Typically, MSCs are effective in delivering therapeutic proteins into diffuse tumors
such as glioblastoma. This fact improves the following activation of the migration and
adhesion of genetically modified MSC due to the concentration gradient mediated by SDF-
1α, TGF-β1 (transforming growth factor beta), and CCL2 (C-C motif ligand 2) around the
tumor. MSC demonstrated an increased migratory potential towards tumor cells [38–40].
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Thus, MSC migration depends mainly on the expression of the CCR2 and CXCR4 recep-
tors, since their inhibition with specific antibodies leads to a decrease in orchestrated
cellular movements [41,42]. At the molecular level, binding ligands to these receptors
enhances the expression of transcription factors in MSCs, which is required for stem
cell differentiation [43,44]. Furthermore, Pavon et al. [42] demonstrated the endpoint
of MSC migration to GBM, which is the area enriched with CD133-positive stem cells
(GSC) (Figure 1). It has been shown by multiple investigators that GSCs responsible for
tumor growth in vivo [45–47] and resistance to therapy [48] are located in anatomical struc-
tures. In such a periarteriolar niche [49] with elevated SDF-1α, various cathepsin [50]
expressions and, adjacent to the arteriolar tunica adventitia, the CXCR4-enrcihed GSC
interact with various cells, including MSC [51] (Figure 2). It has also been proposed
that CXCR4, which is highly expressed in MSCs and endothelial cells (EC) [52], upregu-
lates the expression of BDNF and EOMES genes, both of which are important for GSC
stemness [52], inhibits the antitumor immune response caused by T-cell exhaustion, and reg-
ulates IFN-γ [53] expression. Although, in the glioma niche, the scientific evidence points
to MSC-mediated direct interactions with GSC via the paracrine way [54], the presence of
immune cells, astrocytes, and/or neural stem/precursor cells (NPC) in GBM [55] might
also help to maintain the GSC phenotype and aggressiveness. Considering the localization
of GSC in the perialveolar niche surrounded by hypoxic and highly vascularized regions,
the targeting and eradication of GSC represent a clinical challenge.
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of the GBM (28 days), there was an infusion in caudal vein 1× 104 MSCs (MION-Rh); the development
of the tumor was followed for 20 days. (A) MSCs labeled MION-Rh and CD133+ GBM cells labeled
Qdot 705 nm using combined fluorescence and X-ray detection. (B) CD133+ GBM cells labeled Qdot
705 nm and visualized by fluorescence detection. (C) MSCs labeled MION-Rh and visualized by
fluorescence detection. (D–L) MRI (T2*-weighted images) of animal brain monitoring of the process
of migration of MSCs, which were able to cross the blood–brain barrier of the animal and migrated to
the tumor region, promoting GBM cell proliferation. (L) MRI (T2*-weighted images) of the animal
brain without the stereotaxic implantation of cells (control group). The red dot circle shows migration
assays of MSCs, and the green dot circle shows tumor propagation. (M) IHC analysis for Prussian
blue staining of the MSCs labeled with MION-Rh. (N,R–T) Hematoxylin and eosin staining. (U) IHC
analysis for GFAP. (O) IHC analysis for Ki67. (V) IHC analysis for p53. (P) IHC analysis for CD44
staining of the MSCs. (Q) IHC analysis for CD73 staining of the MSCs. (W,X) IHC analysis for CD63
staining of the MSC-derived exosomes. (Y,Z,Z′) IHC analysis for CD9 staining of the MSCs-derived
exosomes. Scale, 40 µm. These images are representative of all the collected MSCs and GBM samples.
Image and text were copied from the original study by Pavon et al. [42] and distributed under
Attribution 4.0 International (CC BY 4.0).
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Figure 2. General scheme of therapeutic agents that can be delivered by NSC or MSC cells to glioma
stem cells. GSCs are located in the necrotic area of the tumor, which is surrounded by hypoxic and
vascularized regions with leaky blood vessels (adapted from Vinogradov et al. [56]). CD31+/Nestin+

and reactive astrocytes produce JAG1, DLL4 [57], and DLK1 [58] to perinecrotic and perivascular
tumor regions to maintain GSC stemness and proliferation. According to Kvisten et al., [59] tumor-
associated astrocyte (TMA) areas are rare in necrotic areas and more distributed in perivascular
and perinecrotic areas of the GBM. Despite the morphological and phenotypical differences, TMA
produces HIF-2α [60,61], which also controls the GBM pathobiology. In order to deliver a therapeutic
payload, NSCs or MSCs should overcome multiple obstacles that prevent GSCs from being eliminated.
Cell microenvironment releases growth factors to maintain GSC (red arrows).

4. Methods and Factors That Increase the Migration Properties of MSCs

Earlier reports suggest that in vitro cultivation conditions can influence the cell surface
receptor level [62]. Therefore, the relationship between the types of MSCs of different
origins and their ability to migrate into A549 tumors [63], ovarian [64], and colon [65]
cancer cells is manifestative. Recently, it has been shown that MSCs have enhanced the
tropism towards glioblastoma cells treated with ionizing radiation [66]. This therapy
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increases the secretion of chemokines and cytokines above the basal level [67]. Even though
tumor cells induce SDF-1α [42,62,63] and CCL2, the existing gradient of chemokines and
cytokines provides the migration of a small group of MSCs. The findings from earlier
research showed that, when MSCs are systemically injected into laboratory animals with
intracerebral glioblastoma, less than 1% of the MSCs migrate to GBM [68–70], leaving open
questions about the fate of most injected MSCs at the injection/implantation site and the
possibility of enhancing the migration of all MSCs into the tumor area.

5. Modeling MSC Migration In Vitro

MSC exposure to tissue growth factor-beta (TGF-β) [62] or challenging MSCs with
monocyte chemotactic protein-1 (MCP-1), chemokine (C-C motif) ligand 8 (CCL-8), and/or
interleukin 8 (IL-8) [71] can increase the migration of MSCs towards the tumor. Another
way that increases the migration of MSCs into the tumor is the ability of MSCs to secrete
metalloproteinases to cleave the basement membranes of cells and penetrate deep into
the tumor. It was experimentally confirmed that cell incubation in a medium containing
complement component 1q (C1q) [72], a mixture of erythropoietin and granulocyte colony-
stimulating factor (G-CSF) [73], positively affects the expression of metalloproteinases.
In this case, the simultaneous addition of erythropoietin and GM-CSF (1 IU/mL and
0.1 ng/mL, respectively) to the medium increased the MMP-2 (matrix metalloproteinase-2)
expression, while the number of other metalloproteinases, as well as metalloproteinase
inhibitors, remained unchanged. The ability of cells to migrate was also measured if a factor
was added to the medium. Cells that were exposed to the medium with the addition of both
factors at the same concentration showed the greatest ability to migrate and increase the
metalloproteinase expression. At this concentration of substances, the concentration of ex-
tracellular signal-regulated kinase (ERK1/2) proteins significantly increased as well. These
conditions indicate a possible effect of the ERK1/2 signaling pathway on the migration
abilities of MSCs.

The short-term exposure of cells to valproic acid increases the expression of CXCR4,
C1q, and MMP2 and improves the migration towards SDF-1 [74]. Additionally, it was
shown that the exposure of MSCs to C1q increases the migration activity towards SDF-1
(20 ng/mL)-level migration to SDF-1 at a higher concentration (100 ng/mL). At the same
time, CXCR4 expression on the cell surface increased from 1.5% to 9.5%. The study showed
that short-term (3 or 6 h) exposure of MSCs to valproic acid at a concentration of 10 mmol
increases the expression of CXCR4 mRNA by 40 and 60 times, respectively. The amount of
CXCR4 was not increased on the cell surface, which confirmed the results of another study.
In this study, the majority of CXCR4 was isolated intracellularly and formed heterodimers
with CXCR7 [75]. Cells exposed to valproic acid migrated towards low (20 ng/mL) and
high (100 ng/mL) SDF-1α gradients two and four times higher, respectively. When using
the AMD3100-CXCR4 antagonist, the tropism for SDF-1α almost completely disappeared.
The statement that an increased tropism due to cell exposure to valproate is associated with
CXCR4 was confirmed. To increase the CXCR4 receptor on the cell surface, insulin-like
growth factor 1 (IGF-1); tumor necrosis factor-alpha (TNF-α); and interleukin 1 beta (IL-1β),
interferon-gamma (IFN-γ), or glycogen synthase-3 beta (glycogen synthase kinase 3 beta,
GSK-3β) were added. It has been shown that the addition of complement 1q to the medium
increases cell migration in response to the SDF-1 concentration gradients [72].

6. Induced Hypoxia

Hypoxia is the main feature of the neoplastic process caused by glioblastoma, as
well as immunosuppression and inflammation. The induction of hypoxia is based on the
molecular interactions of tumor microcirculation with tumor cells. As a result of this process,
GBM cells gain phenotypic properties that allow them to survive under stress and become
resistant [76]. GBM cells are known for an extensive angiogenesis, mostly mediated by HIF-
1α. Besides their roles in neovascularization, HIF-1α and HIF-2α initiate the induction of a
panel of stemness genes [77], chemokines, and their receptors, including CXCR4, TGF-β,
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CCL2, and CXCL12 [41,43]. It was noted, in some studies, that the induction of CXCR4 and
CXCR7 mRNA was observed in MSC cells in the case of hypoxia (3% oxygen) due to an
increase in the expression of hypoxia-induced factor (HIF-1α). The experiment was carried
out to study the direct effect of hypoxic conditions on the migration properties of MSCs.
The cells were first cultivated under normal conditions or hypoxic conditions, and then, the
cells in containers with various concentrations (1–100 ng/mL) of SDF-1α were placed for
6 h for analysis in a Boyden chamber. As a result, hypoxia increased the migration of the
studied cells at any concentration of the chemokine. Additionally, studies have shown that
hypoxia enhances the adhesive properties of MSCs (by an average of 2.55 times). Further,
MSCs were cultured under normal conditions or under hypoxic conditions in combination
with antibodies to CXCR4 and CXCR7 to determine the role of CXCR4 and CXCR7 in
cell migration, adhesion, and survival. Blocking at least one of the receptors reduces cell
adhesion, inhibits CXCR4 and the migration properties of MSCs, and in the case of CXCR7,
decreases cell survival. Thus, it was demonstrated that the CXCR4 receptor plays a leading
role in cell migration in the case of hypoxia. Its activity is regulated by HIF-1α. The results
confirmed the assumption that an overexpression of CXCR4 and CXCR7 occurs through
HIF-1α activation and affects the migration and adhesion properties, as well as the survival
of MSCs. Another signaling pathway that regulates the activity and expression of CXCR4
and CXCR7 is PI3K/AKT. The PI3K/AKT inhibitor allowed researchers to examine CXCR4
and CXCR7 expression in relation to HIF-1α. It turned out that the inhibition of PI3K/AKT
leads to a decrease in the expression of HIF-1α, which, in turn, affects the expression of
CXCR4 and CXCR7 [41]. Considering that HIF-1α also regulates the expression of MMP 2,
MT1-MMP [78] enhances the adipogenic and osteogenic differentiation in some types of
MSCs [79]. It can be concluded that it has a complex effect on the activity of the intracellular
signaling pathways responsible for MSC adhesion and migration.

7. MSCs Have Been Genetically Modified to Increase Their Migration and Survival
in Tumors

MSC migration is considered an important factor for the experimental treatment of
GBM, as it increases survival in the tumor mass under hypoxic conditions. However,
some scientists have noted that MSC transplantation does not cause long-term survival
inside the tumor. Thus, it is necessary to find solutions that can productively increase
the effectiveness of cell therapy. One such approach was proposed by Hu et al. [80]. In
that study, the authors proposed to create a stable MSC clone expressing miR-211 upon
lentivirus infection. At the molecular level, this miRNA regulated the activity of the STAT
signaling pathway and, in particular, the stability of STAT5A mRNA. Thus, during in vivo
experiments, it was possible to increase the survival rate of MSCs in heart muscle damage
due to miR-211 expression. Similar experiments were performed by using MSCs for the
experimental treatment of GBM with miR-4731 [81]. Furthermore, strategies for increasing
MSC migration to GBM were proposed by cloning CXCR4 [82], an integrin that increases
adhesion, into the genome [83].

Due to their special properties, MSCs are one of the main candidates for delivery
vehicles for therapeutic proteins. One of these properties is the ability of MSCs to taxi for
tumors [84,85] and high immunocompatibility [86], which makes allogeneic transplantation
possible. Additionally, an undoubted advantage is an ease of obtaining these cells due to
the relatively low invasiveness and the absence of ethical problems; they can be obtained
from bone marrow, adipose tissue, cord blood, umbilical cord, and placental tissue [87].
Now, data from various sources indicate the relative safety of administering MSCs to
the human body [86]. The risk of side effects (embolism and allergic reactions) can be
minimized [88] by following the recommendations during the route of administration
and cell concentrations. Many factors may influence potential tumorigenesis after MSC
transplantation, including donor age, host tissue, growth regulators expressed in the
recipient tissue, and mechanisms that control MSC behavior at the target site. In addition,
the manipulation and long-term cultivation of MSCs in vitro can cause genetic instability
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and chromosomal aberrations. The response against many cumulative factors can be
spontaneous tumor transformation. Patients who have transplanted stem cells often receive
long-term chemotherapy or radiation therapy, so their immune systems do not work
properly, which may lead to tumor development in the body.

8. General Characteristics of Neural Stem Cells (NSCs)

Neural stem cells are undifferentiated nerve cells that are defined based on their
extensive replicative potential, their ability to differentiate into different types of neurons
and glial cells of the central nervous system, and their ability to sustain long-term self-
renewal [89]. In the adult mammalian CNS, active neurogenesis occurs in two separate
regions: the subgranular zone (SGZ) of the dentate gyrus in the hippocampus of granule
cells and the subventricular zone (SVZ) of the lateral ventricles in the forebrain of interneu-
rons in the olfactory bulb [90]. Additionally, it is suggested that there is another zone in
which NSC niches can be located—the hypothalamus [91]. It has been established that the
proximity of the tumor to the SVZ directly affects the survival of patients [92], which may
indicate the effect of NSC on tumor development, such as GBM [93]. Cells from the SVZ
have highly expressed CXCR4 and SDF-1 markers, which have been used to preserve cell
migration [94], differentiation [95], proliferation [94], and stemness [96]. Mechanistically,
Liao et al. [97], for the first time, showed that CXCL12 controls the mesenchymal activation
of cell signaling that is relevant to the Snail, N-cadherin, and NF-kB pathways. Most
recently, Goffart et al. [98] demonstrated that CXCL12 controls mesenchymal activation via
the upregulation of numerous transcriptional factors and markers, such as ESR1, ZEB2,
SOX10, FOXC2, CDH2, FN1, and vimentin. Of interest, Jin et al. [99] showed that circRNA
EPHB4 modulates glioma stemness via the upregulation of SOX10 and miR637 interactions.

As previously mentioned, the rapid growth of tumor cells, high concentrations of
chemokines, and cytokines secreted by the tumor microenvironment and tumor cells are
the most common causes of glioblastoma progression. Reportedly, the induction of a whole
group of chemokines controls the migration of healthy cells into the tumor, coupled with
immunosuppression and the formation of niches for glioblastoma cells. According to the
literature, SDF-1 and its CXCR4 receptor are found in the niches of glioblastoma stem
cells [100]. Anatomically, this niche also serves for the maturation of neural progenitor
cells, so two groups of cells use the same chemokine signals for their transformation [101].
Thus, stem cell migration due to SDF-1α gradients and the suppression of tumor growth
by delivering an antitumor protein will reduce the progression of GMB in tumor niches.
Various types of stem cells have been used to treat GBM because of their ability to migrate,
deliver recombinant antitumor proteins, and secrete antitumor-enhancing factors.

9. NSC—Cell Vectors for Migration into the Tumor

NSC has a tropism for tumors [102]. Thus, recent investigations have compared the
NSC characteristics of migration to glioma tumor cells in comparison with MSC and showed
that the differences in the number of migrated cells are statistically insignificant [103].
In comparison with NSCs, the MSCs do not develop a rolling stage of transmigration
from the bloodstream (Figure 3). This fact is explained by the absence of fucose in the
composition of glycoproteins expressed on the cell surface [104]. As a result, glycoproteins
do not interact with selectins on the surfaces of endothelial cells, despite the artificial
fucosylation of glycoproteins, leading to a decrease in cell migration [105]. Moreover, after
this modification, the number of dead cells increases. One study showed that NSCs cannot
tolerate shear stress, unlike MSCs and hematopoietic stem cells (HSCs). The fucosylation
of HSCs improved the migration and did not affect the viability, which explained the
worsened viability of NSCs. Diaz-Coranguez et al. [104] studied the transmigration of
NSCs to tumor cells in vitro. It was shown that NSC transmigration increased in the model
with tumor cells. There was no rolling stage in this model. The value of the transendothelial
electrical resistance (TEER) decreased compared to the control, in which the cells migrated
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to astrocytes. Additionally, holes were formed on the borders between endothelial cells but
were absent from the control. It has been shown that NSCs migrate through these holes.
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10. Methods and Factors That Increase the Migration Properties of NSC

MCP1 [106] is a chemoattractant for NSCs and other extracellular matrix proteins,
including tenascin, laminin, fibronectin, vitronectin, and various types of collagens [107].
These extracellular matrix components are intensively produced by the glioblastoma stroma
in the areas where tumors develop [108,109]. Laminin and tenascin are the most important
for NSC migration [107]. Together, these proteins take part in the regulation of cell-to-cell
signaling, cell adhesion, migration, and mechanical resilience [110]. At the molecular
level, secreted extracellular matrix proteins control the maintenance and longevity of stem
cells through TAG1 [111], Notch [112], and cadherins [113,114], suggesting a regulatory
role in tissue homeostasis. Numerous ascending pathways in cells regulate NSC activity
through transcription factors or cross-factor signaling interactions. Experimental culturing
demonstrated the sensitivity of NSCs to the action of VEGF. It is known that the basal
level of VEGF in the sample with glioma was 7.6 times higher than in the control cells,
which explains the decrease in transmigration when we use antibodies that neutralize
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the VEGF [104]. At the same time, inhibition of the VEGF led to the re-establishing of
TEER values in GBM cells at the initial level, which means the participation of VEGF in
the regulation of cell-to-cell contacts. Early studies on the GBM model showed a lack of
relationship between the level of EGF and the efficiency of NSC transmigration, although
the TEER value of the endothelium increased if the medium contained EGF with an
unchanged expression of claudin 5 [104].

Epidemiological and experimental data showed clearly that glioblastoma cells produce bi-
ologically active substances that provide progression (such as MMPs) and resistance [115,116].
Most tumor cells from primary samples demonstrate a pronounced increase in cyclohexi-
nase [115] and prostaglandin 2E [116], which stimulates chronic inflammation and tumor
resistance. Researchers in recent studies measured the amounts of prostaglandin E2 in healthy
brain cells (astrocytes) and tumor cells of glioblastoma. It turned out that prostaglandin E2
reduces the value of TEER and inhibits the increase of this potential in EGF [104]. Astrocyte
samples had a 17% more prostaglandin increase compared to glioma samples. However, given
the almost complete absence of EGF in the medium with glioma, this amount of prostaglandin
can significantly affect the TEER value. On the other hand, the use of a COX-2 inhibitor also
led to a decrease in the amount of prostaglandin and an increase in the TEER value. It should
be noted that the levels of the IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8, and IL-10 cytokines
in the glioma and astrocytes samples did not differ, which disproved the involvement of
interleukins in NSC migration.

11. Conclusions

Due to the lack of many experiments directly comparing the migration properties of
MSCs and NSCs, it is rather difficult to unambiguously identify the most suitable candidate
for the transfer of therapeutic agents to the tumor because of the lack of such experiments.
To address that issue, we summarized the known information from clinical trials using
NSC and MSC cells (Table 1), a list of factors expressed in glioblastoma, and a general
scheme of the therapeutical agents that can be delivered by NSC or MSC cells to glioma
stem cells (Figure 2). Thus, studies have shown that NSCs do not respond well to tangential
stress [105]. As a result, migration from the bloodstream is difficult. Furthermore, given
the possible link between NSCs in the SVZ zone and GBM progression in several nearby
anatomical areas [92], special caution should be exercised in the study design to avoid
facilitating tumor progression and NSC transformation [117]. Although various studies
have pointed out the anti-glioma therapeutic effect of the designed NSCs [118], some inves-
tigators, such as Wang et al. [119], showed that NSCs promote the proliferation, migration,
invasion, and tumorigenicity of glioblastoma cells in vitro and in vivo. Although it is
known that a 3-month-old embryo was the source for NSCs and isolated cells were able to
produce neurospheres and exhibited a positive expression of SOX2, CD133, and NESTIN
and were negative for GFAP, NeuN, and CD68 markers, there is still limited information
on whether these cells meet some criteria for NSCs to demonstrate an anticancer effect.
From the scientific literature, it is known that the expression of EGFR [117], selection of
the most efficient time for GBM treatment [120], status of reprogramming with a viral
vector that contributes to gene integration into the cellular genome [121], etc. can be critical
for the anticancer effect mediated by NSCs. On the other hand, long culture NSCs [122]
undergo aging, which is characterized by an upregulation of proinflammatory markers and
a transient or stable induction of transcriptional factors that contribute to reprogramming
and therapy resistance [123]. In the case of MSCs, these cells are adapted for transmi-
gration [124] through the endothelium to tumors [125]. We must therefore be cautious
to avoid MSC reprogramming by tumor cells, which eventually contribute to the tumor
growth and spread. Several studies have reported that MSC can have both tumorigenic
and antitumorigenic properties. As an anti-glioma effect of MSC results in inhibiting cell
growth, promoting glioma differentiation [126] to increase tumor cell sensitivity to TMZ
induces cell apoptosis [127] and cycle arrest. MSC can increase the invasiveness (due to
hyaluronic acid deposition [128] or MMP activity [129]) and migration [130], as well as
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promote cell proliferation [128] and stemness [131]. The data by Bajetto et al. showed
that MSC interactions (cocultures with glioma cells or releasing soluble factors) might
produce a divergent effect from the inhibition of tumor growth to the strong production
of molecules involved in inflammation, angiogenesis, cell migration, and proliferation,
such as IL-8, GRO, ENA-78, and IL-6 [132]. Therefore, the safety issues prior to using MSC
or NSC as an anticancer approach require special attention, since putting a stop to cell
reprogramming mediated by tumor cells and brain environment might prevent reversing
the phenotype and extending the therapeutic options. One method of enabling the control
of the administrated cells would be to introduce suicide genes (for example, TK or CD [133])
into the cell genome, which can be activated to prevent a possible risk from stem cells
for the long term. In that case, the development of a microfluidic system will assess the
contribution to migration of the transmigration stage through blood vessels and will allow
cell-type comparisons. Further research in the field of the cell-based delivery of therapeutic
agents should be focused on improving the migration properties of cell carriers (Table 2), as
well as an in-depth investigation of their interactions with tumor cells, in order to minimize
the negative effects of the therapy.

Table 1. List of the current preclinical and clinical trials used in the application of MSC and NSC
against glioblastoma.

NSC

Reference Type of Study Cargo Treatment Results

Chen et al., 2013 Clinical trial - Radiation therapy
for SVZ

Radiation increases patient’s
PFS and OS

PFS:15.1 vs. 10.3
OS:17.5 vs. 15.6

(months)

Lee et al., 2013 Clinical trial - Radiation therapy
for SVZ

Radiation improves PFS
PFS:12.6 vs. 9.9

Portnow et al., 2017 Clinical trial CD
HB1.F3.CD.C21;
CD-NSCs + oral

administration of 5-FC

Migration of NSC to the tumor
and locally produces

chemotherapy is confirmed.

Aboody et al., 2013 Preclinical study CD

HB1.F3.CD.C21;
CD-NSCs +

intraperitoneal
injection of 5-FC

Inhibition of GBM progression
and prolongation of mice with

GBM xenografts survival

Bago et al., 2016 Preclinical study TRAIL iNSC modified
with TRAIL

Inhibition of GBM progression
and prolongation of mice with

GBM xenografts survival

Dey et al., 2016 Preclinical study
Oncolytic

Adenovirus
CRAd-S-pK7

Overexpressed CXCR4
in NSCs and loaded
with CRAd-S-pk7

Increased mice survival with
GBM xenografts

MSC

NCT03896568 Clinical trial
Oncolytic

Adenovirus
DNX-2401

Mesenchymal stem
cells loaded with a

tumor selective
oncolytic adenovirus,

DNX-2401

Recruiting
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Table 1. Cont.

NSC

Reference Type of Study Cargo Treatment Results

NCT04657315 Clinical trial CD

Mesenchymal stem
cells into which

cytosine deaminase the
suicide gene
was injected

Recruiting

Oraee-Yazdani
et al., 2021 Clinical trial HSV-TK

Autologous
mesenchymal stem

cells as HSV-TK
gene vehicle

Biosafety of MSC
PFS:23.7
OS: 32.2
(months)

Mohme et al., 2020 Preclinical study IL-12, IL-7

Intra-tumoral of
genetically modified
MSCs that co-express

high levels of IL-12
and IL-7

Intra-tumoral administration
of MSC IL7/12 induced

significant tumor growth
inhibition and remission of

established intracranial tumors

Novak et al., 2020 Preclinical study TRAIL
TRAIL-secreting

MSC/nanomedicine
spheroid system

The hybrid spheroid inhibited
the tumor growth efficiently

Shimizu et al., 2021 Preclinical study
Oncolytic

Adenovirus
Delta-24-RGD

Bone marrow-derived
human mesenchymal
stem cells loaded with

Delta-24-RGD

Intravascular administration of
PD-BM-MSC-D24 increased

the survival of mice harboring
U87MG gliomas

Abbreviations: MSC—Mesenchymal stem cells, DNX2401—former Delta-24-RGD oncolytic self-replicated aden-
oviral vector, BM—Bone marrow-derived, PD-1—program cell death protein 1, TRAIL—TNF-related apoptosis-
inducing ligand, PFS—progression-free survival, OS—overall survival, HSV—herpes simplex virus, NSC—Neural
stem cells, TK—thymidine kinase, CXCR4—C-X-C chemokine receptor type 4, and CRAd—Conditionally repli-
cated adenoviruses.

Table 2. Growth factors expressed in glioblastoma and their roles in therapy and patient survival.

Factors Receptor Presence at the Stem Cells Clinical Significance for the Patients with GBM

Tumor-Derived
Factors MSC NSC Impact for Therapy/References Correlation with Survival

SDF-1 + [134] + [135–137]
Inhibition of SDF-1α enhances

anti-VEGF therapy
[138]

IL6 + [134] Inhibition Il6 negatively affects
GBM viability No correlation [139]

IL1β + [134]

HGF + [84] + [137,140,141] Inhibits tumor stem-like cells
[142]

VEGF + [141] + [136,140]

Anti-VEGF treatment inhibits
angiogenesis and strongly
increases cell invasion and

tumor hypoxia
[143]

[144]

uPA + [136]

Inhibition uPA/uPAR attenuates
invasion, angiogenesis in

glioblastoma cells
[145]

[146]
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Table 2. Cont.

Factors Receptor Presence at the Stem Cells Clinical Significance for the Patients with GBM

Tumor-Derived
Factors MSC NSC Impact for Therapy/References Correlation with Survival

PDGFAA/BB + [66,147] + [148]

Ablation of PDGF signaling
sensitizes anti-VEGF/VEGFR

treatment in GBM
[149]

[139]

FGF ligands + [148]

FGF1/FGFR signaling axis
sustains the stem cell

characteristics of GBM cells
[150]

EGF + [151] + [140,148]
Inhibition EGF suppresses

GBM migration
[152]

IGF + [147] + [148]
Inhibition IGF reduces

GBM proliferation
[153]

[139]

Annexin A2 +

Annexin A2 acts at multiple levels
in determining the disseminating

and aggressive behavior of
GBM cells

[154]

[154]

TNF-a + [134] +

EGFR plus TNF inhibition is
effective in TMZ-resistant

recurrent GBM
[155]

No correlation
[139]

TGF b + [134] + [148]
TGF-β1 modulates temozolomide

resistance in glioblastoma
[156]

[157]
No correlation [139]

Abbreviations: “+”-presence on the surface of the cells, SDF-1—Stromal cell-derived factor-1, HGF—Hepatocyte
growth factor, VEGF—Vascular endothelial growth factor, uPA—Urokinase, PDGF—Platelet-derived growth
factor, FGF-1—acidic fibroblast growth factor, TNF—Tumor necrosis factor, and TGF b—Transforming growth
factor beta.
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