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A B S T R A C T   

The aberrant expression level of SARS-CoV-2 cell receptor gene ACE2 was reported in lung adenocarcinoma 
(LUAD) comorbidity of COVID-19. However, the association of ACE2 expression levels with immunosuppression 
and metabolic reprogramming in LUAD remains lacking. We investigated the expression level of ACE2, an as-
sociation of ACE2 expression level with various types of immune signatures, immune ratios, and pathways. We 
employed a weighted gene co-expression network analysis (WGCNA) R package to identify the gene modules and 
investigated prognostic roles of hub genes in LUAD. Overexpression of ACE2 level was found in LUAD and ACE2 
expression was negatively associated with various types of immune signatures including CD8+ T cells, CD4+

regulatory T cells, NK cells, and T cell activation. Besides, ACE2 upregulation was not only associated with CD8+

T cell/CD4+ regulatory T cell ratios but also linked with downregulation of immune-markers including CD8A, 
KLRC1, GZMA, GZMB, NKG7, CCL4, and IFNG. Moreover, the ACE2 expression level was found to be associated 
with the enrichment level of various metabolic pathways and it was also found that the metabolic pathways are 
directly positively correlated with the increased expression levels of ACE2, indicating that the overexpression of 
ACE2 is associated with metabolic reprogramming in LUAD. Furthermore, WGCNA based analysis revealed the 
gene modules in the high-ACE2-expression-level group of LUAD and identified GCLC and SLC7A11 hub genes 
which are not only highly expressed in lung adenocarcinoma but also correlated with the poor survival prog-
nosis. Our analysis of ACE2 in LUAD tissues suggests that ACE2 is not only a receptor but is also associated with 
immunosuppression and metabolic reprogramming. This study underlines the clue for understanding the clinical 
significance of ACE2 in COVID-19 patients with LUAD comorbidity.   

1. Introduction 

Coronavirus disease 2019 (COVID-19) arose from severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) infection. Among 
COVID-19 confirmed cases, patients with any comorbidity yielded 
poorer clinical outcomes and an increasing number of comorbidities also 
correlated with poorer clinical outcomes [1]. The mortality rate was 
high and correlated with general risk factors in COVID-19 patients with 
cancer comorbidity [2]. Recently, it was shown that lung cancer was the 
most frequent type of cancer in a COVID-19 cohort [3]. The SARS-CoV-2 
induces extensive and aberrant non-effective host immune responses 

which are linked with crucially fetal severe lung damage through 
pro-inflammatory cytokines [4]. Clinical evidence indicated that 
pro-inflammatory cytokines mediated the severe pathogenesis of 
inflammatory-induced lung injury from different conditions including 
sepsis, pneumonia, aspiration, and shock [5]. Pro-inflammatory cyto-
kines are also significantly correlated with lung injury in COVID-19 
pneumonia [6] and chronic obstructive pulmonary disease (COPD) 
[7]. In lung injury, the inflammatory process of T cells, neutrophils, and 
macrophages is crucially driven by the classical proinflammatory cyto-
kines including TNF-α, IFN-γ, IL-1, IL-6, IL-8, IL-18, and IL-32 [8]. Lung 
cancer patients are estimated with a high mortality rate worldwide [9] 
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and lung adenocarcinoma (LUAD) is one of the major histological sub-
types of lung cancer [10]. Angiotensin-converting enzyme 2 (ACE2) is a 
functional host cell receptor for SARS-related coronavirus (SARS-CoV) 
[11] and SARS-CoV-2 [12,13]. Recently it was stated that ACE2 
expression level is elevated in LUAD [14], potentially demonstrating 
that LUAD patients are excessively and aberrantly susceptible to 
SARS-CoV-2 infection. It was found that ACE2 is higher in the lung 
metastases derived from different cancer subtypes than organ metasta-
ses of other sites [15]. It was stated that the protein levels of ACE2 were 
significantly upregulated in both alveolar tissue and bronchial epithe-
lium of diabetic patients when compared with control, indicating the 
severity and susceptibility of COVID-19 in patients with diabetes. Zis-
man et al. revealed the higher expression of ACE2 in failing heart ven-
tricles of patients with idiopathic dilated cardiomyopathy [16]. Lely 
et al. demonstrated that increased ACE2 expression was found in the 
glomerular and peritubular capillary endothelia in all primary renal 
diseases [17]. ACE2 expression level is correlated with immune in-
filtrations in uterine corpus endometrial carcinoma (UCEC) and kidney 
renal papillary cell carcinoma (KIRP) [18]. A direct metabolic link was 
also demonstrated to coronavirus infection and it is necessary to meta-
bolic control in all patients with COVID-19 [19]. 

In this study, we aim to analyze the expression level of ACE2 in male, 
female, non-smoker, and smoker of lung adenocarcinoma tissue by 
computational analysis of gene expression profiling. We compared ACE2 
expression levels across the TCGA-LUAD cohort combined with the 
GTEx database and gene expression omnibus (GEO) datasets. The TCGA- 
LUAD cohort (level-3 RNA-Seq data) containing 517 tumor samples and 
59 adjacent normal samples (https://portal.gdc.cancer.gov/). Also, we 
analyzed the correlations between ACE2 expression levels and numerous 
types of immune signatures enrichment levels in LUAD. We identified 
the Kyoto encyclopedia of genes and genomes (KEGG) [20] pathways 
which are upregulated in the high expression group of ACE2 and low 
expression group of ACE2 in lung adenocarcinoma. The correlation of 
the single-sample gene set enrichment analysis (ssGSEA) score of an 
individual pathway and the expression level of ACE2 was evaluated. 
Moreover, we used weighted gene co-expression network analysis 
(WGCNA) [21] to identify the gene modules (gene ontology) that were 
differentially enriched between the high-ACE2-expression-level and the 
low- ACE2-expression-level tumors in LUAD. Finally, hub genes were 
identified specifically for the gene module and we evaluated the prog-
nostic roles of screened hub genes in lung adenocarcinoma patients. 

2. Materials and methods 

2.1. Datasets 

We used a webserver “gene expression profiling interactive analysis 
(GEPIA) 2” [22] (http://gepia2.cancer-pku.cn/#index) which contains 
expression profiling of TCGA-LUAD data with matched TCGA and GTEx 
[23] normal tissues. The lung adenocarcinoma gene expression profiling 
datasets were downloaded by searching the NCBI gene expression 
omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) using 
the keywords “lung adenocarcinoma”, and “lung cancer”, and identified 
six gene expression datasets: GSE40791 [24], GSE43458 [25], 
GSE19804 [26,27], GSE136043 [28], GSE118370 [29], and GSE13213 
[30]. Besides, the lung adenocarcinoma TCGA-LUAD cohort was 
downloaded from the TCGA data portal (https://portal.gdc.cancer. 
gov/). 

2.2. Differential expression of ACE2 in lung adenocarcinoma 

We employed GEPIA 2 [22] (http://gepia2.cancer-pku.cn/#index) 
to identify the differential expression of ACE2 between cancer and 
normal tissues. GEPIA 2 contains TCGA-LUAD data with matched 
normal data and the GTEx database [23] of normal tissues. For GEO 
datasets, the differential expression of ACE2 was screened by using 

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r) which is an inter-
active web tool. GEO2R tool based on the GEOquery and limma R 
packages from the Bioconductor project (http://www.bioconductor. 
org/). The thresholds of P-value < 0.05 and |log2FC| or |FC| (fold 
change) > 0.50 were set to find out significant level. 

2.3. Evaluation of the immune signature enrichment levels 

We identified the enrichment level of the immune signature in a 
tumor sample as the single-sample gene-set enrichment analysis 
(ssGSEA) score [31]. ssGSEA is an extension of GSEA which calculating 
the separate enrichment scores for each pairing of a sample and gene set. 
The gene set contains the collection of all marker genes of an immune 
signature. We included 9 immune signatures: B cell, CD8+ T cells, CD4+

regulatory T cells, NK cells, Tregs, T cell activation, cytolytic activity, 
MHC class 1, type 1 interferon (IFN), and type 2 IFN. The marker genes 
set of individual immune signatures are displayed in Supplementary 
Table S1. 

2.4. Gene-set enrichment analysis 

We conducted gene-set enrichment analysis (GSEA) of the TCGA- 
LUAD and GEO datasets by using GSEA (R implementation) [32–34]. 
Our analysis identified the KEGG [20] pathways which are upregulated 
in the high expression group of ACE2 and low expression group of ACE2 
in lung adenocarcinoma (P < 0.05) (expression levels > median versus 
expression levels < median), respectively. The common pathways in 
both datasets were selected for calculating the correlations of pathway 
activities with the expression level of ACE2 in lung adenocarcinoma. 

2.5. Correlation of pathway activities with the expression level of ACE2 in 
lung adenocarcinoma 

We used gene sets that are included in the pathway for quantifying 
the ssGSEA score [31] to identify the activity of a pathway. The marker 
gene set pathways were displayed in Supplementary Table S2. The 
Spearman correlation of the ssGSEA score of the pathway and the 
expression level of ACE2 was used to evaluate the correlation of pathway 
activities in lung adenocarcinoma. 

2.6. Evaluation of ACE2-associated networks in lung adenocarcinoma 

We employed WGCNA [21] for identifying the gene modules (gene 
ontology) that were differentially enriched between the high--
ACE2-expression-level and the low- ACE2-expression-level tumors in 
TCGA-LUAD and GSE40791 (expression levels > median versus 
expression levels < median), respectively. Hub genes were identified 
specifically for the gene module by using STRING v11 [35] and Net-
workAnalyst [36] tools. The degree of interactions of hub genes with 
other genes not less than 5 and the minimum required interaction score 
is 0.40 was set in the STRING v11 tool. 

2.7. Survival analysis of hub genes in PrognoScan and GEPIA databases 

The prognostic roles of screened hub genes in lung adenocarcinoma 
patients were analyzed using the PrognoScan database (http://www. 
abren.net/PrognoScan/) [37] and GEPIA 2 databases [22]. We 
compared the survival of lung cancer patients classified based on gene 
expression levels of ACE2 (expression levels > median versus expression 
levels < median). Kaplan-Meier survival curves were utilized to prove 
the survival differences, and the log-rank test was used to evaluate the 
significance of survival differences. Cox P < 0.05 was considered as a 
significant level. 
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2.8. Statistical analysis 

To evaluate the two variables, we employed Pearson’s or Spearman’s 
correlation test. For analyzing the correlations between the expression 
levels of ACE2 and the enrichment levels (ssGSEA scores) of immune 
signatures and pathways, we employed Spearman’s correlation test 
because these data were not normally distributed. For analyzing the 
correlations between the expression levels of ACE2 with the expression 
levels of a single gene and the ratios of immune signatures, we utilized 
Pearson’s correlation test because these data were normally distributed. 
For adjusting the multiple tests, the FDR was calculated by the Benja-
mini and Hochberg method [38]. We used the Student’s t-test (P < 0.05 
and |FC| > 0.30) for differential expression levels of the immune marker 
genes between the high expression group of ACE2 (HEA) and low 
expression group of ACE2 (LEA). For GEO datasets, we used Networ-
kAnalyst [36] tool for calculating the average expression for the genes 
having multiple probes. 

3. Results 

3.1. Over expression of ACE2 in male, female, non-smoker, and smoker 
of lung adenocarcinoma tissue 

ACE2 is upregulated in various groups of lung adenocarcinoma pa-
tients including male (FC = 1.63, P < 0.001), female (FC = 1.10, P <
0.001), non-smoker (FC = 0.60, P < 0.01), and smoker (FC = 1.64, P <

0.001) when compared with respective normal samples (Fig. 1). Over 
expression of ACE2 was found in lung adenocarcinoma of TCGA com-
bined with GTEx data (FC = 0.55, P < 0.001) (Fig. 1A), microarray data 
(FC = 1.54, P < 0.001) (GSE40791, Fig. 1B), never-smoker (FC = 0.60, P 
< 0.01) (GSE43458, Fig. 1C), ever or current smoker (FC = 1.64, P <
0.001) (GSE40791, Fig. 1D), female (FC = 1.10, P < 0.001) (GSE19804, 
Fig. 1E), and male (FC = 1.63, P < 0.001) (GSE40791, Fig. 1F) pateints. 
In addition, ACE2 is overexpressed (FC = 1.56, P < 0.01) in fresh lung 
adenocarcinoma tissue specimens (collected immediately after surgical 
resection) when compared to non-tumor lung tissue (GSE136043, 
Fig. 1G). In invasive lung adenocarcinoma, elevated expression level of 
ACE2 was also found when compared with paired normal lung tissues 
(FC = 1.64, P < 0.05) (GSE118370, Fig. 1H). Upregulation of ACE2 has 
been demonstrated in LUAD and patients with upregulated ACE2 
expression in lung cancer are susceptible to SARS-CoV-2 infection [14, 
39]. 

3.2. Association of ACE2 expression level with immune signatures in lung 
adenocarcinoma 

In the TCGA-LUAD cohort, we revealed significant negative corre-
lations of the ACE2 expression levels with the enrichment levels (ssGSEA 
scores) of CD8+ T cells, CD4+ regulatory T cells, NK cells, T cell acti-
vation, and MHC class 1 (Spearman’s correlation test, P < 0.05) 
(Fig. 2A). Cytolytic activity enrichment score also showed a negative 
correlation with the expression of ACE2 level (Spearman’s correlation 

Fig. 1. ACE2 is upregulated in lung adenocarcinoma patients. A. ACE2 is upregulated in combined TCGA-LUAD and GTEx data. B. ACE2 is upregulated in lung 
adenocarcinoma of microarray data. C. ACE2 is upregulated when compared to normal lung tissue were paired to the never-smoker lung adenocarcinoma cases. D. 
Upregulation of ACE2 in ever or current smoking lung adenocarcinoma. E. Genome-wide screening of transcriptional modulation in female lung cancer showed ACE2 
is overexpressed. F. Overexpression of ACE2 in male lung adenocarcinoma. G. ACE2 is upregulated in fresh lung adenocarcinoma tissue specimens when compared to 
non-tumor lung tissue. H. ACE2 is upregulated also in invasive lung adenocarcinoma tissue.*P < 0.05. **P < 0.01, and ***P < 0.001. 
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test, R = − 0.08, P = 0.08). However, type 2 IFN response enrichment 
level (ssGSEA scores) is positively correlated with the ACE2 expression 
levels (Spearman’s correlation test, P < 0.05) (Fig. 2A). B cell, Tregs, and 
Type 1 IFN enrichment score is not significantly correlated with the 
expression level of ACE2. We further investigated the association of 
ACE2 expression levels with various types of immune signatures in an 
independent lung adenocarcinoma dataset (GSE40791). In GSE40791 
(n = 194), expression level of ACE2 is negatively correlated with the 
enrichment levels of CD8+ T cells (R = − 0.30, P < 0.01), CD4+ regu-
latory T cells (R = − 0.28, P < 0.01), NK cells (R = − 0.23, P < 0.05), T 
cell activation (R = − 0.29, P < 0.01), cytolytic activity (R = − 0.25, P <
0.05), MHC class 1 (R = − 0.17, P < 0.1) (Spearman correlation test) 
(Supplementary Fig. 1). These results strongly suggest that ACE2 
expression level is negatively associated with CD8+ T cells, CD4+ reg-
ulatory T cells, NK cells, T cell activation, cytolytic activity, MHC class 1 
in lung adenocarcinoma. Lung cancer progression is associated with 
increased T cell dysfunctions [40]. CD8+ T cells and CD4+ T cells are 
significantly lower in COVID-19 patients [41]. In lung adenocarcinoma 
lesions, NK cells were the least abundant immune cell lineage [42]. 
Strikingly, we found that the ratios of CD8+/CD4+ regulatory T cells 
had significant negative correlations with the expression level of ACE2 
in the TCGA-LUAD cohort and two other GEO datasets (GSE40791 and 
GSE19804) respectively (Pearson’s correlation test, P < 0.05) (Fig. 2B). 
Altogether, these results suggest that the elevated expression of ACE2 is 
associated with the immunosuppressive roles in lung adenocarcinoma. 

3.3. Identification of differentially expressed immune marker genes 
between high expression group of ACE2 and low expression group of ACE2 
in lung adenocarcinoma 

We divided the TCGA-LUAD (n = 517) sample into high expression 
(expression levels > median) group of ACE2 (HEA) and low expression 
(expression levels < median) group of ACE2 (LEA) bassed on ACE2 
expression level. We chose marker genes (Supplementary Table S1) of 
significant immune signatures used earlier in this study. Differential 
analysis of marker genes revealed that CD8A (CD8+ T cells marker), 
KLRC1 (NK cells marker), GZMA (cytolytic activity and T cell activation 
marker), GZMB (T cell activation marker), GPR15 (CD4+ regulatory T 
cells marker), NKG7 (T cell activation marker), CCL4 (T cell activation 
marker), and IFNG (T cell activation marker) genes are downregulated 
in HEA (Fig. 3). Only type 2 IFN marker SELP is upregulated in LEA 
(Fig. 3) (Student’s t-test, P < 0.05). We validated the expression of these 
marker genes in an independent GEO dataset (GSE40791) of lung 
adenocarcinoma. Strikingly, we revealed that the expression of CD8A, 
KLRC1, GZMA, GZMB, NKG7, CCL4, and IFNG immune marker genes are 
negatively correlated with the expression level of ACE2 in lung adeno-
carcinoma of the GSE40791 dataset (Pearson’s correlation test, P <
0.05) (Supplementary Fig. S2). In contrast, GPR15 and SELP marker 
genes had no significant correlation with the expression level of ACE2 in 
the tumor tissue of GSE40791. These data indicate that the upregulation 
of ACE2 expression is associated with the downregulation of immune 
markers including CD8A, KLRC1, GZMA, GZMB, NKG7, CCL4, and IFNG 
in lung adenocarcinoma tissues. CD8A and GZMA genes were signifi-
cantly elevated in a cluster that is enriched in lung adenocarcinoma 
[43]. Increased immunotherapy response is associated with the 
expression of CCL4 [44]. In the tumor microenvironment of non-small 
cell lung cancer, decreased IFNG is linked with the stemness of tumor 
cells [45]. Taken together, the expression level of ACE2 is inversely 
associated with the anti-tumor immunity in lung adenocarcinoma. 

3.4. The expression level of ACE2 is associated with the enrichment of 
pathways 

GSEA revealed several KEGG pathways significantly enriched in the 
high expression group of ACE2 (expression levels > median) and low 
expression (expression levels < median) group of ACE2 in lung adeno-
carcinoma (P < 0.05) (Fig. 4A and B). In TCGA-LUAD and GSE40791 
cohorts, the metabolic pathways were highly active in the high 
expression group of ACE2 (Fig. 4A and B). In the TCGA-LUAD cohort, the 
active pathways were cell cycle, DNA replication, mismatch repair, 
spliceosome, base excision repair, RNA degradation, nucleotide excision 
repair, ribosome, and chronic myeloid leukemia in the low expression 
group of ACE2 (Fig. 4A) but active pathways were not found in low 
expression group of ACE2 in GSE40791. The commonly found active 
pathways in the high expression group of ACE2 were identified in both 
datasets (Between TCGA-LUAD and GSE40791 cohorts). Interestingly, 
we identified commonly active 14 pathways in the high expression 
group of ACE2 including glycolysis gluconeogenesis, fatty acid meta-
bolism, peroxisome, tyrosine metabolism, histidine metabolism, arach-
idonic acid metabolism, tryptophan metabolism, propanoate 
metabolism, ABC transporters, arginine, and proline metabolism, valine 
leucine and isoleucine degradation, butanoate metabolism, primary bile 
acid biosynthesis, and pyruvate metabolism. This result confirmed the 
increased metabolic pathway activity in the high expression group of 
ACE2. Furthermore, we calculated the ssGSEA score of all 14 over-
lapping pathways across TCGA-LUAD, GSE40791, GSE19804 (Female), 
and GSE40791 (Male) datasets. Thirteen pathways upregulated in the 
high expression group of ACE2 are positively correlated (Spearman’s 
correlation test, P < 0.05) with the expression of ACE2 across TCGA- 
LUAD and GSE40791 data. Also, 12 pathways (except ABC trans-
porters) are also positively correlated with the elevated expression of 
ACE2 in GSE19804 (Female) and GSE40791 (Male) datasets 

Fig. 2. The elevated expression level of ACE2 is associated with immune 
signatures. A. Significant correlation of ACE2 expression levels with immune 
signatures in lung adenocarcinoma (TCGA data of LUAD). ACE2 expression is 
negatively correlated with the ssGSEA score of CD8+ T cells, CD4+ regulatory T 
cell, NK cell, T cell activity, and MHC class 1 and positively correlated with type 
2 IFN ssGSEA score (Spearman’s correlation test, P < 0.05). B. Significant 
negative correlation of ACE2 expression levels with CD8+ T cell/CD4+ regu-
latory T cell ratios in TCGA data of LUAD and two GEO datasets (GSE40791 and 
GSE19804) (Pearson’s correlation test, P < 0.05). The ratio of CD8+ T cell/ 
CD4+ regulatory T cell in a tumor sample is defined as the ratio of average 
expression levels of their marker genes (log2-transformed for TCGA data). *P <
0.05. **P < 0.01, and ***P < 0.001. 

M.N. Uddin et al.                                                                                                                                                                                                                               



Chemico-Biological Interactions 335 (2021) 109370

5

(Spearman’s correlation test, P < 0.05) (Fig. 4C). Dysregulation of en-
ergy metabolism and immune evasion are two emerging hallmarks of 
cancer [46]. Malignant cells reprogram their metabolism and energy 
production for supporting cell proliferation and survival [47]. Increased 
glycolytic rate is essential for supporting the cancer cell growth, sur-
vival, proliferation, and long-term maintenance [48]. Cancer cells 

reprogram fatty acid metabolism which is essential for cancer progres-
sion, metastasis, and remodeling of the tumor microenvironment [49]. 
Amino acid metabolism is a crucial target for cancer therapy [50]. 

Fig. 3. Comparative expression levels of the immune marker genes between high expression group of ACE2 (HEA) and low expression group of ACE2 (LEA) in TCGA 
lung adenocarcinoma. (Student’s t-test, *P < 0.05, **P < 0.01, and ***P < 0.001). FC: Fold change. 

Fig. 4. GSEA (R implementation) based identifi-
cation of ACE2 expression-specific pathways. A. 
KEGG pathways enriched in TCGA-LUAD (NES>0 is 
enriched in high expression group and NES<0 is 
enriched in low expression group). B. KEGG pathways 
enriched in GSE40791 (No pathways found in low 
expression group of ACE2) (P < 0.05). C. Correlation 
between the pathway enrichment score (ssGSEA) and 
the expression level of ACE2. upregulated over-
lapping 13 pathways have direct positive correlations 
with the expression of ACE2 across the datasets 
(Spearman’s correlation test, P < 0.05).   

Fig. 5. Correlated gene signatures with ACE2 and 
their significant association with pathway 
enrichment (FDR<0.05) A. 87 (in red) and 26 (in 
blue) genes showing significant positive and negative 
expression correlations with ACE2 (yellow circled 
with red) consistently between TCGA (LUAD) and 
GSE40791, respectively (Pearson’s correlation test, 
FDR < 0.05, |R| > 0.3). B. Involvement of 87 (in red) 
positively correlated gene signatures with the 
enrichment of KEGG pathways. These positively 
correlated gene signatures were mainly involved with 
metabolism-associated pathways (FDR<0.05).   
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3.5. ACE2-expression-specific correlated gene signatures are associated 
with the enrichment of pathways in lung adenocarcinoma 

We used the TCGA-LUAD cohort and GSE40791 dataset to identify 
the correlation (Pearson correlation, R > 0.30, FDR<0.05) between the 
expression level of ACE2 and all other genes. We found the positively 
correlated common 87 gene signatures (red indicated in Fig. 5A) 
including two transcription factors CREG1 and MECOM between TCGA 
and GSE40791 (Pearson’s correlation test, FDR <0.05, R > 0.3). CREG1 
has a potential role in cell proliferation and migration in NSCLC cells 
[51]. MECOM is significantly amplified in lung adenocarcinoma [10]. 
Finally, 87 positively correlated genes were inputted into GSEA to 
identify the pathways. We found 27 KEGG pathways which are mostly 
associated with metabolism (FDR < 0.05) (Fig. 5B). Interestingly, we got 
overlapping 11 pathways (fatty acid metabolism, tyrosine metabolism, 
histidine metabolism, arachidonic acid metabolism, tryptophan meta-
bolism, propanoate metabolism, glycolysis gluconeogenesis, arginine 
and proline metabolism, valine leucine and isoleucine degradation, 
butanoate metabolism, and pyruvate metabolism) which are also 
actively enriched in high expression group ACE2 (Fig. 4A–C). In 
contrast, we also found negatively correlated common 26 gene signa-
tures (blue indicated in Fig. 5A) including six transcription factors 
HMGB2, MYBL1, PSIP1, RBL1, SAP30, and UHRF1 between 
TCGA-LUAD and GSE40791 cohorts (Pearson’s correlation test, FDR <
0.05, R < − 0.3). In a human lung cancer cell, the HMGB2 gene increased 
cisplatin sensitivity [52]. Significant pathways were not identified by 
GSEA for negatively correlated 26 gene signatures. This result further 
confirmed the association of ACE2 expression level with metabolic 
pathways in lung adenocarcinoma tissue. 

3.6. Identification of ACE2 expression specific interaction networks in 
lung adenocarcinoma 

We used the TCGA-LUAD cohort and GSE40791 dataset to identify 
the ACE2 expression specific interaction networks modules. In the 
TCGA-LUAD cohort, WGCNA identified four gene modules (green-yel-
low, turquoise, magenta, and green) that were more highly enriched in 
the high-ACE2-expression-level than in the low- ACE2-expression-level 
tumors (Fig. 6A). On the other hand, only one gene module (indicated 
yellow) was found to be more highly enriched in the low-ACE2- 
expression-level tumors (Fig. 6A). The GO terms in the highly enriched 
green-yellow module are oxidoreductase activity, small molecule 
metabolic process, and alcohol dehydrogenase (NADP+) activity. In 
addition, we also identified gene modules in GSE40791 (Supplementary 
Fig. S3 A). WGCNA identified only one gene modules (pink) that was 
more highly enriched in the high-ACE2-expression-level than in the low- 
ACE2-expression-level tumors and three gene modules (turquoise, 
green, and brown) that were found to be more highly enriched in the 
low-ACE2-expression-level tumors (Supplementary Fig. S3 A). The GO 
terms in the highly enriched pink modules are carboxylic acid metabolic 
process, oxoacid metabolic process, oxidation-reduction process, 
organic acid metabolic process, small molecule metabolic process, 
oxidoreductase activity, monocarboxylic acid metabolic process, and 
catalytic activity. Interestingly, two GO terms oxidoreductase activity 
and small molecule metabolic process are commonly found in the highly 
enriched module of high-ACE2-expression-level tumor of both datasets 
(TCGA-LUAD and GSE40791). In contrast, no commonly enriched GO 
term was found in the module of low-ACE2-expression-level tumor of 
both datasets (TCGA-LUAD and GSE40791). It indicates that ACE2 
expression is associated with a metabolic process in lung 
adenocarcinoma. 

Fig. 6. Module coexpression networks of ACE2 in 
lung adenocarcinoma. A. WGCNA based identifi-
cation of gene modules (gene ontology) more highly 
enriched in high-ACE2-expression-level and low- 
ACE2-expression-level in TCGALUAD cohorts. B. A 
subnetwork of the green-yellow gene module active 
in the high-ACE2-expression-level group of TCGA- 
LUAD. GCLC and SLC7A11 (indicated blue color) 
hub genes are associated with survival prognosis. C. 
GCLC and SLC7A11 hub genes are significantly highly 
expressed in GTEx combined with TCGA-LUAD co-
horts. D. Kaplan-Meier curves shows that the elevated 
expression of GCLC and SLC7A11 hub genes are 
associated with a worse overall survival (OS) prog-
nosis in TCGA-LUAD cohorts by GEPIA 2 (log-rank 
test, P < 0.05). E. Kaplan-Meier curves also show that 
GCLC and SLC7A11 hub genes are associated with 
shorter survival prognosis (OS) in GSE13213 dataset 
by Prognoscan (log-rank test, P < 0.05).   
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From the green-yellow gene module (Fig. 6A) of the TCGA-LUAD 
cohort, we identified 24 hub genes (Supplementary Table S3). In addi-
tion, we also identified 37 hub genes (Supplementary Table S4) in the 
pink module (Supplementary Fig. S3 A) of GSE40791. Interestingly, we 
found common 14 hub genes (NQO1, EGF, CBR1, CBR3, AKR1B10, 
AKR1C1, AKR1C2, AKR1C3, ALDH3A1, G6PD, GCLC, GPX2, SLC7A11, 
and SRXN1) between TCGA-LUAD and GSE40791 datasets. These hub 
genes were mainly involved in metabolism-related pathways (KEGG, 
FDR<0.001) identified by GSEA, including arachidonic acid metabolism 
(AKR1C3, AKR1C1, CBR1, and CBR3), metabolism of xenobiotics by 
cytochrome P450 (AKR1C1, AKR1C2, AKR1C3, and ALDH3A1), gluta-
thione metabolism (G6PD, GCLC, and GPX2), and steroid hormone 
biosynthesis (AKR1C1, AKR1C2, and AKR1C3). A subnetwork (Fig. 6B) 
from the green-yellow gene module identified 14 hub genes including 
GCLC and SLC7A11 (indicated blue) which are not only associated with 
higher expression in lung adenocarcinoma but also linked with the 
survival prognosis in LUAD patients (Fig. 6C–E). Interestingly, we found 
that GCLC and SLC7A11 expression levels are higher in TCGA-LUAD 
when compared with TCGA and GTEx combined normal lung tissue 
(Fig. 6C). Furthermore, overexpression of GCLC (FC = 0.96, P < 0.001) 
and SLC7A11 (FC = 2.44, P < 0.001) were also found in lung adeno-
carcinoma tissues of GSE40791 dataset (two-sided Student’s t-test) 
(Supplementary Fig. S3 B). Survival analysis using GEPIA 2 revealed 
that GCLC and SLC7A11 hub genes are associated with shorter overall 
survival (OS) prognosis in the TCGA-LUAD cohort (Fig. 6D). Moreover, 
PrognoScan revealed the elevated expression of GCLC and SLC7A11 had 
a negative correlation with survival prognosis (OS) in an independent 
GSE13213 dataset (Fig. 6E). In lung adenocarcinoma, high expression of 
GCLC is a potential predictor of treatment failure through cisplatin 
resistance [53]. Overexpression of SLC7A11 was found in lung cancer 
cells for satisfying the metabolic requirements of cancer cell growth and 
survival [54]. 

4. Discussion 

Several previous studies have identified the aberrant expression of 
ACE2 in lung adenocarcinoma based on gene expression profiling data 
[14,39]. Zhang et al. observed the higher expression of ACE2 in LUAD 
and LUSC and also predicting prognosis in these two common lung 
cancer types [55]. Samad et al. revealed that ACE2 is highly expressed in 
lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC) 
and this is associated with poor lung cancer outcomes [56]. We analyzed 
the expression level of ACE2 in male, female, non-smoker, and smoker of 
lung adenocarcinoma tissue. Our analysis revealed that elevated 
expression level of ACE2 was found in lung adenocarcinoma of male, 
female, non-smoker, and smoker patients (Fig. 1). In addition, ACE2 is 
upregulated in fresh lung adenocarcinoma tissue specimens when 
compared to non-tumor lung tissue (Fig. 1G), and also overexpressed in 
invasive lung adenocarcinoma tissue (Fig. 1H). Lung cancer patients are 
more susceptible to SARS-CoV-2 infection than normal individuals [3]. 
Since ACE2 is upregulated in lung cancer patients, Qi Kong et al. verified 
the susceptibility of lung cancer patients in each age stage, subtype, and 
pathological stage to SARS-CoV-2 infection [14]. Zhang et al. demon-
strated that the expression of SARS-CoV-2 entry gene ACE2 reveals the 
susceptibility of COVID-19 in lung cancer patients [55]. Altogether, it is 
rational that male, female, non-smoker, and smoker patients of lung 
adenocarcinoma are susceptible to the risk of SARS-CoV-2 infection. 

Our results revealed that ACE2 expression level is negatively corre-
lated with the ssGSEA score of CD8+ T cells, CD4+ regulatory T cell, NK 
cell, T cell activity (Fig. 2A and Supplementary Fig. S1). In lung tissues, 
CD8+ T cells and NK cells are significantly inversely correlated with the 
expression levels of SARS-CoV-2 entry receptor ACE2 [57], indicating 
the increasing sensitivity of SARS-CoV-2 infection. It was stated that the 
chronic presence of lung tumor is associated with CD8+ T cell dys-
functions, sensitizes them to programmed cell death, and poor clinical 
responses in immunotherapeutic trials [58]. A significant decrease of 

both CD8+ T cells and CD4+ regulatory T cell were observed in the onset 
of SARS and both of the immune cells rapidly loss during the acute phase 
of SARS [59]. In lung cancer, the potentiality of NK cells is reduced that 
ultimately limited the protective role of NK cells against tumors in the 
early stage of lung cancer [60]. Deficiencies of NK cells are associated 
with increased susceptibility to viruses [61] and human NK cells are 
essential to clear virally infected cells [62]. A decreased amount of CD8+

T cells, CD4+ regulatory T cells, and NK cells in lung adenocarcinoma 
indicated the increased susceptibility of patients to the SARS-CoV-2 
infection. Besides, we found a significant negative correlation of ACE2 
expression levels with CD8+ T cell/CD4+ regulatory T cell ratios 
(Fig. 2B). Moreover, CD8A, KLRC1, GZMA, GZMB, NKG7, CCL4, and 
IFNG immune markers have an inverse association with the expression 
level of ACE2 in lung adenocarcinoma tissues (Fig. 3 and Supplementary 
Fig. S2). Taken together, our results underline that the expression of 
ACE2 is associated with viral spread and immunopathology in lung 
adenocarcinoma. 

Cancer-associated metabolic reprogramming is linked with gene 
expression, cellular differentiation, and tumor microenvironment [63]. 
Since ACE2 expression is directly correlated with dysregulation of the 
metabolic pathways (Fig. 4A–C), higher expression of ACE2 has pro-
found effects on tumorigenesis of lung adenocarcinoma through meta-
bolic reprogramming. WGCNA based GO identification in green-yellow 
module further proves the association of ACE2 with metabolic process in 
lung adenocarcinoma (Fig. 6A). For replication and spreading, the virus 
induces host metabolic pathways including glycolysis, fatty acid syn-
thesis, and/or glutaminolysis [64]. Metabolic control of glucose and 
lipid levels are key factors in COVID-19 patients [19]. Altogether, the 
high expression level of ACE2 is not only associated with tumorigenesis 
but also linked with SARS-CoV-2 replication and spreading through 
inducing the metabolic pathways in lung adenocarcinoma. 

This study has identified the role of ACE2 in lung adenocarcinoma 
diagnosis and prognosis and may provide therapeutic targets for lung 
adenocarcinoma. On the other hand, this study also proved that lung 
adenocarcinoma patients are more susceptible to SARS-CoV-2 infections 
than normal populations. This study has some drawbacks. Our gener-
ated results from the bioinformatics analysis need to be verified by 
clinical and experimental conditions. However, to translate these find-
ings into clinical application, further experimental and clinical valida-
tion would be warranted. 

5. Conclusions 

Overexpression of ACE2 level was negatively associated with various 
types of immune signatures and immune ratios. The expression level of 
ACE2 was found to be associated with the enrichment level of various 
metabolic pathways and it was also found that the metabolic pathways 
are directly positively correlated with the increased expression levels of 
ACE2, indicating that the overexpression of ACE2 is associated with 
metabolic reprogramming in LUAD. Our findings may provide new in-
sights into the roles of ACE2 in immunosuppression and metabolic 
reprogramming of LUAD tissues and the clinical significance of ACE2 in 
COVID-19 patients with LUAD comorbidities. Future studies warranted 
for the inhibition of ACE2 in LUAD tissues as a therapeutic approach 
should be carefully evaluated. 

6. Availability of data and materials 

The lung adenocarcinoma TCGA-LUAD cohort was downloaded from 
the TCGA data portal (https://portal.gdc.cancer.gov/). In addition, the 
lung adenocarcinoma gene expression profiling datasets were down-
loaded from the NCBI gene expression omnibus (GEO) database (http 
s://www.ncbi.nlm.nih.gov/geo/). 
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