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Relationship between haemodynamic
impairment and collateral blood flow
in carotid artery disease
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Abstract

Collateral blood flow plays a pivotal role in steno-occlusive internal carotid artery (ICA) disease to prevent irreversible

ischaemic damage. Our aim was to investigate the effect of carotid artery disease upon cerebral perfusion and cere-

brovascular reactivity and whether haemodynamic impairment is influenced at brain tissue level by the existence of

primary and/or secondary collateral. Eighty-eight patients with steno-occlusive ICA disease and 29 healthy controls

underwent MR examination. The presence of collaterals was determined with time-of-flight, two-dimensional phase

contrast MRA and territorial arterial spin labeling (ASL) imaging. Cerebral blood flow and cerebrovascular reactivity

were assessed with ASL before and after acetazolamide. Cerebral haemodynamics were normal in asymptomatic ICA

stenosis patients, as opposed to patients with ICA occlusion, in whom the haemodynamics in both hemispheres were

compromised. Haemodynamic impairment in the affected brain region was always present in symptomatic patients. The

degree of collateral blood flow was inversely correlated with haemodynamic impairment. Recruitment of secondary

collaterals only occurred in symptomatic ICA occlusion patients. In conclusion, both CBF and cerebrovascular reactivity

were found to be reduced in symptomatic patients with steno-occlusive ICA disease. The presence of collateral flow is

associated with further haemodynamic impairment. Recruitment of secondary collaterals is associated with severe

haemodynamic impairment.
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Introduction

Collateral blood flow plays a pivotal role in patients
with an occlusion in one of the cerebral arteries to
maintain adequate oxygenation and cell function.1

A stenosis or occlusion of the internal carotid artery
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(ICA) decreases the perfusion pressure on the afflicted
side. This pressure drop may lead to collateral blood
flow and redistribution of blood from the contralateral
internal carotid artery (ICA) or the posterior circula-
tion towards the afflicted hemisphere. The circle of
Willis (CoW) is considered to be the primary collateral
flow route and can supplement the affected brain tissue
area with blood through the anterior communicating
artery (AComA) or the posterior communicating
artery (PComA).1,2 Other collateral pathways such as
collateral flow via the ophthalmic artery or leptomen-
ingeal collaterals are considered to be secondary collat-
eral flow routes, meaning that these collaterals are only
recruited when the primary collaterals are insufficient
or fail.3,4

Patients with recently symptomatic steno-occlusive
carotid artery disease are at increased risk for stroke,
with an annual risk of 5–6% for recurrent stroke. This
risk is raised to 9–18% per year in patients with com-
promised cerebral haemodynamics and poor collateral
blood flow.5,6 The presence of leptomeningeal collat-
erals on a diagnostic angiogram is predictive of recur-
rent ischaemic stroke.7 This suggests that secondary
collaterals are associated with increased haemodynamic
compromise.3,4 Previous studies, however, found no
correlation between recurrent ischaemic stroke and
haemodynamic impairment measured as cerebrovascu-
lar reactivity (CVR) with transcranial Doppler.7

Arterial spin labeling (ASL) MR perfusion imaging
has made it possible to measure within the brain tissue
both the cerebral blood flow (CBF) and its territorial
distribution.8,9 By combining perfusion measurements
with a vasodilatory challenge, the CVR can be assessed
as a measure for haemodynamic impairment at brain
tissue level. Furthermore, in combination with MR
angiography, selective ASL can be used to evaluate
the territorial distribution of blood and assess collateral
pathways.

The aim of the current study was to investigate the
effect of large carotid artery disease upon cerebral
perfusion and CVR and whether haemodynamic
impairment is influenced at brain tissue level by the
existence of primary and/or secondary collaterals. We
therefore compared the CVR between healthy subjects,
symptomatic and asymptomatic patients with severe
ICA stenosis or occlusion and assessed the presence
of primary and secondary collateral blood flow by com-
bining MR angiography flow patterns at the CoW with
territorial ASL perfusion MRI assessment of collateral
perfusion territories.

Materials and methods

This study was approved by the institutional ethical
review board of the University Medical Center

Utrecht according to the Declaration of Helsinki
‘Ethical Principles for Medical Research Involving
Human Subjects’ and in accordance with the guidelines
for Good Clinical Practice (CPMP/ICH/135/95) and
written informed consent was obtained from each par-
ticipant before inclusion.

Subjects

One-hundred seventeen subjects were included in the
study. Eighty-eight were functionally independent
patients with steno-occlusive ICA disease and 29 were
healthy control subjects. All patients were admitted
within an 18-month period to the University Medical
Center Utrecht, a tertiary comprehensive stroke center,
because of carotid artery disease. Group comparisons
were done for healthy control subjects, patients with
asymptomatic ICA steno-occlusive disease and patients
with symptomatic steno-occlusive disease.

Thirty-six of the patients were asymptomatic and
had an ICA stenosis of >50% (n¼ 27) or occlusion
(n¼ 9). Fifty-two were symptomatic and had an ICA
stenosis> 50% (n¼ 23) or occlusion (n¼ 29). All
patients were evaluated by a stroke neurologist.
Symptomatic patients had had a transient ischaemic
attack (TIA) or non-disabling ischaemic stroke ipsilat-
eral to the afflicted ICA in the previous three months.
A TIA was characterized by distinct focal neurological
dysfunction or monocular blindness with clearing of
sign and symptoms within 24 h. A stroke was charac-
terised by one or more minor (non-disabling) com-
pleted strokes with persistence of symptoms or signs
for more than 24 h. Patients with severe disabling
stroke (modified Rankin core 3–5) were excluded
from this study. Patients with diabetes mellitus, severe
renal or liver dysfunction, which are contraindications
for the use of acetazolamide (ACZ), or disabling stroke
(modified Rankin scale score of 3–5), were excluded
from this study.10 Diagnosis and grading of the ICA
stenosis or occlusion were performed with duplex ultra-
sonography11 and confirmed with either computed
tomography or magnetic resonance (MR) angiography
as measured according to the NASCET criteria.5

Imaging protocol

Imaging was performed on a 3T MRI (Achieva, Philips
Medical Systems, the Netherlands). The imaging
protocol included anatomical T1-weighted imaging,
time-of-flight MR angiography (TOFMRA), diffusion-
weighted imaging (DWI), T2-weighted fluid attenu-
ation inversion recovery (FLAIR) imaging, and
perfusion and territorial ASL imaging.

CBF was measured with a pseudo-continuous ASL
(p-CASL) scan. CVR was assessed, according to a
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previously published protocol, by measuring the
amount of CBF increase 15min after a vasodilatory
ACZ challenge.8 A bolus of 14mg/kg ACZ
(Goldshield Pharmaceuticals, UK), with a maximum
dose of 1200mg, was used. An inversion recovery
sequence was acquired to measure the magnetization
of arterial blood (M0), to quantify CBF, and to segment
brain tissue into gray and white matter.12

The labeling plane of the p-CASL scan was pos-
itioned in a fixed location with respect to the acquisition
volume, i.e. parallel to it and 90mm below the center
slice. Labeling was performed by employing a train of
18� Hanning shaped RF pulses of 0.5ms at an interval of
1ms, with a balanced gradient scheme.13,14 The control
images were acquired by adding 180� to the phase of all
even RF pulses. For each scan, 38 averages of control/
label pairs were acquired, resulting in 5min scan time.
For perfusion and territorial scans, the parameters were
as follows: TR/TE, 4000/14ms; field-of-view (FOV),
240� 240mm2; matrix size, 80� 80; slices, 17; slice
thickness, 7mm; no slice gap; single shot echo-planer
imaging; label duration, 1650ms; post labeling delay,
1525ms; background suppression with a saturation
pulse preceding the labeling and two inversion pulses,
1680 and 2830ms after the saturation pulse.

Territorial ASL imaging was performed with a
planning-free vessel encoded (VE) p-CASL to establish
the collateral blood flow patterns and perfusion terri-
tories of the right and left ICA (RICA and LICA) and
the basilar artery (BA).15 Selective labeling was accom-
plished through manipulating the spatial labeling effi-
ciency by applying additional gradients between the
labeling pulses in sets of five variations, i.e. no label
(control), full non-selective label (global perfusion),
right-to-left encoded label (with 50mm between full
label and control), and two anterior-to-posterior
encoded label variations (with 18mm between full
label and control, each shifted 9mm from each
other).16 For each variation, 15 averages were acquired,
resulting in 5min scan time.

FLAIR, DWI and TOF MRA images were acquired
with standard protocols supplied by the MR vendor.
The direction of collateral blood flow was determined
according to a previously published imaging protocol
with two consecutive two-dimensional phase-contrast
(2DPC) MRI measurements; one phase-encoded in
the anterior–posterior direction and one in the right–
left direction.17

Image processing

Image processing was performed in MATLAB
(Mathworks, MA, USA). Perfusion images were calcu-
lated as CBF in mL�100mL�1�min�1 from the p-CASL
images according to a previously published model that

corrects for T1 decay, T2* decay and the different delay
times of the imaging slices.18,19 The T2* transversal
relaxation rate and T1 of arterial blood at 3T were
assumed to be, respectively, 50ms and 1680ms.20,21

The blood magnetization at thermal equilibrium (M0)
for all subjects was determined by selecting a region of
interest in the cerebral spinal fluid and iteratively fitting
the inversion recovery data by a non-linear least-square
method.12 The water content of blood was assumed to
be 0.76mLmL�1 of arterial blood.12 To avoid partial
voluming of white matter, a surrogate T1-weighted
image was calculated from the inversion recovery
sequence by calculating the reciprocal of the quantita-
tive T1.

12 This was segmented into grey and white
matter probability maps with SPM8 (Wellcome Trust,
England), and a corrective threshold was furthermore
applied to ensure maximal exclusion of all white matter.
CBF before (baseline CBF) and after administration of
ACZ was calculated using the resulting grey matter
mask. CVR, as a measure for hemodynamic impair-
ment, was defined as the percentage increase in CBF
after ACZ administration.

The territorial perfusion maps of the right and left
internal carotid arteries (RICA and LICA), and both
right and left vertebral arteries (RVA and LVA) were
calculated from the VE p-CASL images using a previ-
ously published Bayesian framework.22,23 Locations of
the vessels (RICA, LICA, RVA, LVA), determined in
each subject from a single slice of the MRA located in
the neck, were provided as prior information. If a par-
ticular vessel could not be identified, it was not included
in the Bayesian analysis. To determine the boundaries
of the RICA, LICA, and BA, the perfusion territories
were manually outlined by one observer (NH) for vessel
on their respective territorial perfusion maps. In case of
the BA, the combined territorial perfusion map of the
RVA and LVA was used.

To examine the extent of the cerebral perfusion ter-
ritories between patients with different primary collat-
erals, the outlined regions of interest (ROIs) of the
RICA, LICA and BA were brought into MNI space
by registering the surrogate T1-weighted image with a
standard MNI template using the DARTEL tool in
SPM8.24 After determining the grouped perfusion ter-
ritories of the cerebral arteries, as described below, the
grouped ROIs of the anterior cerebral artery (ACA),
MCA, and PCA were brought back into subject space
by an inverse transformation.

Assessment of collateral blood flow

Two types of collateral blood flow were distinguished,
including primary collaterals through the CoW and sec-
ondary collateral flow through leptomeningeal vessels
and the ophthalmic artery.2

Hartkamp et al. 2023



The morphology of the CoW was evaluated by an
expert reader (NH) by evaluating the time-of-flight
MRA images (supplemental Figure 1). Each CoW
was assessed for the presence of the AComA, precom-
municating (A1) segment of the ACA, PComA, and
precommunicating (P1) segment of the PCA. Presence
of collateral blood flow was established by evaluating
the blood flow direction through the CoW by means of
the 2DPC images. It was determined that no collateral
blood flow was present when the ACA and MCA were
supplied by the ipsilateral ICA, and the PCA was sup-
plied by the BA. Anterior collateral blood flow was
defined as flow from the contralateral side via the
AComA towards the ACA (supplemental
Figure 1(b)), and subsequently via retrograde flow in
the A1 segment of the ACA towards the MCA.
Posterior-to-anterior collateral blood flow was defined

as flow via the PComA towards the MCA. Anterior-to-
posterior collateral flow was defined as blood flow via
the PComA towards the PCA, for example, due to a
hypoplastic or absent P1 segment of the PCA, also
known as a fetal-type CoW (supplemental Figure 1(c)).

Secondary collateral blood flow by leptomeningeal
collaterals was determined to be present when a brain
region was fed by more than one brain-feeding artery.
Each territorial perfusion map was assessed for the con-
tribution of the RICA, LICA and BA to the territories
of the ACA, MCA and PCA.

Haemodynamic measurements

CBF and CVR were measured in the ACA, MCA and
PCA territory of the ipsi- and contralateral hemi-
spheres. Regions of interest were made at group level
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Figure 1. Transverse flow territory maps projected onto a standard brain template and visual demonstration of how the ROI’s were

constructed. Colors correspond to the colorbar, which indicates the percentage of patients who demonstrated perfusion in that

region of the brain. Panel A and B show how the ACA territory was delineated. The median border was defined by superimposing all

the ICA’s without collateral blood flow, in which the ACA is supplied by its ipsilateral ICA (a). The border between the ACA and MCA

was determined by superimposing all the contralateral ICAs from patients with anterior collateral blood, in which the ACA is supplied

by the contralateral ICA (b). Panel C and D show how the MCA territory was delineated. The border between the ACA and MCA

was determined by superimposing all the ipsilateral ICAs from patients with anterior collateral blood flow, where the ACA territory

was fed by the contralateral ICA (c). The border between the MCA and PCA was determined by superimposing all the BAs from

patients without collateral blood flow involving the posterior circulation on that side, in which the PCA is supplied by the BA (d). Panel

E and F show how the PCA territory was delineated. The border between both PCA’s (Figure 1(e)), and the PCA and vertebrobasilar

supply of the cerebellum was determined by superimposing all the ICA’s from patients with anterior-to-posterior collateral flow, in

which the contralateral PCA is supplied by the ICA and the entire cerebellum is still supplied by the vertebrobasilar artery. To ensure

that the tissue within the ACA, MCA and PCA was only fed by that specific artery, ROI were determined conservatively as only that

tissue that was fed in all patients (Figure 1(g)).

ACA: anterior cerebral artery; ICA: internal carotid artery; MCA: middle cerebral artery; PCA: posterior cerebral artery; ROI: region

of interest.
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from the territorial perfusion maps transformed to
standardized MNI space. Figure 1 shows a detailed
description of the method of ROI determination.

Statistical analyses

Differences in degree of stenosis between asymptomatic
and symptomatic patients with ICA stenosis or occlu-
sion were compared using Kruskal-Wallis H test.
Differences in measurements of baseline CBF and
CVR between healthy subjects, subjects with ICA sten-
osis or occlusion were compared with one-way analysis
of variance (ANOVA). Differences between subjects
with ICA stenosis or occlusion, without collateral
flow or with primary or secondary collateral flow
were also compared with ANOVA. A Tukey test was
used post-hoc if ANOVA showed a statistically signifi-
cant difference between groups. A paired t-test and
independent t-test were used for comparisons in
patients of the same group and between two groups,
respectively. A p-value �0.05 was considered statistic-
ally significant. SPSS (SPSS Inc., Chicago, Illinois, ver-
sion 23) was used for statistical analysis.

Results

The demographic and clinical characteristics of the par-
ticipants are outlined in Table 1. There were no statis-
tically significant differences in the degree of ICA

stenosis between asymptomatic and symptomatic
patients with ICA stenosis on the ipsilateral side
(h¼ 0.03, p¼ 0.86) and contralateral side (h¼ 0.98,
p¼ 0.32) and between asymptomatic and symptomatic
patients with ICA occlusion on the contralateral side
(h¼ 0.10, p¼ 0.76).

Haemodynamic measurements

Table 2 summarizes baseline CBF and CVR per hemi-
sphere and cerebral perfusion territory for healthy sub-
jects, patients with an asymptomatic ICA stenosis/
occlusion and patients with a symptomatic ICA sten-
osis/occlusion. There were no differences (paired t-test)
in CBF and CBV between the ACA, MCA and PCA
territories within each group.

Asymptomatic patients

In patients with an asymptomatic ICA stenosis, there
were no differences in baseline CBF and CVR within
the different territories when compared to the contra-
lateral hemisphere and healthy control subjects. In
patients with an asymptomatic ICA occlusion, baseline
CBF was statistically significantly reduced (p< 0.005)
in the MCA territory, and CVR was statistically signifi-
cantly impaired (p< 0.05) in the ACA and MCA terri-
tories distal to the ipsilateral occlusion when compared
to the healthy control subjects.

Table 1. Demographic and clinical characteristics of the study population.

Healthy subjects

Asymptomatic patients Symptomatic patients

ICA stenosis ICA occlusion ICA stenosis ICA occlusion

Number 29 27 9 23 29

Male, n (%) 13 (45%) 19 (70%) 6 (67%) 23 (74%) 21 (72%)

Age, mean years� SD 62� 8.2 66� 7.3 62� 11 69� 7.2 56� 14

Degree of ICA stenosis, n

0–49% 29 0 0 0 0

50–69% 0 10 0 5 0

70–99% 0 17 0 18 0

Occluded 0 0 9 0 29

Degree of contralateral ICA stenosis, n

0–49% 0 19 6 17 16

50–69% 8 10 1 5 9

70–99% 0 2 2 1 4

Occluded 0 0 0 0 0

Presenting events, n

Transient ischaemic attack – – – 17 13

Ischaemic stroke – – – 8 15

Retinal ischaemia – – – 4 1

ICA: internal carotid artery.
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Symptomatic patients

In both patients with a symptomatic ICA stenosis and
occlusion, baseline CBF and CVR were statistically sig-
nificantly reduced (p< 0.01) in the ACA and MCA
territories on the side of the ICA stenosis/occlusion
when compared to the healthy control subjects. In the
patients with an ICA occlusion, CVR was also statis-
tically significantly reduced (p< 0.001) in the ACA and
MCA territories of the hemisphere contralateral to the
occlusion when compared to the healthy control
subjects.

Primary collateral flow

Table 3 summarizes baseline CBF and CVR for
patients with ICA stenosis or occlusion. The haemo-
dynamic measurements are described for those with
no collateral flow, anterior collateral flow, poster-to-
anterior collateral flow or secondary collateral flow.
There were no differences (paired t-test) in CBF and
CBV between the ACA, MCA and PCA territories
within each group.

Stenosis patients

Anterior collateral flow occurred in 15 of the 50
patients with an ICA stenosis. Figure 2 shows an exam-
ple of a symptomatic patient without collateral blood
flow, and supplemental Figure 2 shows an example of a

symptomatic patient with an anterior collateral blood
flow. Anterior collateral flow occurred statistically sig-
nificantly (p¼ 0.015, two-sided Fisher’s exact test) more
often in symptomatic patients with an ICA stenosis
(11 with vs. 12 without) than in asymptomatic patients
(4 with vs. 23 without). None of the patients had sec-
ondary posterior collateral of secondary collateral
blood flow.

Patients with ICA stenosis and anterior collateral
flow had statistically significant reduced (p< 0.05)
CVR in the ACA territory of the afflicted hemi-
sphere when compared to patients without anterior
collateral flow.

Occlusion patients

Anterior collateral flow occurred in 11 of the 38
patients with an ICA occlusion, posterior collateral
flow in 17 patients and 10 patients had secondary col-
lateral flow. There was difference between symptomatic
(8 vs. 11) and asymptomatic (3 vs. 6) patients for the
occurrence of anterior collateral flow or posterior-to-
anterior collateral flow (p¼ 1.0, two-sided Fisher’s
exact test) to the MCA territory.

Patients with posterior-to-anterior collateral flow
were found to have a statistically significant reduced
(p< 0.005) CVR in the MCA territory of the afflicted
hemisphere compared to patients with anterior collat-
eral flow towards the MCA territory. Examples of
symptomatic patients with ICA occlusion and anterior

Table 2. Baseline cerebral blood flow and cerebrovascular reactivity in each perfusion territory per patient group.

Cerebral blood flow/cerebrovascular reactivity

Hemisphere N ACA MCA PCA

Healthy subjects Both 29 52� 8.1/48� 9.9 53� 7.7/49� 10 47� 9.8/61� 10

Asymptomatic patients

Patients with ICA stenosis Ipsilateral 27 49� 8.2/45� 9.4 47� 7.6/43� 8.1 44� 6.7/59� 10

Contralateral 50� 9.4/44� 9.6 49� 6.6/45� 9.8 44� 7.3/60� 11

Patients with ICA occlusion Ipsilateral 9 48� 8.6/35� 11a 43� 6.6a/32� 10b 42� 8.6/48� 10

Contralateral 47� 9.1/38� 11 47� 6.1/39� 10 42� 8.5/50� 11

Symptomatic patients

Patients with ICA stenosis Ipsilateral 23 44� 6.9b/34� 7.8bc 41� 6.0b/32� 7.5bc 42� 5.9/57� 11

Contralateral 45� 6.8/45� 8.7 43� 4.8/45� 9.1 42� 5.2/58� 11

Patients with ICA occlusion Ipsilateral 29 44� 9.4a/19� 10bd 40� 8.8b/13� 9.8bd 42� 9.2/35� 12b

Contralateral 48� 9.7/35� 13b 49� 9.0/28� 9.7b 43� 8.8/36� 11b

ACA: anterior cerebral artery; ICA: internal carotid artery; MCA: middle cerebral artery; PCA: posterior cerebral artery. aDifference (p< 0.001) in

baseline CBF or cerebrovascular reactivity in each of the indicated cerebral perfusion territories between the indicated patient groups and the healthy

subjects. bDifference (p< 0.001) in baseline CBF or cerebrovascular reactivity in each of the indicated cerebral perfusion territories between the

indicated patient groups and the healthy subjects. cDifference (p< 0.005) in cerebrovascular reactivity in each of the indicated cerebral perfusion

territories between patients with symptomatic ICA stenosis, and patients with asymptomatic ICA stenosis. dDifference (p< 0.001) in cerebrovascular

reactivity in each of the indicated cerebral perfusion territories between patients with symptomatic ICA occlusion, and patients with asymptomatic ICA

occlusion.
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and posterior collateral flow to the MCA territory are
shown, respectively, in Figure 3 and supplemental
Figure 3.

Secondary collateral flow

Secondary collateral flow occurred only in 10 of the 29
patients with a symptomatic ICA occlusion. Figure 4
shows an example of a symptomatic patient with an
ICA occlusion and secondary collateral flow. There
was no secondary collateral flow in the patients with
an ICA stenosis, or patients with an asymptomatic ICA
occlusion.

The patients with secondary collateral flow were
found to have statistically significant reduced
(p< 0.001) CVR in the MCA territory of the afflicted
hemisphere compared to patients with anterior collat-
eral flow. In patients with secondary collateral flow,
there was no differences in baseline CBF (36� 11 vs.
38� 9.3ml/100 gr/min; p¼ 0.10, paired t-test) and CVR
(9.2� 10% vs. 9.4� 11%; p¼ 0.89, paired t-test) in the
region fed by secondary collaterals and the MCA terri-
tory on the side of the occlusion.

Discussion

In the current study, we were able to assess the presence
of collateral blood flow and haemodynamic impairment
in a cohort of both asymptomatic and symptomatic

patients with steno-occlusive ICA disease. Both base-
line CBF and CVR were found to be reduced in symp-
tomatic patients with ICA stenosis or occlusion.
Reduced CVR correlated with the presence of different
types of collateral blood flow.

Our results show that cerebral haemodynamics are
unimpaired in patients with asymptomatic ICA sten-
osis, but affected in asymptomatic patients with ICA
occlusion, indicating that occlusion of an ICA leads
to insufficient capacity of the afferent cerebral blood
supply to sustain a normal autoregulatory response.
In symptomatic patients with ICA stenosis, the vaso-
dilatory capacity of the parenchymal arterioles seems to
be reduced or exhausted in the ipsilateral (afflicted)
hemisphere. Since asymptomatic patients with ICA
stenosis have sufficient capacity of the major brain-
feeding arteries and there was a comparable degree of
ICA stenosis, haemodynamic impairment in symptom-
atic patients might be due to reduced vasodilatory cap-
acity of afflicted brain parenchyma.

In patients with ICA occlusion, no difference was
found in types of primary collateral flow between
asymptomatic and symptomatic patients. Anterior col-
lateral flow to the ACA territory occurred in all
patients with ICA occlusion. In patients with poster-
ior-to-anterior collateral flow, haemodynamic impair-
ment in the afflicted hemisphere was more severe,
compared to patients with anterior collateral flow
towards the MCA territory; it was, however, not

Table 3. Baseline cerebral blood flow and cerebrovascular reactivity in each perfusion territory per patient group.

Cerebral blood flow/cerebrovascular reactivity

Hemisphere N ACA MCA PCA

Patients with ICA stenosis

No collateral flow Ipsilateral 35 47� 7.9/39� 7.9 45� 7.5/37� 9.0 44� 6.4/58� 10

Contralateral 48� 8.2/45� 9.3 47� 6.2/45� 9.9 44� 6.5/57� 9.6

Anterior collateral flow Ipsilateral 15 45� 8.4/33� 8.5a 43� 7.4/36� 9.0 42� 6.5/58� 10

Contralateral 48� 9.6/43� 8.7 43� 6.9/45� 8.4 42� 6.1/60� 11

Secondary collateral flow Ipsilateral 0

Contralateral

Patients with ICA occlusion

Anterior collateral flow Ipsilateral 11 48� 9.1/24� 14 43� 7.6/27� 13 44� 8.4/44� 14

Contralateral 50� 9.5/40� 15 49� 9.4/32� 14 44� 9.2/48� 15

Posterior-to-anterior Ipsilateral 17 41� 8.8/24� 12 39� 8.5/16� 11b 37� 9.4/41� 14

collateral flow Contralateral 44� 9.1/36� 13 47� 9.1/34� 13 40� 8.5/40� 14

Secondary collateral flow Ipsilateral 10 42� 8.7/20� 13 38� 9.3/9� 10c 43� 8.3/31� 13

Contralateral 49� 9.4/37� 14 48� 5.9/29� 10 44� 7.7/34� 10

ACA: anterior cerebral artery; ICA: internal carotid artery; MCA: middle cerebral artery; PCA: posterior cerebral artery. aDifference (p< 0.05) in

cerebrovascular reactivity in the ipsilateral ACA territory between patients with anterior collateral flow, and patients with no collateral flow.
bDifference (p< 0.005) in cerebrovascular reactivity in the ipsilateral MCA territory between patients with anterior collateral flow, and patients

with posterior-to-anterior collateral flow. cDifference (p< 0.001) in cerebrovascular reactivity in the ipsilateral MCA territory between patients with

anterior collateral flow, and patients with secondary collateral flow.
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more prevalent in asymptomatic or symptomatic
patients. We may speculate that posterior-to-anterior
instead of anterior collateral flow towards the MCA
territory is a sign of inadequate capacity of the contra-
lateral ICA.

Secondary collateral flow only occurred in symptom-
atic patients with ICA occlusion. These patients were
found to have severe haemodynamic impairment of the
afflicted hemisphere. We also found CVR was just as
severely impaired in the brain tissue supplied by sec-
ondary collaterals as it was in the MCA territory sup-
plied by primary collaterals. In these patients with a
chronic occlusion, we hypothesize that the occurrence
of secondary collaterals is due to critically insufficient

primary collateral redistribution via the CoW. It has
previously been reported that the presence of ophthal-
mic or leptomeningeal (secondary) collateral flow in
patients was associated with impaired CVR.25 We
believe it is a sign of severely impaired cerebral haemo-
dynamics, and we speculate ischaemic damage to brain
parenchyma even occurs in spite of secondary collateral
flow.

The advantage of this study has been the establish-
ment of a measurement of cerebral perfusion and
haemodynamics in combination with assessment of col-
lateral flow patterns with one modality in a single ses-
sion. Other modalities than MR might have been more
proficient, such as digital subtraction angiography
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Figure 2. Case example of a 64-year-old female asymptomatic patient with right-sided ICA stenosis >70%. Time-of-flight MR

angiogram images (a) of the circle of Willis show the presence of all vessels. 2D phase contrast images (b,c) show blood flowing from

right-to-left in white and left-to-right in black (b), and flowing from anterior-to-posterior in white and posterior-to-anterior in black

(c). FLAIR images (d) from cranial (top) to caudal (bottom) correspond with ASL perfusion images before (e) and after (f) acetazo-

lamide, CVR images (g), and territorial ASL maps (h) of the right (red), left (green) carotid arteries and the basilar artery (blue). There

is no evidence of reduced cerebral perfusion (e, f), and the cerebrovascular reactivity (g) is unimpaired. The perfusion territories (h)

are symmetrical according to the morphology of the circle of Willis.
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(DSA), in detecting the type of collateral flow; these
techniques, however, lack the direct cross-sectional
comparison we have accomplished with ASL MR ima-
ging. Furthermore, territorial ASL has found to pro-
vide excellent information on collateral flow
comparable to DSA.26 The currently employed plan-
ning-free VE p-CASL technique in combination with
a Bayesian inference analysis has been previously
shown to be comparable with other more robust tech-
niques to depict exact cerebral perfusion territories.27

TOF MR angiography and 2DPC MR imaging for the
assessment of primary collaterals, in combination with
territorial ASL MR imaging for secondary collaterals,
with additional CBF and CVR measurements have
enabled us to assess the haemodynamic status of

individual patients with no more than 15min scan
time added to a standard MR protocol.

A limitation of this study is the lack of clinical follow-
up data in patients. The presence of secondary collat-
erals was earlier found to be predictive of recurrent
ischaemic stroke.3,4,7 Previous studies with transcranial
Doppler, however, did not find a correlation between
recurrent ischaemic stroke and impaired CVR.28 These
earlier studies are either based solely on angiographic
collateral supply patterns3,4,7 or CVR measurements in
a single vessel or territory without collateralization
information,28 which may in part explain the discrep-
ancy. Furthermore, the CVR measurements are higher
than in the previously published papers that compared
p-CASL reactivity to Oxygen-15 PET.29 Although the
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Figure 3. Case example of a 68-year-old female asymptomatic patient with a left-sided ICA occlusion. There is anterior collateral

flow from right to left via the AcomA and retrograde flow in the left A1 segment (a-c, arrow) towards the left MCA territory from the

contralateral ICA. FLAIR images (d) correspond with ASL perfusion images before (e) and after (f) acetazolamide, CVR images (g), and

territorial ASL maps (h). Reduced CBF at baseline (e), after a vasodilatory challenge (f) and impaired CVR (g) is present in both

hemispheres. CVR (g) is most notable impaired in the left MCA territory (g, star). Territorial ASL images show anterior collateral flow

from the contralateral ICA (h, red) towards the left MCA territory (h, star).
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baseline CBF measures are comparable, the variability
of vasoactive stimuli may explain the differences in CBF
values after ACZ. Although this may lead to generally
higher CVR values throughout the brain, we expect that
this does not affect our evaluation of the effect of collat-
eral within the brain. Finally, only a few number of
patients had steno-occlusive vertebrobasilar circulation.
The results of this study are therefore only representative
of the anterior circulation.

In conclusion, we have shown that patients with
an asymptomatic ICA stenosis rarely have haemo-
dynamic impairment, as opposed to asymptomatic
patients with ICA occlusion, in whom both hemi-
spheres are compromised. The presence of collateral
flow is associated with further haemodynamic

impairment. Recruitment of secondary collaterals is
associated with severe haemodynamic impairment,
indicating critically insufficient blood supply via pri-
mary collaterals and only occurs in symptomatic
patients with ICA occlusion. In future, this know-
ledge of haemodynamic impairment and collateral
blood flow at brain tissue level may help personalize
treatment and select those who benefit most from
revascularization therapy.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this

article: R.P.H. Bokkers receives support from the Dutch
Heart Foundation (Grant 2013T047).

a b c

d e f g h
70

60

50

40

30

20

10

0

CB
F 

(m
l/1

00
g/

m
in

)

60

50

40

30

20

10

0

-10

CV
R 

(%
)

Figure 4. Case example 47-year-old male patient with left-sided ICA occlusion. There is absence of flow in the left ICA (a, arrow)

with distinct primary anterior collateral flow towards the contralateral MCA (b and c, arrow). FLAIR images (d) correspond with ASL

perfusion images before (e) and after (f) acetazolamide, CVR images (g), and territorial ASL maps (h). An overlap region in the

territorial ASL images (h, star) can be seen where blood from secondary collaterals (purple) fed by the basilar artery (blue) mix with

blood from the primary collaterals (red) to supply part of the MCA territory. There is an infarct visible in the left hemisphere (d,

arrow) where primary and secondary collaterals mix. Reduced baseline CBF (e, star) can be appreciated against the left hemisphere,

without increase after the vasodilatory challenge (f, star). CVR (g) is severely impaired in the left MCA territory (g, star).
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