
Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Joint pattern analysis applied to PET DAT and VMAT2 imaging reveals new
insights into Parkinson's disease induced presynaptic alterations
Jessie Fanglu Fua,⁎, Ivan Klyuzhinb, Jessamyn McKenziec, Nicole Neilsonc, Elham Shahinfardc,
Katie Dinellec, Martin J. McKeownc, A. Jon Stoesslc, Vesna Sossia
a Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
bDivision of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
c Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada

A R T I C L E I N F O

Keywords:
Data fusion
Dopamine
Parkinson's disease
Pattern analysis
Positron emission tomography

A B S T R A C T

Most neurodegenerative diseases are known to affect several aspects of brain function, including neuro-
transmitter systems, metabolic and functional connectivity. Diseases are generally characterized by common
clinical characteristics across subjects, but there are also significant inter-subject variations. It is thus reasonable
to expect that in terms of brain function, such clinical behaviors will be related to a general overall multi-system
pattern of disease-induced alterations and additional brain system-specific abnormalities; these additional ab-
normalities would be indicative of a possible unique system response to disease or subject-specific propensity to
a specific clinical progression.

Based on the above considerations we introduce and validate the use of a joint pattern analysis approach,
canonical correlation analysis and orthogonal signal correction, to analyze multi-tracer PET data to identify
common (reflecting functional similarities) and unique (reflecting functional differences) information provided
by each tracer/target. We apply the method to [11C]-DTBZ (VMAT2 marker) and [11C]-MP (DAT marker) data
from 15 early Parkinson's disease (PD) subjects; the behavior of these two tracers/targets is well characterized
providing robust reference information for the method's outcome. Highly significant common subject profiles
were identified that decomposed the characteristic dopaminergic changes into three distinct orthogonal spatial
patterns: 1) disease-induced asymmetry between the less and more affected dorsal striatum; 2) disease-induced
gradient with caudate and ventral striatum being relatively spared compared to putamen; 3) progressive loss in
the less affected striatum, which correlated significantly with disease duration (p < 0.01 for DTBZ, p < 0.05
for MP). These common spatial patterns reproduce all known aspects of these two targets/tracers. In addition,
orthogonality of the patterns may indicate different mechanisms underlying disease initiation or progression.
Information unique to each tracer revealed a residual striatal asymmetry when targeting VMAT2, consistent with
the notion that VMAT2 density is highly related to terminal degeneration; and a residual DAT disease-induced
gradient in the striatum with relative DAT preservation in the substantia nigra. This finding may be indicative
either of a possible DAT specific early disease compensation and/or related to disease origin.

These results demonstrate the applicability and relevance of the joint pattern analysis approach to datasets
obtained with two PET tracers; this data driven method, while recapitulating known aspects of the PD-induced
tracer/target behaviour, was found to be statistically more robust and provided additional information on (i)
correlated behaviors of the two systems, identified as orthogonal patterns, possibly reflecting different disease-
induced alterations and (ii) system specific effects of disease. It is thus expected that this approach will be very
well suited to the analysis of multi-tracer and/or multi-modality data and to relating the outcomes to different
aspects of disease.

1. Introduction

Parkinson's disease (PD) is the second most frequent progressive

neurodegenerative disorder (de Lau and Breteler, 2006). The motor
deficit of PD is traditionally associated with dysfunction of the nigros-
triatal pathway, characterized by progressive loss of dopaminergic
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neurons in the substantia nigra and loss of their projection fibres to the
striatum (Stoessl, 2012). Imaging studies show that the motor deficits
start to become clinically relevant when 30–50% of nigral dopami-
nergic cells are lost (Brooks, 2010). Neurodegeneration of the dopa-
minergic system tends to follow a fairly well defined spatio-temporal
pattern in which the dorsal posterior putamen contralateral to the more
affected body side is affected first, followed by degeneration in the
ventral and anterior putamen and the caudate, as shown in
Fig. 1(Stoessl, 2012). The relatively long preclinical stage of PD, in
which subjects remain asymptomatic despite significant dopaminergic
neuronal loss, may be due to potential compensatory effects taking
place at different stages of dopamine (DA) processing — including DA
synthesis, release and turnover (Lee et al., 2000; Nandhagopal et al.,
2011; Sossi et al., 2004). Such compensatory mechanisms, likely also
involving other neurotransmitter systems (Bezard et al., 2003; Liu et al.,
2018; Wile et al., 2016), are deemed responsible for minimizing the
effects of dopaminergic deficits on the clinical behaviour prior to onset
of motor deficits and are thought to persist in the very early stages of
disease (Lee et al., 2000).

There is now established recognition that PD is not just a motor
disorder; patients often experience non-motor deficits alongside or even
before the onset of motor deficits. Non-motor deficits may be more
closely related to DA projections outside the nigrostriatal pathway, in
addition to alterations in other neurotransmitter systems such as the
cholinergic and serotonergic systems (Fu et al., 2018; Liu et al., 2018;
Wile et al., 2016). Outside the nigrostriatal pathway, the mesocortico-
limbic pathway transmits DA from the ventral tegmental area (VTA) to
the ventral striatum (VS) and to the prefrontal cortex (Weingarten et al.,
2015); the tuberoinfundibular pathway transmits DA from the hy-
pothalamus to the pituitary gland (Dailly et al., 2004). Study reported
that deficient hypothalamic DA transmission may play a role in auto-
nomic and endocrine abnormalities in PD (Javoy-Agid et al., 1984).
Studying DA processing in these pathways in addition to the nigros-
triatal pathway may provide a more complete picture of dopaminergic
denervation in PD, especially in the early disease stage or even before
disease onset. Changes in the metabolic and functional connectivity
have also been identified at various stages of PD and related to specific
clinical manifestations such as cognitive deficit. It is thus reasonable to
postulate that PD imprints a general disease-related pattern on several
aspects of brain function, with alterations in selected systems reflecting
either a specific system disease response or specific clinical manifesta-
tion of the disease. The ability to identify such patterns and their evo-
lution as a function of disease progression/specific clinical manifesta-
tion may aid in the understanding of disease mechanisms or subjects'
propensity towards a particular clinical trajectory.

In this work, we propose the use of a novel joint pattern analysis to
study functional similarities and differences between multiple PET
targets. Our analysis enhances the more traditional approach where the
relationship between two or more sets of imaging data is examined
using univariate approaches such as correlation and t-test. Multivariate
techniques, such as principal component analysis (PCA) and in-
dependent component analysis (ICA) (Eidelberg, 2009; Vo et al., 2017),
have been used to decompose individual datasets into functional net-
works. However, instead of analyzing individual datasets (i.e. com-
paring functional networks obtained separately from each dataset), we
used a data fusion approach to explore and identify common and un-
ique information given by each dataset as functional networks. These
common and unique functional networks can provide additional and
more direct insights into the interactions between processes observable
with different tracers and the differential information provided by each
individual tracer. This approach is particularly suitable for neurode-
generative diseases such as PD, where disease affects different stages of
DA processing as well as multiple neurotransmitter systems.

Many different joint multimodal analysis techniques have been
developed in the neuroimaging field, mainly applied to magnetic re-
sonance imaging (MRI) data. One such data fusion approach commonly
used is joint independent component analysis (jICA)(Calhoun and Sui,
2016). More recently, canonical correlation analysis (CCA) has gained
popularity. Unlike jICA, CCA provides a relatively less constrained so-
lution to the data fusion problem (Correa et al., 2009, 2010). While
jICA assumes that different datasets have exactly the same inter-subject
covariations, the CCA models the coherence in the inter-subject cov-
ariations to identify associations between datasets (Correa et al., 2009,
2010). CCA has been successfully applied to the analysis of functional
MRI (fMRI), electroencephalography (EEG), electromyography (EMG),
structural MRI and behavioural data in PD and schizophrenia to explore
common inter-subject variations in different datasets (Correa et al.,
2009). After extracting the common information among different da-
tasets, the unique information still remaining in each individual dataset
can be extracted by using orthogonal signal correction (OSC), which
was first introduced as a spectral preprocessing method in spectroscopic
calibrations (Fearn, 2000; Wold et al., 1987). OSC was later used to-
gether with CCA to draw unique information from EEG and EMG data
(Chen et al., 2013).

As this is a first application of such methodology to PET data, we
chose to perform the analysis on data obtained from two fairly well
characterized presynaptic PET tracers: [11C]-dihydrotetrabenazine
(DTBZ) and [11C]d-threo-methylphenidate (MP). The vesicular mono-
amine transporter type 2 (VMAT2) binding measured by [11C]-DTBZ is
proportional to the DA terminal density (Masuo et al., 1990; Stoessl,

Fig. 1. [11C]-dihydrotetrabenazine (DTBZ) PET image (left)
and [11C]d-threo-methylphenidate (MP) PET image (right) for
a Parkinson's disease (PD) subject. PD subject showed char-
acteristic asymmetric tracer uptake in the less and more af-
fected hemispheres. PD subject also showed spatio-temporal
pattern of dopaminergic loss with the posterior putamen
(putamen 3) affected before the anterior putamen (putamen
1) and caudate. PET=Positron Emission Tomography.
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2012) and is used to estimate vesicular uptake and storage of DA. DA
reuptake, mediated by the membrane DA transporter (DAT), can be
targeted in PET by [11C]-MP. Both VMAT2 and DAT are mainly located
at the nerve terminals, but can also be found in cell bodies and axons
(Fazio et al., 2018; Sulzer et al., 2016). DAT was shown to contribute to
maintaining relatively constant synaptic DA levels by removing extra-
cellular DA (Block et al., 2015; Sossi et al., 2007), and may be related to
compensatory mechanisms in populations at higher risk of PD (Adams
et al., 2005; Nandhagopal et al., 2008) and in early PD (Lee et al., 2000;
Nandhagopal et al., 2009). On the other hand, reduction in VMAT2
binding is deemed a more direct measure of dopaminergic degeneration
and is less susceptible to disease-related compensation (Vander Borght
et al., 1995). Despite the functional differences of VMAT2 and DAT,
traditional analyses of PET data showed high correlation between
striatal alterations in DTBZ and MP binding in PD (Lee et al., 2000;
Nandhagopal et al., 2011) and some reported no differential regulation
of the striatal uptake of VMAT2 and DAT (Karimi et al., 2013; Tian
et al., 2012). In addition, VMAT2 and DAT distributions in the striatal
regions have been studied extensively with traditional univariate ana-
lysis, but investigations of their distributions outside the nigrostriatal
pathway have been quite limited, especially with imaging studies.

In this study, we first examine the applicability and robustness of
the proposed joint pattern analysis approach. We then examine the
novel information provided by this approach compared to traditional
univariate analysis; specially, we

1. Compare the common information between VMAT2 and DAT dis-
tributions to the results from the traditional univariate analysis to
test the method's abilities to capture the characteristic dopaminergic
patterns in the striatum. This serves as the main validation of the
method.

2. Explore the decomposition of the common information between
VMAT2 and DAT in the orthogonal spatial patterns as reflecting
different/independent underlying disease-related mechanisms.

3. Interpret the unique information specific to VMAT2 or DAT dis-
tributions in light of the specific target behavior in the early stages
of PD.

2. Materials and methods

2.1. Study participants

The study included 15 early sporadic PD subjects (9 males and 6
females). Exclusion criteria included clinical history of depression, ac-
tive anti-depressant therapy or medication and a Body Mass Index
(BMI)> 35. Disease duration was estimated as time from onset of
motor symptoms as reported by the subjects. PD subjects were clinically
evaluated using the Movement Disorder Society Unified Parkinson's
Disease Rating Scale Part III (MDS-UPDRS Part III) and Hoehn and Yahr
scale to assess motor dysfunction, Montreal Cognitive Assessment
(MoCA) to assess cognitive performance and Beck Depression Inventory
(BDI). Detailed clinical characteristics are listed in Table 1. All assess-
ments were performed off medication. The study was approved by the
Clinical Research Ethics Board of the University of British Columbia and

all subjects provided informed written consent.

2.2. Scanning protocols

All study subjects underwent DTBZ and MP PET scans and a T1-
weighted MRI scan of the brain. The PET scans were performed on a
Siemens High Resolution Research Tomograph (HRRT, Knoxville, TN)
with a spatial resolution of 2.5mm3 (Jong et al., 2007). Subjects were
positioned using external lasers aligning the gantry with the inferior
orbital-external meatal line, and custom fitted thermoplastic masks
were applied to minimize head movement. Prior to PET scans, subjects
were withdrawn from all anti-parkinsonian medications for at least
12 h. An average of 300MBq with average specific activity of
10,194 Ci/mmol of DTBZ and MP were administered by intravenous
injection over 60 s using an infusion pump (Harvard Instruments).
Tracer injections were separated by at least 2.5 h to allow radioactive
decay. Acquired data were binned into 16 time frames (frame dura-
tions: 4× 60 s, 3×120 s, 8×300 s, 1×600 s; image dimen-
sion=256×256×207; voxel size= 1.22mm3) with a total duration
of 60min. Transmission scans required for attenuation correction were
performed over 10min with a rotating 137Cs source. PET images were
reconstructed using the 3D list-mode ordinary Poisson Ordered Subset
Expectation Maximization (OP-OSEM) algorithm (Comtat et al., 2004)
with 16 subsets and six iterations, with corrections for decay, dead-
time, normalization, attenuation, scattered and random coincidences.
After reconstruction, images were smoothed with a 3.0-mm full-width
at half maximum (FWHM) Gaussian filter to reduce noise. The frames
were spatially realigned with rigid-body transformation to minimize the
impact of motion during scans. The structural MRI scans were per-
formed on a Philips Achieva 3.0 T MRI scanner (Phillips Healthcare,
Best, NL) using the T1 turbo field echo (TFE) sequence (TR/TE=7.7/
3.6 ms; TFE shots= 218; flip angle= 8°; image dimension:
256× 256×170; voxel size 1mm3).

2.3. Image processing and analysis

The anatomical MRI image of each subject was first coregistered
with the subject's mean PET image using statistical parametric mapping
(Wellcome Trust Centre for Neuroimaging, University College London).
Striatal regions of interest were manually placed on an averaged PET
image derived from nine consecutive image slices (slice thickness
1.22mm) spanning the axial extent of the striatum, using MRI image as
guidance. Five elliptical ROIs were placed on the striatum bilaterally –
one on the caudate, one on the VS and three covering the full length of
the putamen (anterior – putamen 1, middle – putamen 2 and posterior –
putamen 3). The same set of image slices was also used to define the
occipital cortex reference region for both tracers.

In addition to the manually defined striatal ROIs, we also developed
a ROI template in Montreal Neurological Institute (MNI) space using
MRI images of healthy controls. The PET-coregistered MRI images were
transformed to the MNI space. The ROI template was inverse-trans-
formed to match each subject's PET image for further analysis. This ROI
template contained four ROIs placed bilaterally (substantia nigra, tha-
lamus, globus pallidus and hypothalamus), and four individual ROIs

Table 1
Clinical characteristics of all subjects. All numbers are reported as mean ± standard deviation.

Number of
subjects

Age (years) Disease duration
(symptoms, months)a

Disease duration
(diagnosis, months)b

MDS-UPDRS
part III

Hoehn and Yahr
scale

MoCA BDI Levodopa equivalent
dose (mg)

15 59 ± 8 56 ± 34 44 ± 29 17 ± 9 1.6 ± 0.5 28.0 ± 1.5 4.4 ± 3.5 380 ± 220

PD=Parkinson's disease subjects; MDS-UPDRS=Movement Disorder Society Unified Parkinson's Disease Rating Scale; MoCA=Montreal Cognitive Assessment;
BDI=Beck Depression Inventory.

a Disease duration estimated as the time from onset of motor symptoms as reported by the patients.
b Disease duration estimated as the time of clinical diagnosis.
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(posterior midbrain, pons, raphe nucleus and VTA). Combined with the
manually-placed striatal ROIs, this yielded a total set of 22 ROIs.
Regional time-activity curves were extracted from each ROI and the
Logan graphical method (Logan et al., 1990) was used to calculate the
non-displaceable binding potential (BPND) values using time ranges
from 17.5 to 60min. BPND values were then rearranged into the more
and less affected hemispheres for all bilateral ROIs based on the average
DTBZ BPND values in the three putamen ROIs.

2.4. Univariate analysis

To examine the distributions of VMAT2 and DAT density, we first
performed one-sample t-test (one-tailed) on the BPND values for DTBZ
and MP separately for 22 ROIs. For each tracer, ROIs with BPND values
significantly greater than zero (denoted as ‘significant binding’,
p < 0.05 after correcting for multiple comparisons) were used for joint
pattern analysis. Unpaired two-sample t-test was performed between
the more and less affected striatal regions in DTBZ and MP separately to
examine disease-induced asymmetry. We then tested the correlation
between DTBZ and MP BPND values in all ROIs to check the correlation
strength between the two datasets. We also tested the correlation be-
tween DTBZ and MP BPND values in the caudate and putamen with
disease duration to check the correlation strength of univariate mea-
sures for tracking disease progression in the early stages of disease.
False positive rates were controlled at p=0.05 using Bonferroni-Holm's
step-down procedure (Holm, 1979).

2.5. Joint pattern analysis

We first applied the joint pattern analysis approach to DTBZ and MP
BPND values in all ROIs (input data) that had significant DTBZ and MP
binding to extract the common (canonical variates from CCA) and un-
ique (from OSC) subject scores and the associated spatial binding pat-
terns in the two datasets. We then compared these patterns with results
obtained with the ten striatal ROIs only to indirectly examine the
contributions of the extrastriatal regions to the patterns and the ro-
bustness of the method. Correlation analysis was performed between
the subject scores and clinical measures.

The joint pattern analysis approach applied to the DTBZ (X) and MP
(Y) datasets is performed as follow:

1. Input data matrices X and Y have dimensions [NxM1] and [NxM2]
respectively. M1 and M2 are the number of imaging features (in this
case, they are either the ten striatal ROIs (M1=M2=10) or the
ROIs with significant binding determined by univariate analysis for
either DTBZ (M1) or MP dataset (M2)). N is the number of subjects.

2. Each input data matrix (X and Y) is first demeaned (Xdemean and

Ydemean) and whitened (Xwhiten and Ywhiten). The whitening trans-
formation first decorrelates the features in each input data matrix,
so that the new data dimensions are linearly independent (ortho-
gonal); it then transforms the covariance matrix into an identity
matrix, which ensures the variance of the data along each new di-
mension is equal to one.

= × ×X E Edemean
T

where E and Σ are the eigenvector and eigenvalues of Xdemean.

= × ×X E Xwhiten demean
1

2

This step serves two important purposes: (i) to reduce feature di-
mension of a rank-deficient input matrix into fewer components, so
that N≥max (rank(Xwhiten), rank(Ywhiten)); (ii) to scale all variables
to have the same variance so that each variable is assigned equal
importance in the subsequent analysis. In this case, M1 and M2 are
reduced into top five components to minimize the noise content
dominant in later components, while still maintaining at least 90%
of the original variance.

3. CCA (Correa et al., 2009) is then applied to Xwhiten and Ywhiten (both
matrices now have dimension [Nx5]). CCA identifies linear re-
lationships between the two datasets to determine the inter-subject
covariance. It seeks two mixing matrices (W1 and W2) such that each
pair of canonical variates Ui and Vi (i=1…5) has maximum cor-
relation across the two datasets, while the canonical variates within
each dataset are orthogonal (Ui and Uj are uncorrelated)
For i= 1…5,

× ×max corr X W Y W( , )W W hiten i whiten i, w 1 2i i1 2

= × = ×U X W V Y W;i whiten i i whiten i1 2

Thus, the transformed data (canonical variates U and V) contain
common (maximally correlated between two datasets) subject pro-
files, which are composed of subject score of each subject (re-
presenting the subject weights for the corresponding mixing matrix).
Subject scores are in Z-score form with a mean of zero and a stan-
dard deviation of one.

4. Least absolute shrinkage and selection operator (LASSO) (Klyuzhin
et al., 2018a; Tibshirani, 2011) is then applied to regress the ca-
nonical variates (Ui and Vi) from the original datasets X and Y to
compute regression coefficients (CCA weights A and B) and regres-
sion residuals (Xresidual and Yresidual) as shown in Fig. 2. Ten-fold
cross validation was used to estimate the best lambda with the cross-
validated minimum square error, where lambda is the LASSO pen-
alty coefficient

Fig. 2. Illustration of the decomposition and regres-
sion step. X and Y are the whitened input matrices
(feature by subject) of non-displaceable binding po-
tential (BPND) values obtained from step 2. The
transformed data (canonical variates) U and V are
calculated using CCA in step 3, which contains the
most highly correlated subject scores along each
component (in this case 5). The CCA weights ma-
trices (A and B) are the regression coefficients from
least absolute shrinkage and selection operator
(LASSO) in step 4. Xresidual and Yresidual are the re-
gression residuals. CCA= canonical correlation
analysis.
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= × +X U A Xresidual

= × +Y V B Yresidual

5. Since the residuals from step 4 (Xresidual and Yresidual) may contain
information specific to each dataset besides noise, OSC (Fearn,
2000) is then applied to extract the largest orthogonal component
from the LASSO residuals deemed to represent tracer-specific unique
information, including unique subject scores (Uunique), unique CCA
weights (Aunique), and true noise (Xnoise) for each dataset

= × + = +X U A X X Xresidual common residual

= + + = × + × +X X X X U A U A Xcommon unique noise unique unique noise

6. CCA loadings are defined as the correlation coefficients between
each canonical variate (Ui or Vi) and each column of X or Y (feature
values for all subjects). CCA loadings represent the feature/region
contributions to each pair of canonical variates and are used to
construct the spatial patterns.

7. To determine the significance levels of the correlation between each
pair of extracted canonical variates (Ui and Vi), a non-parametric
permutation test is performed on the original datasets X and Y with
1000 iterations to construct the empirical null distributions of the
correlation coefficients for each pair of canonical variates. The p-
value of the original correlation can then be computed as the
probability of observing a value at least as extreme as the original
correlation in the null distributions. The correlation between the
pairs of canonical variates is considered statistically significant if the
p-value is< 0.05.

8. To test the stability of the CCA weights and loadings, leave-one-out
validation test is performed to compute the error bounds of the
feature contributions. CCA loadings are considered statistically sig-
nificant if the correlation p-value is< 0.05 after correcting for
multiple comparison.

All codes were written in Matlab and are available upon direct re-
quest to the corresponding author, however PET data used in this study
are not made available publicly due to patients confidentiality.

3. Results

3.1. Univariate analysis

DTBZ BPND values were significantly greater than zero (p < 0.05
corrected) in all 22 ROIs, while MP BPND values were not significantly
greater than zero in hypothalamus, posterior midbrain, pons, VTA and
raphe nucleus (p > 0.05 corrected). Therefore, all 22 ROIs were in-
cluded for DTBZ and 16 ROIs were included for MP in the joint pattern
analysis. Detailed results from univariate analysis are included in the
Supplementary Materials.

One subject (S15) appeared as outlier (fell outside the 95% con-
fidence interval) when correlating BPND values with disease duration
(Fig. 3). This subject had a disease duration of 23months, but had the
highest BPND values in all striatal regions for both DTBZ and MP (BPND
values were more than two standard deviations higher compared to
average BPND values in all subjects in most striatal regions). Without
this subject, correlations between disease duration and average DTBZ
and MP BPND values in the less affected putamen were stronger
(R2=0.70, p < 0.001 for DTBZ; R2= 0.45, p < 0.01 for MP). In
order to find the best dopaminergic patterns related to disease, we first
excluded this subject in the joint pattern analysis, then included this
subject in to examine the effect of this outlier on the results.

3.2. Joint pattern analysis

Common information was obtained using BPND values in 22 ROIs for
DTBZ and the 16 ROIs for MP that exhibited significant tracer binding.
For both DTBZ and MP, the top five whitened components together
accounted for 91% of the variance in the original datasets. Each of the
five whitened components accounted for at least 7% of the variance.
The top three pairs of canonical variates were significantly correlated
between DTBZ and MP after permutation test (p < 0.05). The fourth
and fifth pairs of canonical variates did not show high correlation
across datasets (R2 < 0.5) and were not significant after permutation
tests (Table 2), therefore are not discussed in later sections.

The DTBZ pattern along the first pair of canonical variates
(R2= 0.98 between subject scores in the two datasets) showed sig-
nificant negative loadings in the more affected striatal regions (caudate
and putamen), and significant positive loadings in the substantia nigra,
hypothalamus and pons (p < 0.01); the MP pattern along this cano-
nical variate showed significant negative loadings in the more affected
striatal regions (caudate, anterior putamen (putamen 1) and middle
putamen (putamen 2)), and significant positive loadings in the less
affected substantia nigra and thalamus (p < 0.05) (Fig. 4A). Along the
second pair of canonical variates (R2= 0.90 between subject scores in
the two datasets), the DTBZ pattern showed significant positive load-
ings in the less affected caudate, VS and VTA, and significant negative
loadings in the thalamus and globus pallidus (p < 0.05); the MP pat-
tern showed significant positive loadings in the caudate and VS
(Fig. 4B). Subject scores along the first and second pairs of canonical
variates did not correlate with any clinical measures.

The spatial patterns for both DTBZ and MP along the third pair of
canonical variates included significant negative loadings in the less
affected caudate and putamen (p < 0.01) (Fig. 4C). The subject scores
along the third pair of canonical variates (R2= 0.85 between subject
scores in two datasets) correlated significantly with disease duration for
both DTBZ (R2= 0.70, p < 0.001) and MP (R2= 0.51, p < 0.01)
(Fig. 5). Correlations with disease duration remained significant
without the subject with longest disease duration (132months) for both
DTBZ (p < 0.001) and MP (p < 0.05).

The unique DTBZ pattern highlighted the asymmetry between the
less and more affected striatal regions with significant negative loadings
in the more affected striatal regions (caudate, putamen and VS), globus
pallidus and VTA, and significant positive loadings in the pons (Fig. 6
top). The unique MP pattern showed significant positive loadings in the
less affected posterior putamen (putamen 3), substantia nigra and
thalamus, and significant negative loadings in the more affected ante-
rior (putamen 1) and middle putamen (putamen 2) (Fig. 6 bottom). The
unique subject scores for DTBZ and MP patterns did not correlate with
any clinical measures.

Including S15, the correlations between disease durations and the
subject scores along the third canonical pairs were weaker but still
significant for both DTBZ and MP (p < 0.01 for DTBZ and p < 0.05
for MP). Regions with significant contributions to the common and
unique spatial patterns remained similar. The correlation strength be-
tween the common information in DTBZ and MP along the third ca-
nonical pair and disease duration was weaker when only ten striatal
ROIs were included in the analysis (with ten striatal ROIs only,
R2= 0.63 and p < 0.001 for DTBZ and R2=0.31 and p < 0.05 for
MP). The common and unique spatial patterns for both DTBZ and MP
however remained the same for the striatal regions as they manifested
when all ROIs were included in the analysis.

4. Discussion

With the univariate analysis, we found all examined ROIs in this
study showed DTBZ BPND values significantly greater than zero, while
16 out of 22 ROIs showed MP BPND values significantly greater than
zero. The joint pattern analysis decomposed the characteristic gradients
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of dopaminergic loss in the striatum into orthogonal components
ranked by the degree of commonality shared between VMAT2 and DAT
distributions: 1) disease-induced asymmetry between the less and more
affected dorsal striatum; 2) disease-induced gradient with caudate and
ventral striatum being relatively spared compared to putamen; 3)
progressive loss in the less affected striatum, which correlated sig-
nificantly with disease duration. The unique information revealed dif-
ferences between VMAT2 and DAT distributions.

4.1. Univariate analysis

Our results from univariate analysis, performed primarily to serve as
reference for the outcomes of the spatial pattern approach, agree with
widely reported findings on the dopaminergic deficit distribution in the
striatum (Fazio et al., 2018; Kaasinen and Vahlberg, 2017;
Nandhagopal et al., 2009) and are therefore in keeping with existing
knowledge about the disease. While not of primary relevance to this
study, the results obtained from the extrastriatal regions represent some
novel findings of interest.

DTBZ BPND values were significantly greater than zero in regions
involved in the nigrostriatal and mesocorticolimbic pathways and brain
stem regions in early PD. Previous in-vivo 18F-FP-(+)-DTBZ PET ima-
ging study in healthy controls (Lin et al., 2013) showed highest VMAT2
level in striatal regions and substantia nigra, followed by regions in-
volved in the mesolimbic pathway, brain stem regions and thalamus. In
healthy brains, VMAT2 level in the substantia nigra, hypothalamus and
raphe nucleus is approximately 40% of those in the anterior putamen,
and VMAT2 level in the posterior putamen is approximately the same as
in the anterior putamen (Lin et al., 2013). In our case of early PD, DTBZ
binding in the substantia nigra and raphe nucleus were also approxi-
mately 40% of those in the less affected anterior putamen, but higher
than that in the posterior putamen. DTBZ binding in the hypothalamus
and thalamus are approximately 45% and 6% of the binding estimated
in the anterior putamen in normal brains (Lin et al., 2013), while 60%
and 28% was observed in early PD. The hypothalamus and thalamus
seem to have better preserved dopaminergic integrity compared to the

anterior putamen; however, since VMAT2 is expressed by all mono-
amine neurons, more preserved DTBZ binding may be also reflective of
noradrenergic instead of dopaminergic innervation.

DAT distribution was less widely spread outside the striatal regions
compared to VMAT2. We observed asymmetric MP BPND values sig-
nificantly greater than zero in the striatum and substantia nigra in early
PD, which agrees with previous imaging finding of an asymmetric re-
duction of DAT level in the same regions in early PD (Fazio et al.,
2018). We also observed significant MP binding in the thalamus and
globus pallidus and insignificant binding in the hypothalamus and brain
stem regions; these imaging results are consistent with previous post-
mortem immunohistochemical studies which showed significant DAT
expression in the thalamus (healthy human and non-human primates)
and globus pallidus (healthy human) (Fazio et al., 2018; Prensa et al.,
2000; Sanchez-Gonzalez, 2005), and no detectable DAT level in the
hypothalamus (Koblinger et al., 2014) and brain stem regions (Sharma
et al., 2018).

4.2. Joint pattern analysis

4.2.1. Common information
DTBZ and MP showed highly correlated subject scores along the

first three pairs of canonical variates, corresponding to three distinct
orthogonal spatial patterns. Of these three, only the subjects scores
along the third pair correlated with disease progression.

Spatial pattern along the first pair of canonical variates showed the
familiar early disease-induced asymmetry between the less and more
affected striatum in both VMAT2 and DAT distributions as shown in
Fig. 4 A. In univariate analysis, differences between the less and more
affected striatal regions in either DTBZ or MP binding were not sig-
nificant after correction for multiple comparison. Pattern analysis ac-
curately captured this characteristic asymmetric tracer reduction in-
dependently of the number of regions involved in the analysis,
indicating superior robustness of this approach. Higher asymmetry in
the dorsal striatum was also associated with more preserved binding in
the substantia nigra, hypothalamus and pons for DTBZ and substantia
nigra and thalamus for MP, consistent with the fact that asymmetry in
the dorsal striatum appears highest at clinical disease onset and de-
creases over time (Nandhagopal et al., 2009). This particular pattern
may be characteristic of disease presence in this range of disease
duration rather than progression. In addition, the relatively higher
preservation of dopaminergic function in the substantia nigra in early
disease appears consistent with recent imaging finding showing greater
DAT loss at the axonal terminals compared to cell bodies in early PD
(Fazio et al., 2018) and may provide support for the hypothesis of an
early involvement of synapses and pre-terminal axons in the

Fig. 3. Scatter plots for average DTBZ and MP BPND values in the less affected putamen versus disease duration (estimated from the time of symptoms onset) in
months. Both DTBZ (left) and MP (right) BPND values correlated significantly with disease duration. S15 fell outside the 95% confidence interval. BPND= non-
displaceable binding potential. DTBZ=dihydrotetrabenazine. MP=methylphenidate.

Table 2
Correlation strength R2 and significance between each pair of canonical vari-
ates.

Pairs of canonical variates 1 2 3 4 5

Correlation R2 0.98 0.90 0.85 0.47 0.28
Permutation p-value 0.048⁎ 0.033⁎ 0.001⁎ 0.123 0.054

⁎ Significant correlation at p=0.05.
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Fig. 4. Common spatial patterns along the first three pairs of canonical variates for DTBZ and MP. Stars indicate the ROIs with significant CCA loadings. ROI= region
of interest; CCA= canonical correlation analysis; GP= globus pallidus; VS= ventral striatum; SN= substantia nigra; VTA= ventral tegmental area.
DTBZ=dihydrotetrabenazine. MP=methylphenidate.
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neurodegenerative process followed by alterations of cell bodies (Burke,
2013; Kurowska et al., 2016).

Spatial patterns along the second pair of canonical variates reflected
the well-known disease-induced rostro-caudal gradient in early disease
(Fig. 1). This gradient did not correlate with disease duration, sug-
gesting that it may be predominantly a characteristic evolving in the
preclinical stage where there is still relative preservation of the terminal
density/dopaminergic function in the caudate and VS. This binding
pattern in striatum was further associated with relatively decreased
DTBZ binding in the thalamus and globus pallidus compared to the MP
pattern where these regions showed no significant contributions.

Spatial patterns along the third pair of canonical variates reflected
the progressive loss of dopaminergic function in the less affected
striatum for both DTBZ and MP. This is consistent with previous find-
ings (Klyuzhin et al., 2018b; Nandhagopal et al., 2009) which indicate
that even though dopaminergic tracer uptake in the more affected
striatum may be more sensitive for disease discrimination, tracer up-
take in the less affected striatum provides a better marker to track
disease progression. The inclusion of extrastriatal regions into the
pattern analysis increased the pattern's correlation strengths with dis-
ease durations for both tracers compared to using the striatal regions
alone; this indicates that dopaminergic denervation in other regions is
also affected by disease progression in spite of the fact that the regional
loadings in extrastriatal regions were by themselves not significant. The
correlation of the MP pattern with disease duration was found to be
stronger than what observed with univariate analysis, and the corre-
lation strength of the DTBZ pattern with disease duration was similar to
the univariate analysis applied to the averaged less affected putamen
without correction for multiple comparison. However, the pattern
analysis results did not suffer from multiple comparison problem that
may decrease the statistical robustness of the outcomes obtained with
the univariate analysis.

In addition, the orthogonality (which loosely implies independency)
of the three spatial patterns may imply that disease-induced asym-
metry, disease-induced gradients and denervation progression might be
underlined by different or independent mechanisms. In a previous study
(Nandhagopal et al., 2009) the asymmetry between the less and more
affected striatal sides was shown to decrease as disease progresses; the
first and third common patterns both showed striatal asymmetry, but
with higher loadings on either the more affected (first pattern) or less
affected (third pattern) sides. The orthogonality between the two pat-
terns may reflect the fact that different mechanisms may be of most
relative relevance to the less and more affected striatal sides related to

the fact that degeneration in each side occurs at different stages of
disease; however, whether this difference is due to ‘saturated’ dopa-
minergic loss in the more affected striatum or different underlying
mechanisms still need further investigation. The same previous study
(Nandhagopal et al., 2009) also showed that there is a marked rostro-
caudal gradient of dopaminergic deficit at disease onset. We observed
that the striatal gradient is independent of the striatal asymmetry,
suggesting the two aspects of dopaminergic denervation may be in-
duced by different mechanisms underlying disease initiation or pro-
gression. Interestingly, this decomposition may thus also provide gui-
dance to determine metrics that are either more sensitive to disease
discrimination (first two pairs of canonical variates) or are better suited
to track disease progression (third pair of canonical variates). Inclusion
of data from healthy controls in the analysis may help to further explore
this hypothesis.

Overall, the common information in DTBZ and MP binding confirms
the applicability and robustness of the proposed joint pattern analysis
approach, and was shown to be more sensitive to specific spatio-tem-
poral changes compared to univariate analysis.

4.2.2. Unique information
While it can be assumed that common information mainly reflects

characteristic disease-induced alterations related to the integrity of
dopaminergic function, unique information reflects patterns in which
VMAT2 and DAT are differently affected in early disease. Unique DTBZ
pattern showed asymmetry between the less and more affected
striatum, similar to the common DTBZ pattern along the first pair of
canonical variates, suggesting that VMAT2 may be more sensitive to
direct disease effects, i.e. dopaminergic terminal degeneration, com-
pared to DAT. Indeed VMAT2 density is deemed to be least sensitive to
disease-induced regulatory changes (Vander Borght et al., 1995). The
globus pallidus and VTA appeared relatively more affected and the pons
were more preserved.

DAT unique pattern showed more reduced tracer binding in the
more affected anterior and middle putamen, with relatively preserved
tracer binding in the less affected posterior putamen. The relatively
more preserved DAT in the posterior putamen might be a compensatory
response to the more severe dopaminergic loss observed with VMAT2.
While it is still debatable whether lower DAT contributes to higher
synaptic DA levels by reducing DA reuptake, it has also been shown
that, in PD, higher DAT is associate with lower DA turnover, i.e. the
functional role of DAT may be to maintain relatively constant synaptic
DA levels (Sossi et al., 2007). The substantia nigra and thalamus also

Fig. 5. Correlation between subject scores and disease duration as estimated from the time of symptoms onset (months) for DTBZ and MP along the third pair of
canonical variates. DTBZ=dihydrotetrabenazine. MP=methylphenidate.
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appeared relatively more preserved with MP, similar to the common
MP pattern along the first pair of canonical variates. DAT is found along
the projections from the substantia nigra to the thalamus and then to
the striatum. The globus pallidus receives input from the thalamus, and
the fact that this region appeared relatively more affected for DTBZ
compared to MP may again suggest a possible compensatory role effect
of DAT in the substantia-thalamus-globus pallidus/striatum pathway in
early disease. The downregulation of VMAT2 in VTA may be a reflective
of the fact that the mesolimbic pathway is also affected relatively early
in PD (Bosboom et al., 2004). However, binding in extrastriatal regions

may not be specific to dopaminergic neurons and more accurate in-
terpretations of the functional roles of the extrastriatal regions in these
spatial patterns require more detailed studies involving healthy con-
trols.

4.3. Limitations

There are several limitations in this study. First of all, in order to
unambiguously determine if patterns are related to disease or normal
topology differences in the two tracers, the same analysis should be

Fig. 6. Unique spatial patterns along the first three pairs of canonical variates for DTBZ (top) and MP (bottom). Stars indicate the ROIs with significant CCA loadings.
ROI= region of interest; CCA= canonical correlation analysis; GP= globus pallidus; SN= substantia nigra; VS= ventral striatum; VTA=ventral tegmental area.
DTBZ=dihydrotetrabenazine. MP=methylphenidate.
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further extended to DTBZ and MP data from healthy controls. However,
since all common patterns in both DTBZ and MP highly resembled
known characteristic disease-related dopaminergic changes, we believe
these patterns are indeed related to disease. As an indirect comparison
of spatial patterns in the disease and healthy stages, we applied PCA to
DTBZ data in PD and healthy control groups then compared the PCA
patterns obtained in the PD group and healthy control group with the
CCA patterns presented in the paper. Detailed results of the comparison
can be found in the Supplementary Materials. Secondly, both tracers are
not entirely selective for dopaminergic neurons (DTBZ is taken up by
monoaminergic terminals and MP is not 100% specific for DAT).
Although such contribution is very small in the striatum in healthy
condition, it may not be entirely negligible in PD or in other regions.
While these observations may introduce a potential confound in the
interpretation of the data, such confounds are not specific to this ana-
lysis method but to any approach comparing MP and DTBZ data. In
addition, we applied the proposed method to ROI BPND values instead
of parametric BPND maps to reduce the effect of noise. Another im-
portant limitation of the study is the relatively small sample size.
Results from this study will be further confirmed with larger sample
size and parametric images in the future.

5. Conclusion

Using two extensively used tracers, we showed that the proposed
joint pattern analysis approach was able to capture all disease-induced
characteristic spatial and temporal distribution patterns with better
sensitivity compared to univariate analysis. This approach can be easily
extended to the analysis of a larger number of data sets and thus ap-
pears very well suited to the analysis of multiple data sets, multi-tracer
or multi-modality. It can be further extended to include voxel-level
data. The method has several advantages in terms of biologically-re-
levant information that can be extracted from the data: first, it con-
siders tracer distributions in all ROIs at once, thus providing informa-
tion not only on localized alterations, but also on spatial patterns of
such alterations, emphasizing an network behavior of the targets under
investigation. Secondly, the approach decomposes the common in-
formation between data sets, in our case DTBZ and MP binding, into
distinct orthogonal patterns of characteristic dopaminergic changes
that are either more sensitive to disease discrimination or to disease
progression and potentially resulting from somewhat independent un-
derlying mechanisms. Thirdly, it allowed to identify unique behavior of
each specific target and thus possibly discern the relative target re-
sponse to disease. While the data considered in this study allowed to
validate this approach, application of this method to a larger data set,
including healthy controls and/or patients with more advanced disease
and/or other tracers, is expected to provide new insights into the effect
of disease on multiple targets, their interaction and behavior as a
function of disease progression in an entirely data driven manner.
Extension of the method to voxel level data and other atypical par-
kinsonisms might also be of interest in the future.
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