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Gestational diabetes mellitus (GDM) is prevalent worldwide, leading to a high risk of significant morbidity for both the mother and
offspring with complications. Increasing evidences suggest that gut microbiota plays a role in the pathogenesis of GDM. Lifestyle
modification is the cornerstones of GDM treatment. However, a number of patients whose blood glucose is not controlled by
lifestyle modification still require exogenous insulin to control blood glucose. No observational study is available about the
relationship between the gut microbiota in GDM patients and lifestyle modifications. Thus, we investigated the differences in
gut microbiota between GDM patients with successful glycemic control (GDM1) and failure of glycemic control (GDM2) by
lifestyle modifications. We sequenced the V3-V4 regions of 16S ribosomal ribonucleic acid (rRNA) gene from stool samples of
52 singleton pregnant women with 24–28 weeks of gestation. Our results showed that Blautia, Eubacterium_hallii_group, and
Faecalibacterium in the gut microbiota showed significant differences among the normoglycemic mother, GDM1, and GDM2
groups, respectively. The combined diagnostic performance of Blautia, Eubacterium_hallii_group, and Faecalibacterium in
differentiating GDM2 from GDM was considered as the most reasonable identification indicator. Gut bacteria may participate
in the pathological development of GDM2 through the peroxisome proliferator-activated receptor (PPAR) signaling pathway.
These results indicated that Blautia, Eubacterium_hallii_group, and Faecalibacterium had important characteristic changes in
the gut microbiota of women with GDM2.

1. Introduction

Gestational diabetes mellitus (GDM) is defined as glucose
intolerance or hyperglycemia of varying severity with the
onset or first recognition during pregnancy [1]. During preg-
nancy, the mother’s body undergoes a series of physiological
changes (i.e., metabolic adaptation) in order to support the
demands of the growing fetus. During early gestation, insulin
sensitivity increases, promoting the uptake of glucose into
adipose stores in preparation for the energy demands of later
pregnancy. In the second and third trimesters of pregnancy,
the antagonism of insulin-like substances leads to decreased

insulin sensitivity in pregnant women. The demand for insu-
lin increases accordingly to maintain normal blood glucose
levels. However, the normal insulin levels during pregnancy
do not adequately occur in all pregnancies, except in those
with preexisting insulin resistance or women who cannot
increase insulin secretion, resulting in GDM [2, 3].

The prevalence of GDM is very high worldwide [4, 5],
and in some countries or areas, it is even higher than 20%
[6]. The incidence of GDM increases continuously, leading
to a severe morbidity for both mother and offspring with
short-term complications such as preeclampsia [7], macroso-
mia [7, 8], cesarean delivery [8], neonatal hypoglycemia [9],
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and congenital malformation [10], while long-term compli-
cations included maternal type 2 diabetes mellitus and
cardiovascular diseases, as well as obesity, diabetes mellitus,
and other metabolic diseases in the offspring [11–15]. Life-
style modifications that focus on changes in diet and physical
activity act as a cornerstone and first choice of treatment for
GDM [16]. Till date, the blood glucose levels can be
controlled by lifestyle modifications in approximately two-
thirds of patients with GDM [17]. However, majority of
patients whose blood glucose cannot be controlled by lifestyle
modifications require exogenous insulin to control blood
glucose levels [18].

The gut microbiota contributes to the pathogenesis of
diabetes, and the relationship between these is an important
topic of clinical concern and research [19, 20]. There is an
emerging evidence that the gut microbial organisms—the
“gut microbiome”—might contribute to metabolic diseases,
including GDM [2, 21–23]. Studies on the gut microbiota
of GDM have showed contrast results, either no differences
[24], with increased abundance of Firmicutes and reduced
Bacteroidetes and Actinobacteria [25] or decreased
abundance of the Faecalibacterium reported in comparison
with normoglycemic mothers [26]. However, another article
reported opposite results regarding the abundance of
Faecalibacterium in GDM [27]. Additionally, some studies
have addressed the relationship between the gut microbiota
and the development of GDM [27–29]. Till date, there are
very few observational studies available about the relation-
ship between the gut microbiota in GDM patients and life-
style modifications.

2. Materials and Methods

2.1. Study Population. From September 1, 2016 to November
28, 2017, 52 singleton pregnant women during 24-28
gestational weeks were recruited from the outpatient depart-
ment of the Women’s Hospital, Zhejiang University School
of Medicine. Of these, 36 women were with GDM and were
further divided into successful glycemic control (GDM1
group, n = 24) and failure of glycemic control (GDM2 group,
n = 12) based on the results of glycemic control after lifestyle
modifications. The remaining 16 were normoglycemic preg-
nant women (N group).

The exclusion criteria were as follows: pregnant women
with prepregnancy diabetes mellitus, family history of diabe-
tes mellitus, hypertension, Cushing syndrome, hyperthyroid-
ism, hyperlipidemia, genetic disease, and other diseases that
affect glucose metabolism and pregnant women with inflam-
matory bowel disease, irritable bowel syndrome, and celiac
disease, using antibiotic or probiotics within one month that
affect the gut microbiota were excluded. Pregnant women
who did not comply with the principles of the trial and med-
ication were also excluded from this study. All the study
procedures met the ethical guidelines of the World Medical
Association Helsinki Declaration 2013. All participants
provided a written informed consent form. The study was
approved by the Ethics Committees of the Women’s
Hospital, Zhejiang University School of Medicine (approval
number: protocol #20160081).

2.2. Data Collection and Specimen Collection. The oral glu-
cose tolerance test (OGTT) was conducted in women with
24-48 weeks of gestation according to the diagnostic criteria
of GDM for diagnosing GDM. Participants were asked to fast
for at least 8 h prior to each clinic visit and avoid smoking
and heavy physical activity for the preceding 2 h. After that,
3.0mL venous blood was drawn on empty stomach from
pregnant women and underwent centrifugation at 3000 rpm
for 5 minutes. The serum was separated and immediately
sent for examinations, such as fasting blood glucose (FBG),
total cholesterol (TC), triglyceride (TG), low-density lipopro-
tein cholesterol (LDL-C), and high-density lipoprotein
cholesterol (HDL-C). Then, 300mL aqueous solution con-
taining 75 g of glucose was taken, and blood was drawn at
1 h and 2h, respectively.

On the same day, their stool was collected. All pregnant
women in our study were asked to put their stool in a clean
presupplied container by staff and submit the stool for exam-
ination within 1 h. Our researchers then used a sterile spoon
to scoop 3-5 grams of fresh stool from the center of the whole
homogenate stool and placed it in a freezer at −80°C within 2
hours of collection.

The participants with GDM then attended a 2 h group
counseling session led by nutritionists and nurses in our
GDM follow-up center and were subsequently recommended
for lifestyle modifications. Meanwhile, the basic characteris-
tic information of the participants was collected. Body weight
was measured by trained and certified technicians to the
nearest 0.1 kg using a calibrated scale by requesting partici-
pants to wear light clothing. Height (without shoes) was mea-
sured to the nearest 0.1 cm using a vertical ruler. Body mass
index (BMI) was calculated by dividing weight in kilograms
by height in meters squared. Blood pressure (BP) was mea-
sured after the participants were seated and rested for 5min
by using an Omron aneroid device. To determine the waist
circumference, the nurse locates the upper hip bone and
places a measuring tape around the abdomen. After 3 to 4
weeks, these participants were informed to visit the clinic
again for blood glucose measurement according to the goal
of glycemic control during pregnancy.

2.3. Diagnostic Criteria for GDM and the Goal of Glycemic
Control for GDM. The diagnosis of GDM was made if any
of the following blood glucose values are met: (1) FBG ≥ 5:1
mmol/L, (2) 1-hour blood glucose post 75 g oral glucose
load ≥ 10:0mmol/L, and (3) 2-hour blood glucose post 75 g
oral glucose load ≥ 8:5mmol/L [30].

The goal of glycemic control for GDM after lifestyle
modifications was as follows: FBG < 5:3mmol/L and either
1-hour blood glucose post 75 g oral glucose load < 7:8
mmol/L or 2-hour blood glucose post 75 g oral glucose
load < 6:7mmol/L [30]. If the above criteria are met, these
pregnant women are classified under the GDM1 group,
and if not, they are classified under the GDM2 group. The
women in the latter group were treated with insulin or
hypoglycemic drugs to achieve acceptable glycemic levels.

2.4. Lifestyle Modification. Lifestyle modifications involve
dietary therapy and physical activity. Routine follow-up and
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diet adjustments were provided throughout pregnancy to
achieve and maintain the goal of glycemic levels. Training,
education, support, and follow-up (telephone) by a qualified
doctor who is experienced in taking care of women with
GDM were also provided. Dietary intake and physical
activities were assessed by an interviewer-administered
questionnaire.

A goal for the required energy intake from the diet should
be obtained for each participant. Diet and energy intake were
calculated based on the weight and blood glucose levels. The
total energy intake was within the scope of ideal body weight
multiplied by energy coefficient taken away from 35 kcal/kg
per day. In addition, limiting the daily energy intake to
1800–2000 kcal is considered appropriate (Tables S1 and
S2). If the blood glucose levels of GDM women who can
control the daily energy intake to 2000 kcal after dietary
therapy, then it will be suitable for them to ingest 2000 kcal
energy per day. Otherwise, they are recommended to
reduce their daily energy intake to 1800 kcal.

Each participant followed a specific exercise program.
The forms of exercise included continuous moderate-
intensity exercise that mainly involves the large muscles of
the body, such as walking, upper limb strength training exer-
cise, and jogging. In addition, it was better to perform the
same intensity physical activity at the same time each day.
Our doctors train the family members on how to use the
glucometer. Self-monitoring of blood glucose for women
with GDM should be carried out every day.

2.5. Detection of Biochemical Indicators. Blood glucose was
measured by the glucose oxidase-peroxidase method [31].
The main principle including: the enzyme glucose oxidase
catalyzes the oxidation of glucose to gluconic acid and hydro-
gen peroxide (H2O2). Addition of the enzyme peroxidase and
a chromogenic oxygen acceptor results in the formation of a
colored compound that is measured. TC was measured by
the cholesterol oxidase (CHOD) phenol 4-aminoantipyrine
peroxidase (CHOD-PAP) method [31]. The main principle
including: the reagents typically use a bacterial cholesteryl
ester hydrolase to cleave cholesteryl esters (CHE). The 3-
OH group of CHE is then oxidized to a ketone by CHOD.
H2O2, one of the reaction products, is measured in a
peroxidase-catalyzed reaction that forms a colored dye. TG
was measured by the glycerol phosphate oxidase phenol
4-aminoantipyrine peroxidase (GPO-PAP) method [31].
The main principle including: lipase catalyzes the hydroly-
sis of TG to glycerol and fatty acids. Glycerol then is
phosphorylated by glycerokinase. Glycerophosphate is then
oxidized to dihydroxyacetone and H2O2 in a glycerophos-
phate oxidase-catalyzed reaction, and the H2O2 formed in
the reaction is measured. LDL-C was measured by a sur-
factant method [31, 32]. The main principle including:
polyanions and amphoteric surfactants were selectively
protected LDL from enzymatic reaction. The non-LDL
CHE reacted with esterase and oxidase, producing H2O2,
which was consumed by catalase. 4-Aminoantipyrine, per-
oxidase, and a deprotecting reagent could remove the pro-
tecting agent from LDL, enabling the specific reaction of
CHE and CHOD with its CHE, producing H2O2 and a

color complex. And HDL-C was measured by the
peroxidase-scavenging method [31, 32]. The main princi-
ple including: CHE and CHOD were allowed to react with
lipoproteins other than HDL, generating peroxidase, which
in turn was scavenged by the enzyme catalase. An inhibi-
tor of catalase and a surfactant in a second reagent specif-
ically reacted with HDL-C, producing color through the
usual peroxidase sequence. All the above reagents are pur-
chased from Biosino Bio-Technology, China. All the above
items are determined by an ABBOTT ARCHITECT c1600
automatic biochemical analyzer (ABBOTT, USA), follow-
ing the manufacturer’s instructions.

2.6. Deoxyribonucleic Acid (DNA) Extraction. Stool samples
(200mg) were processed by using a grinding bead homoge-
nizer (FastPrep; Thermo Electron Corporation, MA, USA)
and used for DNA extraction with a QIAamp DNA Stool
Mini Kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s protocol. The DNA content was measured using a
NanoDrop ND-100 spectrophotometer (NanoDrop Tech-
nologies, DE, USA). The DNA integrity and size were mea-
sured by electrophoresis on a 1.0% agarose gel containing
0.5mg/mL ethidium bromide. The extracted DNA was
stored at −20°C for further analysis. A negative control was
performed during DNA extraction. The specimens were
treated separately in the biosafety cabinet. The experimental
clothes and disposable gloves were used, and the liquid
pipette gun head with filter membrane, disposable reaction
tube, and centrifugal tube were used. Cross-use of equipment
in different areas of the laboratory is strictly prohibited.

2.7. 16S V3-V4 Region Amplification, Product Purification,
and Sequencing. Universal primers 338F (5′-NNNNNNN
NACTCCTACGGGAGGCAGCA-3′) and 806R (5′-NNNN
NNNNGGACTACHVGGGTWTCTAAT-3′) for bacterial
16S V3-V4 were used for polymerase chain reaction (PCR)
amplification to obtain V3-V4 region sequence of the bacte-
rial 16S ribonucleic acid (rRNA) gene. NNNNNNNN that is
added to the 5′ end of the upstream and downstream primers
is an 8-bit tag base sequence (barcode) obtained for each
sample and used to distinguish between samples during
sequencing. Each sample was processed thrice. The PCR
products of the same sample were then mixed and detected
using 2% agarose gel electrophoresis. PCR products were
recovered using the AxyPrep DNA Gel Recovery Kit (Axy-
gen, Union City of California, USA), eluted with Tris-HCl,
and detected on a 2% agarose gel. Based on the initial quan-
titative results of electrophoresis, PCR products were quanti-
fied using a QuantiFluor-ST Blue Fluorescence Quantitation
system (Promega, Madison, WI). The PCR products of 52
samples were mixed in equimolar amounts according to the
measured concentrations and sequenced on an Illumina
MiSeq platform as required.

A negative control was performed during the PCR ampli-
fication process. When the negative control test is negative, it
shows that the reagent in the whole process of the test is not
contaminated. Strategies to prevent cross-contamination:
special operation areas are set up, and different work areas
are separated from each other and transmitted through
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transfer warehouses. Different experimental steps were oper-
ated in a continuous and independent space. Cross-use of
equipment in different areas of the laboratory is strictly
prohibited. The laboratory was disinfected by ultraviolet
radiation regularly. All reagents or equipment should be ster-
ilized under high pressure, except enzymes and substances
that cannot withstand high temperature.

2.8. Sequencing Data Processing, Operational Taxonomic
Unit Analysis, and Species Annotation. Paired-end reads
obtained from MiSeq sequencing were initially put together
using flash software according to the overlapping relation-
ship. Quality control was performed based on barcode and
primer sequences in order to obtain a valid sequence.
Quantitative Insights into Microbial Ecology (QIIME) soft-
ware was used for sequencing data filtration by removing
low-quality bases and contaminated sequences for obtain-
ing a high-quality target sequence for subsequent analysis
[33, 34]. The sequences were clustered into “operational
taxonomic units” (OTUs) based on 97% similarity with
USEARCH software (version 7.0 http://drive5.com/uparse/)
[35]. During this process, chimeras were removed using the
UCHIME algorithm [36], and finally, the representative
sequence of OTU was obtained. A set of sequences that
belonged to the same OTU were considered related. Among
this set, one representative sequence was selected for species
annotation using the Ribosomal Database Project (RDP)
Classifier [37, 38]. SILVA (Release128 http://www.arb-silva
.de) database was used to classify these sequences into
specific taxa [39].

2.9. Imputed Metagenomic Analysis. The metagenomes of gut
microbiome were imputed from 16S rRNA sequences with
PICRUSt (Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States) [40]. This method
predicts the gene family abundance from the phylogenetic
information with an estimated accuracy of 0.8. For every
individual and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway, PICRUSt estimates the total gene count
within that pathway (normalized to a relative abundance
per pathway). The closed OTU table was used as the input
for metagenome imputation and was first rarefied to an even
sequencing depth prior to the PICRUSt analysis. Next, the
resulting OTU table was normalized by 16S rRNA gene copy
number. The gene content was predicted for each individual.
Then, the predicted functional composition profiles were col-
lapsed into level 3 of KEGG database pathways [40, 41].

2.10. Linear Discriminant Analysis (LDA) Coupled with Effect
Size (LEfSe). LEfSe is software for discovering high-
dimensional biomarkers and revealing genomic characteris-
tics, including genes, metabolism, and classification, to dis-
tinguish two or more biological conditions (or groups) [42].
LDA of LEfSe analysis include three main steps: first, the
Kruskal-Wallis test was used to analyze all the characteristic
species, to detect the species abundance differences among
different groups, and to obtain significantly different species.
Then, the Wilcoxon test was used to check whether all sub-
species in the species with significant differences converged

to the same taxonomic level. Finally, a LDA model is
established for the generated vector set, and the list of dif-
ferent species and the effect size at a specific taxonomic
level are obtained. In our study, LDA of LEfSe was
coupled with to search for statistically different biomarkers
between groups using the Kruskal-Wallis test (P < 0:05)
with LDA score > 4:0. The LDA score was obtained by
LDA (linear regression analysis); the larger the LDA score,
the greater the influence of species abundance on the dif-
ference effect.

2.11. Statistical Analysis. Mothur was used to generate
rarefaction data [43]. Venn diagram was generated with a
VennDiagram R package (http://www.r-project.org) [44].
Alpha diversity metrics (Sobs, Chao, Shannon, Simpson,
Shannoneven, and Simpsoneven index) and beta diversity
(principal coordinates analysis (PCoA analysis)) were calcu-
lated with the phyloseq R package [45, 46]. The Shapiro-Wilk
test was used to judge the normal distribution of data [47].
Measurement data with normal distribution were described
as �X ± SD. The differences in blood glucose, age, BMI, and
lipid-related parameters among the three groups were ana-
lyzed by analysis of variance (ANOVA). Potential trends in
blood glucose levels among the three groups were explored
using the ANOVA-trend analysis test. The index microbiota
diversity and richness and relative abundance of the bacteria
among the three groups were compared with the Kruskal-
Wallis H test [48], and the nonparametric test in pairwise
comparison of multiple groups was the Dunn-Bonferroni test
(P values were corrected by the Benjamini-Hochberg
method) [49, 50]. Correlation analysis was performed by
Spearman’s rank correlation test. Receiver operating charac-
teristic (ROC) curve was used to evaluate the diagnostic
efficiency of major bacteria. Statistical Product and Service
Solutions (SPSS) software (version 22.0; SPSS, Inc., IL,
USA) and GraphPad Prism software (version 7.0; Graph-
Pad Software, Inc., San Diego, CA) were used for data
analysis and generate the figures. All tests were two sided,
and P < 0:05 was considered as statistically significant.

3. Results

3.1. General Participant Information. The average age of all
pregnant women was 33 years, and their gestational age
was 24.6 weeks, with a BMI of 25. No differences in age
(F = 2:8, P = 0:07), gestational age (F = 2:1, P = 0:14), body
weight (F = 1:8, P = 0:18), height (F = 0:08, P = 0:93), and
BMI (F = 2:5, P = 0:09) were observed among the N, the
GDM1, and the GDM2 groups. However, the differences in
FBG (F = 49:9, P < 0:001), 1-hour blood glucose post 75 g
oral glucose load (F = 37:8, P < 0:001), and 2-hour blood glu-
cose post 75 g oral glucose load (F = 32:5, P < 0:001) showed
significant differences among these three groups. FBG
(F = 92:57, P = 7:14E‐13), 1-hour blood glucose post 75 g
oral glucose load (F = 67:06, P = 9:83E‐11), and 2-hour
blood glucose post 75 g oral glucose load (F = 55:36, P =
1:38E‐9) showed an upward trend among the N, the
GDM1, and the GDM2 groups by the ANOVA-Trend
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Analysis test, respectively. Also, the TC, HDL-C, and LDL-C
levels showed significant differences (P < 0:05) (Table 1).

3.2. OTU Sequence Diversity and Richness. Sequencing of the
V3 region of 16S rRNA gene was performed on stool sam-
ples. After optimizing the sequence information, 2,054,594
high-quality sequences were obtained, with an average of
39,511 sequences per sample (30,024–58,559) and 432 bp
(426-443) per sequence, which were used for subsequent data
analysis. The rarefaction curve tended to be flat, indicating
that the amount of sequencing data was large enough, and
the amount of sequencing data was reasonable. This sug-
gested the presence of vast majority of microbial diversity
information in the samples (Fig. S1). The sequencing data
were more appropriate, and the sequencing depth already
covered most of the species in the sample. All samples were
downsampled to contain 10,000 sequences to compare the
diversity parameters by avoiding the influence of the total
number on sample sequences.

Furthermore, 602 reference OTUs from 52 stool samples
belonged to 218 genera out of 13 different phyla. The
observed species richness (Sobs) and estimated richness for
Chao 1 (Chao) showed no differences among the three
groups, indicating no difference in microbiota community
richness. The Shannon diversity index (Shannon) and the
Simpson diversity index (Simpson) showed no differences
among the N, the GDM1, and the GDM2 groups, indicating
no difference in microbiota community diversity among the
three groups. Also, the Simpson index-based measure of
evenness (Simpsoneven) and the Shannon index-based

measure of evenness (Shannoneven) showed no differences
among the N, the GDM1, and the GDM2 groups, indicating
no difference in microbiota community evenness among the
three groups (Table S3). All sequences were divided into 602
OTUs according to 97% similarity, and the Venn diagrams
that visually represented the total and unique conditions of
the OTU numbers of the three groups were formed
(Figure 1(a)). The OTU numbers of the N, the GDM1, and
the GDM2 groups were 458, 526, and 375, respectively.
More than 50% of the OTUs were simultaneously shared by
the three groups. The N group shared 414 OTUs with the
GDM1 group. Based on the Spearman coefficient, PCoA
main coordinate analysis was performed, which showed
that the GDM1 and the GDM2 groups were clustered and
well distinguished. The N and the GDM1 groups were
more clustered and could not be effectively distinguished
(Figure 1(b)).

3.3. Gut Microbiota Differences between the N Group and the
GDM1 Group or the GDM2 Group. At the phylum, class,
order, and family levels, the relative abundance of gut micro-
biota was observed in the N group, the GDM1 group, and the
GDM2 group (Fig. S2).

With the Kruskal-Wallis H test, the relative abundance
of the genus level revealed that Blautia (P = 2:791E‐4),
Faecalibacterium (P = 2:968E‐3), Eubacterium_hallii_group
(P = 4:270E‐5), Subdoligranulum (P = 0:016), Phascolarcto-
bacterium (P = 0:026), and Roseburia (P = 0:033) showed
significant differences among the N, the GDM1, and the
GDM2 groups (Table S4).

Table 1: Characteristics of the study population.

Descriptive measurements N (�X ± SD) GDM1
(�X ± SD)

GDM2
(�X ± SD)

One-way
ANOVA

ANOVA-linear
term trend
analysis

F P F P

Age (years) 30:8 ± 4:8 34:3 ± 3:8 33:6 ± 5:6 2.8 0.07 2.529 0.118

Gestational week (weeks) 25:9 ± 1:1 26:0 ± 1:1 25:2 ± 0:9 2.1 0.14 2.689 0.107

Body weight (kg) 64 ± 9 65 ± 11 71 ± 12 1.8 0.18 3.090 0.085

Height (cm) 162 ± 3 162 ± 4 162 ± 5 0.08 0.93 0.058 0.811

BMI 24:3 ± 2:9 24:9 ± 3:8 27:2 ± 3:8 2.5 0.09 4.547 0.037

Abdominal circumference (cm) 90 ± 8 91 ± 7 97 ± 9 3.3 0.05 5.879 0.019

Systolic BP (mmHg) 121:8 ± 12:3 118:4 ± 10:3 120:6 ± 9:1 0.5 0.6 0.081 0.777

Diastolic BP (mmHg) 70:06 ± 11:6 69:88 ± 9:2 71:08 ± 17:8 0.04 0.96 0.047 0.829

Biochemistry

FBG (mmol/L) 4:3 ± 0:3 4:7 ± 0:5 6:0 ± 0:6 49.9 <0.001 92.57 <0.001
1-hour blood glucose post 75 g oral
glucose load (mmol/L)

7:0 ± 1:3 10:7 ± 1:5 12:3 ± 2:5 37.8 <0.001 67.06 <0.001

2-hour blood glucose post 75 g oral
glucose load (mmol/L)

5:8 ± 0:9 8:9 ± 1:4 10:0 ± 2:0 32.5 <0.001 55.36 <0.001

TG (mmol/L) 2:2 ± 0:4 2:1 ± 0:6 2:6 ± 1:0 3.4 0.4 3.922 0.053

TC (mmol/L) 5:5 ± 1:1 6:8 ± 1:3 5:6 ± 0:9 7.9 0.001 0.006 0.939

HDL-C (mmol/L) 1:7 ± 0:4 2:1 ± 0:4 1:7 ± 0:3 4.5 0.016 0.003 0.954

LDL-C (mmol/L) 2:5 ± 0:9 3:3 ± 0:9 2:4 ± 0:7 7.3 0.002 0.117 0.734
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We further compared the relative abundance of the above
six bacteria by pairwise comparison with multiple groups of
nonparametric test including the Dunn-Bonferroni test
(P values were corrected by the Benjamini-Hochberg
method). The results showed no significant difference
between the N group and the GDM1 group. Compared
with the N group and the GDM1 group, the relative
abundance of Faecalibacterium and Subdoligranulum in
the GDM2 group was lower, while that of Blautia and
Eubacterium_hallii_group was significantly higher (Figure 2).
Next, Spearman’s rank correlation test was used for analyzing
potential trends, and the results showed gradual increase of
Blautia (r = 0:533, P = 4:8E‐5) and Eubacterium_hallii_group
(r = 0:599, P = 3:0E‐6) in the order of N, GDM1, and GDM2,
respectively, while Faecalibacterium (r = ‐0:419, P = 0:002)
showed opposite results, but the remaining bacteria showed
no correlation (Table S5).

Therefore, our results indicated the existence of differ-
ent characteristics of gut microbiota between GDM patients
with success and failure of glycemic control by lifestyle
modifications.

3.4. Correlation between Gut Bacteria and Blood Glucose
Levels. To understand the close relationship between gut bac-
teria and blood glucose metabolism, the correlation between
relative abundance of Blautia, Eubacterium_hallii_group,
Faecalibacterium, Phascolarctobacterium, Subdoligranulum,
Roseburia, and FBG was analyzed, respectively. The relative
abundance of Blautia (r = 0:438, P = 0:001) and Eubacte-
rium_hallii_group (r = 0:491, P = 0:0001) showed positive
correlation with FBG. The relative abundance of Faecalibac-
terium (r = ‐0:317, P = 0:022) was negatively correlated with
FBG. No other bacteria showed correlation with FBG
(Figure 3).

3.5. Clinical Value of Gut Bacteria in GDM. To find bio-
markers for differentiating GDM2 from GDM, LDA of LEfSe
was used to determine the taxa that explain the differences
between the GDM1 group and the GDM2 group. At genus
level, 6 species had LDA scores > 4:0. The taxa were com-

pared to obtain the best biomarkers that can predict each
category. The results revealed that Faecalibacterium, Blau-
tia, and Eubacterium_hallii_group among all the bacteria
showed significant discriminatory function between the
GDM1 group and the GDM2 group (Figure 4). Mean-
while, Faecalibacterium, Blautia, and Eubacterium_hallii_
group among all the bacteria demonstrated significant dis-
criminatory function between the N group and the GDM2
group (Fig. S3), but not between the N group and the
GDM1 group.

To further analyze the sensitivity and specificity of the
above three bacteria in the differential diagnosis of GDM1
and GDM2, the ROC curves were fitted to analyze the rela-
tive abundance of these three bacteria. The area under the
ROC curves (AUC) of Faecalibacterium was 0.80, and when
the best cut-off point for relative abundance diagnosis was
7.42%, the sensitivity and specificity of GDM2 were 0.92
and 0.67, respectively. The AUC of Blautia was 0.86, and
when the best cut-off point was 13.18%, the sensitivity and
specificity of GDM2 were 0.83 and 0.96, respectively. The
AUC of Eubacterium_hallii_group was 0.87, and when the
optimal cut-off point was 3.37%, the sensitivity and specific-
ity of GDM2 were 0.75 and 0.92, respectively. We analyzed
the combined diagnostic performance of Faecalibacterium,
Blautia, and Eubacterium_hallii_group in differentiating
GDM2 from GDM. The AUC of the combination bacteria
was 0.94. At the optimal cut-off point, the sensitivity and
specificity of GDM2 were 0.83 and 1.00, respectively
(Figure 5).

3.6. Microbial Functions Altered during GDM. To character-
ise the functional alterations of the gut bacteria in GDM, we
predicted the functional composition profiles from 16S
rRNA sequencing data with PICRUSt among the N, the
GDM1, and the GDM2 groups. We found that multiple
KEGG (level 3) categories of the endocrine system (level 2)
were disturbed in GDM2. The pathways including the insulin
signaling pathway, the peroxisome proliferator-activated
receptor (PPAR) signaling pathway, and the adipocytokine
signaling pathway, which were deficient in GDM2 patients
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Figure 1: Comparison of gut microflora composition among the N, the GDM1, and the GDM2 groups. (a) Venn diagram showing the
overlap of OTUs. (b) Based on the Spearman coefficient, PCoA was used to evaluate the differences in the fecal bacteria of all groups.
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compared with N and GDM1 (Figure 6(a) and Fig S4).
Intriguingly, after correlation analysis of the above signal
pathways with Faecalibacterium, Blautia, and Eubacterium_
hallii_group, it was found that PPAR was positively corre-
lated with the relative abundance of Faecalibacterium
(r = 0:52, P = 8:2E‐5) and was negatively correlated with the
relative abundance of Blautia (r = 0:43, P = 0:0015)
(Figures 6(b) and 6(c)).

4. Discussion

In the present gut microbiome study, the association between
gut microbiota and GDM status was observed. Specifically,
Blautia and Eubacterium_hallii_group were enriched in the
GDM2 groups, whereas Faecalibacterium, Subdoligranulum,
Phascolarctobacterium, and Roseburiawere enriched in the N
groups or the GDM1 groups. PCoAmain coordinate analysis
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Figure 2: Gut microbiota differences among the N, the GDM1, and the GDM2 groups. Pairwise comparison in multiple groups was
conducted with the Dunn-Bonferroni test (P values were corrected by the Benjamini-Hochberg method): ∗P < 0:05, ∗∗P < 0:01, and
∗∗∗P < 0:001.

(a) (b) (c)

0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

Relative abundance of Blautia

FB
G

 (m
m

ol
/L

)

r = 0.438, P = 0.001

N
GDM1
GDM2

0.0 0.1 0.2 0.3 0.4
0

2

4

6

8

Relative abundance of Faecalibacterium

FB
G

 (m
m

ol
/L

)

r = –0.317, P = 0.022

0.00 0.02 0.04 0.06 0.08
0

2

4

6

8

Relative abundance of
Eubacterium_hallii_group

FB
G

 (m
m

ol
/L

)

r = 0.491, P = 0.0001

Figure 3: The correlation analysis between the relative abundance of Blautia, Faecalibacterium, Eubacterium_hallii_group, and blood glucose
levels.

7Journal of Diabetes Research



was performed, and the results revealed that the GDM1
group and the GDM2 group showed clustering and were well
distinguished. However, there are no differences in the gut
microbe composition and the relative abundance between
the GDM1 group and the N group. To our knowledge, this
is the first study to explore the characteristics of gut microbi-
ota in GDM with success or failure of glycemic control by
lifestyle modifications.

It is interesting to note that Blautia, Faecalibacterium,
Eubacterium_hallii_group, and Subdoligranulum have
shown significant characteristic changes in the gut micro-
biota of GDM2 patients. Blautia and Eubacterium_hallii_
group were gradually increased in the order of N, GDM1,
and GDM2, while Faecalibacterium showed opposite results.
Blautia was presented with enriched abundance in glucose-
intolerant individuals [51] and associated with metabolites,
reflecting an unhealthy metabolic state in individuals with
high BMI [52]. These findings are in line with our study
results, showing an increased abundance association with
GDM. These results suggested that enriched Blautia abun-
dance goes together with a nonfavorable metabolic profile.
Blautia and Eubacterium_hallii_group belonged to Lachnos-
piraceae, and Lachnospiraceae contributes to the develop-
ment of diabetes [53, 54]. According to a previous study,

there was a reduced abundance of Faecalibacterium in
women with GDM [26].

In addition, a strong correlation between several discrim-
inatory bacteria and blood glucose levels was observed in our
study. It was reported recently [28, 55] that metagenomic
linkage groups (MLGs) were obtained by classifying and
summarizing the relative abundance of microbial gene
sequence markers in fecal specimens; the ratio of gross abun-
dance between GDM-enriched MLGs and control-enriched
MLGs was positively correlated with blood glucose levels,
which was suggested that microbiome dysbiosis might have
a direct association with the pathophysiology of GDM. Sim-
ilar observations were observed also in healthy young males,
where inactivity produced insulin resistance, also in cases
devoid of significant community changes. This shows that
microbes are capable of adjusting their physiological activi-
ties in response to the host signals or host-provided environ-
ment [56–58]. We observed that Blautia, Eubacterium_
hallii_group, and Faecalibacterium were related to blood glu-
cose levels. Faecalibacterium is mainly fermented to produce
short-chain fatty acids (SCFA) such as butyrate [59]. When
butyric acid is deficient in the gut, then the tricarboxylic acid
cycle of colonocytes was inhibited. If butyric acid is added to
the colon in time, then it can rescue the defects of mitochon-
drial respiration and prevent autophagy in colonocytes [60].
If autophagy occurs, then the tight junctions are lost, and
the permeability increases between cells. Hence, the absorp-
tion of exogenous antigens such as lipopolysaccharides
continuously increases, rendering the body in a state of
low-grade inflammation by stimulating the production of a
large number of inflammatory factors and leading to insulin
resistance. In addition, butyric acid works as a histone deace-
tylase inhibitor [61, 62] that promotes β-cell differentiation
and proliferation, improving insulin resistance. Lachnospira-
ceae, including Blautia and Eubacterium_hallii_group, led to
the development of obesity and diabetes by promoting the
dysfunction of islet β-cells [53, 54]. Eubacterium_hallii_
group can metabolize glycerol into reuterin [63, 64]. Reuterin
can induce oxidative stress by interacting with intracellular
glutathione [63, 65]. Oxidative stress can lead to cellular
damage by interfering with the state of proteins, lipids, and
DNA and has been implicated in the pathogenesis of
GDM [66]. It is interesting that Eubacterium_hallii_group
also produces SCFA [67]. The specific mechanism of
SCFA produced by bacteria Faecalibacterium and
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Eubacterium_hallii_group in the occurrence and develop-
ment of GDM needs further study.

To find biomarkers, ROC curve fitting analysis showed
that the combination panel of the three bacteria, Faecalibac-
terium, Blautia, and Eubacterium hallii group, showed a
significant improvement in differentiating GDM2 from
GDM, reflecting a high clinical value. As the diagnostic index
of GDM, OGTT requires prolonged fasting, repeated punc-
ture, and blood sampling, resulting in patient discomfort
substantially. Patients must cooperate with the physicians
for the entire process. Factors such as severe exercise and
mental stress that affects the blood glucose levels are not
allowed. However, the detection of gut microbes may
provide a promising approach for developing GDM bio-
markers, especially for the gut microbes that are very
convenient for sampling.

Therefore, we consider Faecalibacterium, Blautia, and
Eubacterium_hallii_group as diagnostic markers in women
diagnosed with GDM2, i.e., who cannot control the disease
by lifestyle modifications.

Analysis of the inferred metagenome in this study
showed that the PPAR signaling pathway, the insulin sig-
naling pathway, and the adipocytokine signaling pathway
in GDM2 patients were significantly decreased, suggesting
that the induction of remission could partially restore the
homeostasis of metabolic function. In particular, our study
suggested that PPAR was positively correlated with the
relative abundance of Faecalibacterium and negatively
correlated with Blautia. Many literatures have reported
that fatty acids can increase insulin sensitivity through

the PPAR signaling pathway, thereby regulating blood glu-
cose levels, which was closely related to the occurrence of
GDM [68–70]. In our study, there is a positive correlation
between Faecalibacterium in stool and blood glucose levels,
while Blautia is the opposite. Faecalibacterium in GDM2
patients who can produce fatty acids (such as butyric acid
and propionic acid) was significantly lower than that in N
and GDM1. In conclusion, gut bacteria may participate in
the pathological development of GDM2 through the PPAR
signaling pathway, which should be conducted for further
study in the future.

Besides the sample size, the other limitation of our study
was that we only analyzed one stool sample per participant
and was collected at 24-28 weeks of pregnancy. However,
we are unable to clarify the causal relationship between the
microbiome and the development of GDM due to a cross-
sectional design. Consequently, data acquisition at multiple
time points assists in providing further insights into their
dynamic relationship. To confirm the associations observed
in the current study, a large prospective cohort investigation
and analysis of other potentially significant variables are
necessary.

5. Conclusion

Blautia, Faecalibacterium, and Eubacterium_hallii_group
had important characteristic changes in the gut microbiota
of women with GDM2. The relative abundance of Faecali-
bacterium, Blautia, and Eubacterium_hallii_group can dis-
criminate GDM2 from GDM. Gut bacteria may participate
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Figure 6: The predicted functional module involving PPAR signaling pathways altered in GDM2. (a) Relative frequencies of the PPAR
signaling pathway among N, GDM1, and GDM2; (b, c) correlation between relative frequencies of the PPAR signaling pathway and
Faecalibacterium or Blautia with Spearman’s rank correlation test.
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in the pathological development of GDM2 through the PPAR
signaling pathway, which should be conducted for further
study in the future.
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the GDM2 groups (a) represents the phylum level, (b) repre-
sents the class level, (c) represents the order level, and (d)
represents the family level. Pairwise comparison in multiple
groups was conducted with Benjamin Hochberg, ∗P < 0:05,

and ∗∗P < 0:01. Fig S3: taxonomic biomarkers between N
and GDM2 LEfSe analysis shows differentially abundant gen-
era as biomarkers determined using the Kruskal-Wallis test
(P < 0:05) with LDA score > 4:0. The LDA discriminant his-
togram statistics showed that there were significant microbial
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