
Review Article
Advances in Hybrid Brain-Computer Interfaces: Principles,
Design, and Applications

Zina Li, Shuqing Zhang, and Jiahui Pan

South China Normal University, Guangzhou 510631, China

Correspondence should be addressed to Jiahui Pan; panjh82@qq.com

Received 20 June 2019; Revised 9 September 2019; Accepted 17 September 2019; Published 8 October 2019

Guest Editor: Hyun J. Baek

Copyright © 2019 Zina Li et al. .is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conventional brain-computer interface (BCI) systems have been facing two fundamental challenges: the lack of high detection
performance and the control command problem. To this end, the researchers have proposed a hybrid brain-computer interface
(hBCI) to address these challenges. .is paper mainly discusses the research progress of hBCI and reviews three types of hBCI,
namely, hBCI based on multiple brain models, multisensory hBCI, and hBCI based on multimodal signals. By analyzing the
general principles, paradigm designs, experimental results, advantages, and applications of the latest hBCI system, we found that
using hBCI technology can improve the detection performance of BCI and achieve multidegree/multifunctional control, which is
significantly superior to single-mode BCIs.

1. Introduction

Brain-computer interface (BCI) is a technology that trans-
lates signals generated by brain activity into control signals
without the involvement of peripheral nerves and muscles
and uses these signals to control external devices [1]. In
recent years, BCI has attracted increasing attention from
academia and the public due to its potential clinical ap-
plication. For example, BCI can provide augmented or
repaired motor function, which can be of great help to
patients with severe motor impairment..emost commonly
used methods of extracting brain signals are nonimplanting,
including functional magnetic resonance imaging (fMRI),
magnetoencephalography (MEG), electroencephalography
(EEG), and functional near-infrared spectroscopy (fNIRS)
[2]. Although EEG has low signal-to-noise ratio and spatial
resolution, it has been widely used in BCI because of its
noninvasiveness, portability, low cost, good performance,
real-time response, and technical requirements lower than
other brain signals. .is paper mainly describes the BCI
based on EEG. Brain models used in EEG-based hybrid BCIs
typically include the P300 visual-evoked potential proposed
by Farwell and Donchin in 1988 [3], the steady-state-evoked

potential (such as the steady-state visual-evoked potential
(SSVEP)) [4] and event-related desynchronization/syn-
chronization (ERD/ERS) generated by motor imagination
(MI) [5].

Conventional EEG-based BCI generally relies solely on a
single-signal input (such as EEG, electromyography (EMG),
and electro-oculogram (EOG)), single sensory stimulus
(such as visual only, auditory only, and tactile only), or single
brain pattern (such as the above P300 potential and SSVEP).
.e single-mode BCI system has achieved great progress in
paradigm design, brain signal processing algorithms, and
applications. However, these BCI systems have been facing
multiple challenges, including low information transfer rates
(ITRs), low man-machine adaptability, and high dynamics/
nonstationarity of brain signals [6, 7]. Here, we mainly
consider two fundamental challenges and introduce a hybrid
BCI technique intended to address these challenges:

(1) Multidegree/multifunction control: multidegree/
multifunctional control is necessary for many de-
vices, such as wheelchair, robots, or artificial limbs.
For instance, the wheelchair control includes speed,
direction, and start/stop functions. However, it is
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difficult for a conventional simple BCI to generate
effective multiple control signals [8].

(2) Improvement of detection performance: over the
years, although many efforts have been made to
improve the detection performance of BCI, the de-
tection performance in terms of classification ac-
curacy, information transfer rate (ITR), and false-
positive rate (FPR) is still far from practice in many
applications, especially for patients. Approximately
13% of healthy users suffer from BCI illiteracy and do
not reach the criterion for controlling a BCI appli-
cation [9]. Moreover, user acceptability and com-
plexity of the BCI systems should be reported as
important performance criteria.

To conquer the above two fundamental challenges, some
researchers have proposed a hybrid BCI (hBCI). As de-
scribed by Allison [8], an hBCI system consists of a BCI
system and an add-on system, which can be a second BCI
system, but designed to perform specific goals better than a
conventional BCI. .e main goal of hBCI is to overcome the
existing limitations and disadvantages of the conventional
BCI systems. In this paper, the recent progress in hBCIs was
reviewed to illustrate how hBCI techniques could be
implemented to address these challenges. .e definition of
hybrid BCIs was updated and extended, and three main
types of hBCIs have been devised. For each type of hybrid
BCIs, the principle was summarized and several represen-
tative hybrid BCI systems were highlighted by analyzing
their paradigm designs, control methods, and experimental
results. Finally, the future prospect and research direction of
hBCI were discussed.

2. Hybrid BCI Overview

Although the concept of hBCI emerged before 2010, its
development has become more and more rapid in recent
years. Based on the search engine “Web of Science,” and
title-abstract-keyword ((“brain-computer interface” or
“BCI”) and (“hybrid” or “multimodal”), the number of
journal papers found before 2010 was only three. However,
this number rose to 148 and 293 in the two periods of
2010–2014 and 2015–2019, respectively. It is evident that
the number of publications on hBCI has grown rapidly in
recent years. Note that those studies of single BCI com-
bining only features and algorithms also can improve
performance are excluded. In fact, “Hybrid BCI” and
“multimodal BCI” are two highly related concepts. Li et al.
[9] even considered that “hybrid BCI” and “multimodal
BCI” to be interchangeable terms with the same BCI
definition.

Pfurtscheller et al. [10] believed that in addition to the
simple combination of different BCIs, the type of hBCI
should meet the following four criteria: (1) the activity
comes directly from the brain; (2) at least one brain signal
acquisition method should be used to capture this activity,
and the brain signal acquisition method can be in the form
of electrical, magnetic, or hemodynamic changes; (3) the
signal must be processed in real time/online to establish

communication between the brain and the computer to
generate control commands; (4) feedback must be provided
according to the results of brain activity for communica-
tion and control.

.e signal flow of an hBCI system is as described in
Figure 1, which includes two stages of brain signal pro-
cessing. (1) In the signal acquisition, the signal input can be
from multiple signals (e.g., EEG and NIRS) or multiple
brain patterns (e.g., P300 and SSVEP), which are evoked by
multisensory stimuli (e.g., audiovisual stimuli). (2) In the
signal processing, an hBCI system can provide only a
single-output/control signal or multiple-output/control
signals. In the former case, when multiple brain patterns or
multiple signals are involved, data fusion is generally re-
quired at the feature or decision level. In the latter case,
multiple control signals may be separately manipulated by
different brain patterns detected by the system, and the
fusion of these brain patterns is generally not necessary. As
shown in Figure 1, the hBCI can be divided into three main
categories:

(1) hBCI based onmultiple brain patterns: it uses at least
two brain modes (e.g., P300 and SSVEP or MI and
P300). In this type of hBCI, multiple brain patterns
are induced by a single sensory stimulus. Several
studies have indicated that hybrid integration as-
sociated with multimodal stimuli has the potential to
enhance brain patterns, which may be beneficial for
BCI performance [11].

(2) hBCI with multisensory stimuli: its brain pattern is
simultaneously induced by multiple sensory stimuli,
such as audiovisual stimuli. In this hBCI, one or
more brain patterns are induced by multisensory
stimuli. Some researchers believed multisensory
BCIs may offer more versatile and user-friendly
paradigms for control and feedback [12].

(3) hBCI based on multiple signals: in this hBCI, two or
more input signals are typically combined with a hybrid
BCI system, such as EEG, MEG, fMRI, fNIRS, EOG, or
EMG. Different brain signals have different signal
characteristics and can be used for different functions.

.e state-of-the-art of the above three types of hBCI is
introduced in the following sections, including their general
principles, stimuli paradigm, control methods, corre-
sponding experimental results, and advantages.

3. hBCI Based on Multiple Brain Patterns

.e first class of hBCIs combines multiple brain patterns,
such as P300, SSVEP, and MI. It has been designed for a
variety of applications, such as speller [13], idle state de-
tection [14], orthotics [15], the wheelchair navigation, and
control of computer components, which include two-di-
mensional (2D) cursor [16], mouse [17], or mail client [18].
Table 1 lists the representative hBCI applications of multiple
brain patterns in recent years. In this section, we mainly
describe hBCI based on P300 and SSVEP, hBCI based on MI
and SSVEP, and hBCI based on MI and P300.
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3.1. P300- and SSVEP-Based hBCIs. Both P300 potential and
SSVEP can be elicited by visual stimuli, allowing subjects to
evoke both brain patterns by performing a visual attention task
without extra mental load. .e P300 and SSVEP features are
located in different domains (time domain versus frequency
domain), and both brain patterns have significant in-
dependence..e improvement in performancemay result from
the utilization of both P300 and SSVEP features..e addition of
the EEG feature may provide additional information that fa-
cilitates the classification of a target versus a nontarget.

Bi et al. [22] proposed a hybrid paradigm based on
SSVEP and P300 for developing speed-direction-based
cursor control. In this study, the stimulation of the P300 was
distributed on the upper and lower sides of the screen, and
the stimulus for detecting SSVEP (which can rotate the
control device clockwise or counterclockwise) was displayed
on the left and right sides of the screen. .e results using the
method based on the support vector machine classification
showed that the accuracy of the hBCI was higher than 90%.

Pan et al. [29] detected consciousness in eight patients
with disorders of consciousness (DOC) by using a hybrid
paradigm of SSVEP and P300. Following the instructions, the
left- and right-hand photos flickered on a black background
with fixed frequencies of 6.0 and 7.5Hz, respectively, to evoke
the patient’s SSVEP.Meanwhile, each of the two photo frames
was randomly presented five times to evoke P300, with each
appearance lasting 200ms and the interval between two
consecutive appearances being 800ms. .e BCI system used
the characteristics of P300 and SSVEP to detect which photo
the patient had noticed. Eight patients (four in the vegetative
state (VS), three in the minimally conscious state (MCS), and
one in the locked-in syndrome (LIS)) participated in the
experiment. Using the SVM-based classifier, one VS patient,
one MCS patient, and one LIS patient were able to select
photos of themselves or others (classification accuracy,
66%–100%), which indicates that the patient command can be
followed using an hybrid BCI and further proves that they
have certain cognitive abilities and awareness.

3.2. MI- and SSVEP-Based hBCIs. .ere are four reasons to
combine SSVEP and MI: (1) SSVEP- and MI-related brain
patterns were produced simultaneously; (2) SSVEP is an
evoked potential that can be stably detected in unfamiliar
subjects with little training, but for most new users, it is
difficult to adapt to the process of completing MI task; (3)
SSVEP can detect by a single trial based on EEG data, and the
detection does not require an averaging process; (4) nonvisual
training will frustrate subjects, while SSVEP provides a
possible solution to attract subjects to participate in MI task.

Based on the above principles, Yu et al. [26] combined
SSVEP and MI to provide effective continuous feedback for
MI training in 24 subjects. Initially, the classifier assigns a
greater weight to the SSVEP in order to get the correct
feedback at the beginning of the training. As the training
goes on, participants reduced their visual attention to SSVEP
stimuli but maintained sustained attention to MI mental
tasks. When subjects adapt to rhythmic activities, the
classifier shifts the weight to MI. .e result showed that an
hBCI can be used to improve MI training and produce
distinguishable brain patterns after only five sessions (about
1.5 hours).

3.3. MI- and P300-Based hBCIs. An important aspect of the
EEG-based BCI system is multidimensional control, which
involves multiple independent control signals. .ese control
signals can be obtained frommultiple brain patterns, such as
MI and P300. P300 represents the reliable type of brain
pattern used to generate discrete control output commands,
and MI is more effective against generating sequential
control commands.

Li and colleagues [16] proposed hBCI combining MI
brain patterns and P300 potentials for 2D cursor control and
target selection. .e GUI is shown in Figure 2, in which the
circle and square represent the cursor and target, re-
spectively, with the initial position of the cursor and the
initial position and color (green or blue) of the target are
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Figure 1: .e signal flow of hybrid brain-computer interface discussed in this paper.

Computational Intelligence and Neuroscience 3



randomly provided..e three “UP” buttons, three “DOWN”
buttons, and two “STOP” buttons flash in a random order to
evoke P300 potentials. .e task of the user is to move the
cursor to the target and then to select or reject the green/blue
target. .e control strategy of the user is described below.
.e user canmove the cursor to the left or right by imagining
his or her own left- or right-hand movement, respectively,
and the user can move the cursor up or down by focusing on
one of the three flashing “UP” or “DOWN” buttons to evoke

P300 potentials. If the user does not intend to move the
cursor in the vertical direction, then the user can focus on
one of the two “STOP” buttons.

To further implement a BCI mouse, target selection and
rejection functions are required. Specifically, once the
cursor hits the target of interest (green square), the user can
select the target by focusing the attention on a flashing
“STOP” button and simultaneously maintaining an idle
state of motor imagery. If the target is not of interest (blue
square), the user can reject it by continuing to imagine left-
or right-hand movement without focusing on any flashing
buttons.

.e algorithm for the 2D cursor control includes two
parts: P300 detection for vertical movement control and
motor-imagery detection for horizontal movement control,
with the details presented in [19]. .e signal processing
procedure for P300 detection consists of three stages: low-
pass filtering, P300 feature extraction, and SVM classifica-
tion. For motor-imagery detection, the signal processing
stages include common average reference (CAR) spatial
filtering, band-pass filtering of the specific mu rhythm band
(8–13Hz), feature extraction based on a CSP algorithm, and
SVM classification. .e algorithm for target selection or
rejection was based on the hybrid features of P300 potentials
and MI. After extracting the features of the P300 potentials
and MI using the same algorithms described above, a hybrid
feature vector for each trial is constructed by concatenating
the feature vector of the MI with the feature vector of the
P300 potentials, which is then fed into the SVM for
classification.

Table 1: Representative hBCI applications of multiple brain patterns.

Reference Hybrid mode Application Classifiers Commands Accuracy (%) Improvements

[19] SSVEP, P300, MI Humanoid machine
navigation CCA 6 P300: 84.6,

SSVEP: 84.1
Better commands performance
in navigation and exploration

[20] SSVEP, P300 Wheelchair control with stop
command SVM 2 >80 Higher detection accuracy and

low response time

[21] SSVEP, P300 Target selection speller SW-LDA 9 93.3 More effective in target
discrimination

[22] SSVEP, P300 Cursor control SVM 9 >90 Higher accuracy and better
commands performance

[11] SSVEP, P300 Multiple option selection CCA,
LDA 4 P300: 99.9

SSVEP: 67.2
Better performance and user-

friendly
[23] P300, SSVEP Speller SW-LDA 36 93.85 Higher accuracy

[24] MI, SSVEP Play Tetris games in MI-
SSVEP paradigm

LDA, CSP,
CCA 4 MI: 87.01

SSVEP: 90.26 Higher accuracy

[25] MI, SSVEP Hybrid BCI system of MI
and SSVEP LDC 2 85.6± 7.7 Better classification

performance

[9] MI, SSVEP, visual,
and auditory Wheelchair control SVM 6 — Multidegree control

commands

[26] MI, SSVEP Hybrid BCI system with
feedback LDA 2 ≥83 Better MI training

performance

[27] SSVEP, MI Control commands CCA 5 MI: 93.3
SSVEP: 89

Better performance and
easiness for users

[16] MI, P300 2-D cursor control SVM 2 >80 Multiple-degree control

[17] P300, MI BCI mouse-based web
browser SVM 3 93.21 Multidegree control with a

feasible BCI mouse

[28] P300, MI BCI wheelchair with
direction and speed control LDA 4 83.10± 2.12 Direction and speed control

UPUP UP

DOWNDOWN DOWN

STOPSTOP

Figure 2: GUI of 2D cursor control and target selection of a hBCI
system [16], which combines MI and P300 potential, including one
cursor (black circle), one object (green square), and eight flashing
buttons (three “UP,” three “DOWN,” and two “STOP” buttons).
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Eleven healthy subjects attended the online experiment,
which included one session of 80 trials for each subject.
Each trial included two sequential tasks. During the first
task, subjects were instructed to move the cursor to a target
that was presented at a randomized position on the screen.
After the cursor hit the target, the subject was instructed to
perform the second task of selecting or rejecting the target
according to the color of the target (green for selection and
blue for rejection)..e time interval for the second task was
set to 2 s. Among all subjects, the average time for one trial
was 18.96 s, the average accuracy for successful trials was
92.84%, and the average for target selection accuracy given
that the cursor was successfully moved to the target was
93.99%. Additionally, several datasets were also collected
for offline analysis to demonstrate the advantage of P300
potential and MI hybrid features for target selection/re-
jection compared with the use of P300 potential or MI
features alone. .e experimental results showed that the
accuracy for use of the hybrid features was significantly
higher than for use of only the MI or P300 potential fea-
tures (hybrid features: 83.10± 2.12%; MI features:
71.68± 2.41%; P300 features: 80.44± 1.82%). Based on the
BCI cursor, Long et al. [28] proposed a hybrid BCI par-
adigm based on MI and P300 potential to operate actual
wheelchairs by providing direction (left or right) and speed
control (acceleration and deceleration) commands with 5
subjects.

All of these hybrid systems have three advantages. First,
two independent control signals are generated based on MI
and P300 potential. Second, the user can move the cursor
from any position to a randomly located target. .ird, the
hybrid control strategy using MI and P300 potential pro-
vides better identification performance than the control
strategy using MI-only or P300-only.

4. Multisensory hBCIs

Humans have multiple senses that provide pathways for
processing information on the reality. .e integration of
multiple sensory stimuli enhances top-down attention,
and these enhanced effects may be conducive to improve
the performance of BCI systems. Taken into this con-
sideration, hBCI based on audiovisual and visual-tactile
was proposed, in which bimodal stimulation was used to
improve system performance. Table 2 lists the repre-
sentative applications of multisensory hBCIs in recent
years.

4.1. Audiovisual hBCIs. Belitski et al. [30] proposed an
offline audiovisual-based P300 speller and corresponding
data analysis results. .eir study of 7 healthy subjects
showed that the intensity of P300 reaction was higher in
audiovisual conditions than in visual or auditory condi-
tions alone. Similarly, An et al. [32] explored parallel
spellers for BCI unrelated to gaze for healthy subjects,
where the auditory and visual domains are independent of
each other. .eir results showed that 15 users can spell
online, with an average accuracy rate of 87.7%. .ese
existing results suggest that audiovisual integration may

be a potential way to enhance brain patterns and further
improve BCI performance. Wang et al. [33] proposed a
novel audiovisual BCI system, which is based on time-
synchronous visual and auditory stimuli. In the GUI of
this audiovisual BCI, there are two number buttons (two
numbers randomly drawn from 0 to 9) located on the left
and right sides, and two speakers are placed laterally to the
monitor. .e two buttons flash in an alternative manner.
When a number button is visually intensified, the cor-
responding spoken number is presented from the ipsi-
lateral speaker. In this way, the user is presented with a
temporally, spatially, and semantically congruent audio-
visual stimulus that lasts for 300ms, where the in-
terstimulus interval is randomized from 700 to 1500ms.
Ten healthy subjects participated in the experiment. .e
experiment consisted of three sessions administered in a
random order, corresponding to the visual-only, audi-
tory-only, and audiovisual conditions. In each session, the
subject first performed a training run of 10 trials and then
a test run of 30 trials. .e online average accuracy of
audiovisual, visual-only, and auditory-only sessions for all
healthy subjects was 95.67%, 86.33%, and 62.33%, re-
spectively. .e audiovisual BCI significantly out-
performed the visual-only and auditory-only BCIs. .is
audiovisual hBCI system was then applied to the con-
sciousness detection of 7 patients with DOC. .e ex-
perimental results indicated that the audiovisual BCI can
provide more sensitive results than the behavioral ob-
servation scale.

4.2. Audio-Tactile hBCIs. .e above bimodal BCI requires
visual interaction to focus on stimuli and feedback, which
limits their applicability to users with good vision and
complete gaze control. Since the user does not require visual
interaction when operating auditory or tactile BCI, a bi-
modal auditory/tactile-based manner may allow visual
scanning of unrelated BCI. Yin et al. [34] proposed a dual-
mode P300 BCI with the same direction, which was pre-
sented simultaneously with auditory and tactile stimuli from
the same spatial direction. Rutkowski and Mori [35] studied
the tactile and auditory BCI of 11 users with vision and
hearing impairment.

.ese existing results reveal the several advantages of
BCI auditory-tactile. First, the auditory-tactile dual-mode
BCI has better overall system performance than the auditory
or tactile single-mode P300 BCI. Second, in visual computer
applications, auditory-tactile hBCI offers an attractive
possibility of target sensory fields that can induce potential
without relying on visual stimuli, although the performance
achieved by using this system is lower than that of BCI
dependent on gaze transfer. .ird, visual-tactile hBCI is an
alternative for users with impaired vision.

5. hBCI Based on Multimodal Signals

hBCI systems can be constructed using multimodal signals,
including EEG, MEG, fMRI, EOG, fNIRS, and EMG. Dif-
ferent brain signals have different signal characteristics and
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can be used for different functions. Recently, several hybrid
BCIs based on multiple signals have been reported in the
following. Table 3 lists the representative hBCI applications
based on multimodal signals in recent years.

5.1. EEG- and EMG-Based hBCIs. Leeb et al. [50] proposed
an hBCI combining EEG and EMG. In each trial, 12 healthy
subjects were instructed to repeat the exercise for five
seconds with their left or right hand (holding the hand with
the fist) based on visual cues (arrows to the left or right).
.e researchers processed and classified EEG and EMG
signals separately and then fused them. Canonical variable
analysis was used to select subject-specific features that
maximized separability between different tasks, and stable
features were determined by cross validation of a Gaussian
classifier based on training data..e resulting features were
given threshold, normalized, and classified based on
maximum distance in a subject-specific manner. Finally,
the Bayesian method was used to fuse the probabilities of
two classifiers to generate a control signal..e accuracy of a
single EEG activity was 73% and single EMG activity was
87%. However, the accuracy of the hBCI was improved to
91%. In addition, to simulate tired muscles, the amplitude
of the EMG channel decreased during operation (from 10%
to 100%), and EEG activity is increasingly important in
fused data as EMG muscles become more tired. .e results
showed a significant advantage for EEG- and EMG-based
BCI systems.

5.2. EEG- and EOG-Based hBCIs. Recently, some studies
have combined EEG and EOG to construct an hBCI. Since
many people with disabilities are able to control their eye
movements, EOG signals are an appropriate choice for
many users of the BCI system. Lee et al. [41] employed
hBCIs based on EEG-EOG to a speller system with fast
typing speed. .e hBCI system comprised a conventional
ERP-based speller, an EOG-based command detector, and
a visual feedback module. .e online ERP speller was used
to compute the classification probabilities for all candidate

characters from EEG epoch. .e character of highest
probability was selected as visual feedback based on the
probabilities sorting. .e accuracy of the novel speller
system was 97.6%, and its ITR is 39.6± 13.2 bits/min across
20 participants..e result showed that this EEG- and EOG-
based speller has better performance than the conventional
ERP-based speller.

5.3. Other hBCIs Based onMultimodal Signals. Other hybrid
BCIs based on multiple signals have also been reported. A
way to make full use of the spatial and temporal in-
formation of brain activity is to combine the fMRI with
EEG in BCIs. A key advantage of EEG-fMRI combined BCI
is that EEG can provide online slow cortical potential (SCP)
feedback to subjects. It also reveals the basic psycho-
physiological mechanisms, such as the correlation between
local BOLD-responses and the SCP changes, which helps to
develop new training procedures and paradigms. Although
fNIRS has poor spatial resolution compared to fMRI, it is
portable and reflects the hemodynamic response of brain
activity.

.e authors in [45] have proved that the performance of
an MI-based BCI was improved significantly by combing
EEG and NIRS. It allows those who are unable to run EEG-
based BCI alone to achieve meaningful classification rates.
EEG is easily distorted by the inhomogeneities of the
extracerebral tissues, while MEG is not affected as long as the
electric inhomogeneities are concentric. .erefore, MEG
signals are more local than the corresponding EEG signals
and can provide more spatial information. In [47], the MEG
and EEG signals generated in the sensorimotor cortex were
used to index the finger movements for three tetraplegics.

6. Discussion and Conclusion

.is paper focuses on several hBCI types and different
stimulus designs and their performance analysis. To begin
with, we summarized three classes of hBCIs: hBCIs based on
multiple brain patterns, multisensory hBCIs, and hBCIs

Table 2: Representative applications of multisensory hBCIs.

Reference Hybrid mode Application Classifiers Commands Accuracy (%) Improvements

[30] P300, visual,
audio P300 audiovisual speller Regularized

linear LR — >80 Improvement in performance

[31] Visual, audio Consciousness detection in
patients with DOC SVM 2 >64 Better performance and feasible

to patients with DOC

[32] Visual, audio Visual-auditory speller LDA 30 87.7 (chance
level <3%) Better BCI performance

[33] Visual, audio Awareness detection SVM 2 95.67
Better performance over

auditory-only and visual-only
systems

[34] Auditory, tactile,
visual, P300

Visual saccade-independent
BCI BLDA 4 88.67 Better online performance

[35] Auditory, tactile,
P300

Tactile and bone-
conduction BCI SW-LDA 6 70 Higher classification accuracy

[36] Audio, tactile Robot gesture FGMMs,
SVM 10 92.75 Better performance over

framework
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based on multimodal signals. For each type of hBCIs, we
reviewed several representative hybrid BCI systems, in-
cluding their design principles, stimuli paradigms, control
methods, experimental results, and corresponding advan-
tages. In the following, we will elaborate concluding remarks
regarding the benefits of hybrid BCI systems and future
studies.

Following consideration of the three types of hybrid BCI
and their respective applications, we can summarize the
advantages of hybrid BCI in two aspects. First, the hBCI
system can provide only a single control signal or output to
improve the classification performance. .e two main
strategies for bringing about these improvements are as
follows: (1) the combination of multiple brain patterns (such
as MI, P300, and SSVEP) or the fusion of multiple signals
(such as EEG, EMG, EOG, and NIRS) can be performed at
the feature level; and (2) enhancing brain patterns by pre-
senting multiple sensory stimuli, such as audiovisual stimuli.
Second, when multiple control signals or outputs are
available, hBCI systems attempt to implement multi-degree
object control. In this paper, the multi-dimensional or
functional control method based on hybrid BCIs and some
application systems are presented. Two main methods can
be adopted: (1) combining multiple brain patterns to obtain
multiple independent control signals, such as 2D cursor
control based on MI and P300 and orthopedic control based
on MI and SSVEP; (2) using different signal characteristics
to perform different functions, such as robot control based
on EEG and EOG.

Here, we consider several challenging problems for
further study.

6.1. Design and Implementation for hBCIs. From the user’s
point of view, the complexity of the hBCI system is usually
higher than that of the conventional simple BCI. User ac-
ceptability is an important performance criterion that needs
to be carefully considered in hBCI design and imple-
mentation. In the design of an hBCI based on brain patterns,
one of the challenges is how to determine the best combi-
nation of brain patterns to achieve the desired goals, and the
combination can vary from user to user. For example, it
should be considered that long-term use of SSVEP and P300
will increase visual fatigue. While designing a couple sensory
hBCI, the challenge is to ensure that the desired brain
patterns are enhanced by multiple sensory stimuli. Previous
studies [33] have found that combining audio stimuli with
natural spoken words in a visual P300-based BCI can help
reduce the burden of mental work. .erefore, we can
consider more combinations of multiple sensory stimuli
involving auditory and tactile patterns in future research.
For the hBCI based on multiple signals, one challenge is how
to make full use of the characteristics of different signals to
achieve the greatest improvement in system performance. In
addition, when designing the real-time hBCI based on EEG
and fMRI, the high noise, slow response and high di-
mensionality of EEG data (generated by fMRI scanner), and
the low temporal resolution of fMRI data are not negligible.

6.2. Brain Mechanisms for hBCIs. .e hBCI system may
involve multiple brain modes, multiple sensory modes, or
multimode signal inputs. To ensure that these components
are effectively coordinated in the hBCI system, it is necessary

Table 3: Representative applications of hBCI of multimodal signals.

Reference Hybrid mode Application Classifiers Commands Accuracy (%) Improvements

[37] EMG, EEG A motor imagery hybrid BCI
speller GMM 2

End-users: 91
Able-bodied
users: 94

Better performance over
command accuracy

[38] EEG, EMG Home environmental control
system CCA 4 96.3 Higher control accuracy,

security, and interactivity

[39] EEG, EOG AIDS recovery AR 4 62.28 Substantially better control
over assistive devices

[40] EEG, EOG Mobile robot control LDA 9 87.3 Reduce the best completion
time

[41] EEG, EOG Hybrid speller system LDA 1 97.6 Better performance and
usability

[42] fNIRS, EEG,
eye movement Control a quadcopter online LDA 8 fNIRS: 75.6

EEG: 86 Higher accuracy on decoding

[43] EEG, fNIRS Hand movement and
recognition LDA 2 94.2 Reduce fNIRS delay time in

detection

[44] EEG, fNIRS Left- and right-hand motion
imagination DL 2 — Reduce response time

[45] EEG, NIRS Decoding of four movements LDA 5 >80 Higher classification accuracy

[46] EEG, NIRS Mental state recognition Meta 6 65.6 Better performance on
mental states classification

[47] EEG, MEG Left- and right-hand motor
imagery CSP, LR 2 MEG: 70.6

EEG: 67.7
Better performance over

good within-subject accuracy

[48] EEG, NIRS Classification of mental
arithmetic, MI, and idle state sLDA 3 82.2± 10.2 Higher classification accuracy

[49] EEG, MEG Intersubject decoding of left-
vs. right-hand motor imagery

LR, L2, 1-norm
regularization 4 MEG: 70

EEG: 67.7
Higher within-subject

accuracy
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to study the relevant brain mechanisms. For example, cross-
modal integration/interaction in the brain can provide a
brainmechanism for multisensory BCI. However, there have
been few studies on the brain mechanism of hBCI so far.

6.3.ClinicalApplication. Until now,most hBCI systems (such
as BCI browsers and BCI wheelchairs) were designed for
healthy subjects. It needs to be extended to patients and extend
their value to clinical applications. In recent years, more and
more hBCIs have been used in clinical applications, such as in
the rehabilitation and treatment of patients with hemiplegia
[51, 52] andDOC [53].When designing these hBCI systems for
patients, the differences between them and healthy subjects
need to be fully considered. In some cases, even a single patient
design is necessary. .e application of hBCI to patients with
DOC has just begun, and hBCI-based communication and
rehabilitation is an important topic for our future research. In
addition, a variety of intelligent technologies, such as automatic
navigation systems and intelligent robots, have been combined
with BCI. .is combination not only greatly reduces the user’s
workload but alsomakes the BCI systemmore reliable, flexible,
and powerful by allowing the subject to focus on the final goal
and to ignore the low-level details associatedwith the execution
of the action. .is is promising for patients with low recog-
nition and control capabilities. .erefore, future research
should focus on such systems developed for patients.

Conflicts of Interest

.e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

.is study was supported by the National Natural Science
Foundation ofChina (Grant no. 61876067), the Pearl River S and
T Nova Program of Guangzhou (201710010038), and Guang-
dong Natural Science Foundation (Grant 2014A030310244).

References

[1] J. R.Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller,
and T. M. Vaughan, “Brain-computer interfaces for com-
munication and control,” Clinical Neurophysiology, vol. 113,
no. 6, pp. 767–791, 2002.

[2] S. Fazli, J. Mehnert, J. Steinbrink et al., “Enhanced perfor-
mance by a hybrid NIRS-EEG brain computer interface,”
NeuroImage, vol. 59, no. 1, pp. 519–529, 2012.

[3] L. A. Farwell and E. Donchin, “Talking off the top of your
head: toward a mental prosthesis utilizing event-related brain
potentials,” Electroencephalography and Clinical Neurophys-
iology, vol. 70, no. 6, pp. 510–523, 1988.

[4] G. R. Müllerputz, R. Scherer, C. Neuper, and G. Pfurtscheller,
“Steady-state somatosensory evoked potentials: suitable brain
signals for brain-computer interfaces?,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 14, no. 1,
pp. 30–37, 2006.

[5] G. Pfurtscheller and F. H. Lopes da Silva, “Event-related EEG/
MEG synchronization and desynchronization: basic principles,”
Clinical Neurophysiology, vol. 110, no. 11, pp. 1842–1857, 1999.

[6] K. S. Hong andM. J. Khan, “Hybrid brain–computer interface
techniques for improved classification accuracy and increased
number of commands: a review,” Frontiers in Neurorobotics,
vol. 11, p. 35, 2017.
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