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Abstract: Improving the genetic process of growth traits is one of the major goals in the beef cattle
industry, as it can increase meat production and reduce the cost of raising animals. Although several
quantitative trait loci affecting growth traits in beef cattle have been identified, the genetic architecture
of these economically important traits remains elusive. This study aims to map single nucleotide
polymorphisms (SNPs) and genes associated with birth weight (BW), yearling weight (YW), average
daily gain from birth to yearling (BYADG), and body weight at the age of 18 months (18MW) in
a Chinese Simmental beef cattle population using a weighted, single-step, genome-wide association
study (wssGWAS). Phenotypic and pedigree data from 6022 animals and genotypes from 744 animals
(596,297 SNPs) were used for an association analysis. The results showed that 66 genomic windows
explained 1.01–20.15% of the genetic variance for the four examined traits, together with the genes near
the top SNP within each window. Furthermore, the identified genomic windows (>1%) explained
50.56%, 57.71%, 61.78%, and 37.82% of the genetic variances for BW, YW, BYADG, and 18MW,
respectively. Genes with potential functions in muscle development and regulation of cell growth
were highlighted as candidates for growth traits in Simmental cattle (SQOR and TBCB for BW, MYH10
for YW, RLF for BYADG, and ARHGAP31 for 18MW). Moreover, we found 40 SNPs that had not
previously been identified as being associated with growth traits in cattle. These findings will further
advance our understanding of the genetic basis for growth traits and will be useful for the molecular
breeding of BW, YW, BYADG, and 18MW in the context of genomic selection in beef cattle.
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1. Introduction

Beef cattle provide a large proportion of the meat consumed by humans throughout the world [1].
Improving the genetic process of growth traits (e.g., body weight and average daily gain) is one of the
major goals in the beef cattle breeding industry, as it can increase meat production and reduce the cost of
raising animals [2,3]. The key to accelerating the progress towards this goal is to genetically select elite
cattle and to mine major genes that affect growth traits. A genome-wide association study (GWAS) can
detect significant single nucleotide polymorphisms (SNPs) or genomic regions that are associated with
economically important traits based on the linkage disequilibrium (LD) between SNPs and possible
causative mutations [4]. GWASs have recently been used to identify several quantitative trait loci
(QTLs) and genes associated with growth traits in beef cattle [1,3,5]. For instance, Kim et al. [6] used
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602 crossbred cattle of Bos taurus (Angus) and Bos indicus (Brahman) genotyped for 417 microsatellite
markers and detected a total of 35 QTLs for growth traits (e.g., birth weight and yearling weight).
Buzanskas et al. [7] performed a GWAS in 404 Canchim beef cattle using BovineHD BeadChip and
found four SNPs associated with birth weight. Jahuey-Martinez et al. [8] found 18 SNPs located in 13
Bos taurus chromosomes (BTA) and highlighted five genes (TRAF6, CDH11, KLF7, MIR181A-1 and
PRCP) that were associated with growth traits in a population of 855 Charolais beef cattle genotyped
for 76,883 SNPs. Although some progress has been made, the genetic architecture of these economically
important traits remains poorly understood. Furthermore, the majority of GWASs for growth traits in
beef cattle have only used a small sample of genotyped animals and low-density SNP arrays, which
has limited the statistical power of the association analysis [1,8]. To address this issue, the weighted
single-step GWAS (wssGWAS) is preferable for association analysis in Chinese beef cattle, for which
large numbers of individuals have phenotypes and pedigrees but fewer are genotyped.

The wssGWAS estimates the SNP effects using genomic estimated breeding values (GEBVs) by
solving a blend of pedigrees and SNPs derived matrix H, which was used in weighted single-step
genomic best linear unbiased prediction (wssGBLUP). This approach can make full use of genealogical
information and phenotypes of genotyped and nongenotyped animals [9]. The weighted single-step
approach has been successfully applied to domesticated animals, and has led to the detection of
additional QTLs and candidate genes for growth traits in Nellore cattle [3], semen traits in Duroc
boar pigs [10], and milk protein composition traits in Chinese Holstein dairy cattle [11]. However,
to our knowledge, few of the studies examining growth traits in Simmental beef cattle have used
wssGWAS. Therefore, the objective of this study was to identify genomic regions and candidate genes
associated with growth traits (birth weight (BW), yearling weight (YW), average daily gain from birth
to yearling (BYADG), and body weight at the age of 18 months (18MW)) in Chinese Simmental beef
cattle using the wssGWAS approach. In addition, gene enrichment analysis was performed to better
understand the biological processes and pathways shared by trait-associated genes.

2. Materials and Methods

2.1. Ethics Statement

All animals used in the current study were treated following the guidelines for the care and use of
experimental animals established by the Ministry of Agriculture and Rural Affairs of China. The ethics
committee of the Science Research Department of the Institute of Animal Sciences, Chinese Academy of
Agricultural Sciences (CAAS) (Beijing, China) approved this study. The approval ID/permit numbers
are SYXK (Beijing) 2008-007 and SYXK (Beijing) 2008-008.

2.2. Animals, Phenotypes and Pedigree

The animals used in this study originated from 12 Chinese Simmental beef cattle core farms.
These cattle were raised in different regions of China that participated in the national joint beef
cattle breeding and genetic improvement program. In brief, a total of 6022 Simmental beef cattle
(2878 males and 3144 females) born from 2001 to 2019 were used in this study. Among them, 6022
animals were used in wssGWAS for BW; 3996 individuals were used in wssGWAS for YW and BYADG;
3137 animals were used in wssGWAS for 18MW. Genealogical information was available for all Chinese
Simmental beef cattle (both males and females). The animals born from 2018 to 2019 were only used
in the BW association analysis because many of these cattle lacked phenotypic records for YW and
18MW. Yearling weight and 18MW of Simmental beef cattle was recorded at about 360 ± 30 days
and 540 ± 30 days of age, respectively. Average daily gain from birth to yearling was calculated by
subtracting the birth weight from the yearling weight and dividing by the number of days during this
period. For the four traits under study, outliers beyond three standard deviations were removed before
the association analysis.
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2.3. Genotyping and Quality Control

A total of 744 Chinese Simmental beef cattle was genotyped using Illumina BovineHD BeadChips,
which contained 777,962 SNPs. Quality control (QC) procedures were conducted using the PLINK
v1.07 software (Boston, MA, USA) [12]. Individuals with call rates <95%, SNPs with minor allele
frequency <0.05, call rates <95% and SNPs that failed the Hardy-Weinberg equilibrium test (p < 10−6)
were removed. In addition, SNPs were also excluded if they were located on the sex chromosomes or
had no positional information. After the QC, a final set of 596,297 SNPs for 744 Simmental beef cattle
were retained for subsequent analyses.

2.4. Weighted Single-Step Genome-Wide Association Study

The wssGBLUP proposed by Wang et al. [9] was utilized to make use of all available phenotypes,
pedigree, and genotypes using the BLUPF90 family programs [13]. The RENUMF90 module was used
to extract data for phenotypes, pedigrees, and genomic markers in raw file format. The AIREMLF90
module was used to estimate the variance components that were used in BLUPF90 to predict GEBV.
The postGSf90 module was used to conduct the wssGWAS. The four traits were analyzed using the
same single trait animal model in wssGBLUP as described below:

y = Wb + Za + e (1)

where y represented a vector of phenotypic observations; b was the vector of fixed effects. In this study,
sex, year of birth, use types (meat or dual-purpose), and farms were treated as fixed effects for all traits.
In addition, age (in days) was included in models for YW, 18MW and BYADG as fixed effects. a was the
vector of additive genetic effects and e denoted the residuals; and W and Z were the incidence matrices
of b and a, respectively. It was assumed that

a ∼ N
(
0, Hσ2

a

)
(2)

and
e ∼ N

(
0, Iσ2

e

)
(3)

where σ2
a and σ2

e were the additive genetic variance and residual variance, respectively. H was a blend
of pedigrees and the SNP derived matrix and I denoted the identity matrix. The inverse of matrix H
was calculated as follows:

H−1 = A−1 +

[
0 0
0 G−1

−A−1
22

]
(4)

where A denoted the numerator relationship matrix based on the pedigree for all individuals; A22 was
the numerator relationship matrix for the genotyped animals; and the G matrix was a genomic
relationship matrix that was constructed as described by Vanraden [14]:

G =
ZDZ′∑M

i=1 2pi(1− pi)
(5)

where Z was an incidence matrix adjusted for allele frequencies, and D denoted a diagonal matrix of
weights for SNP variances. M was the number of markers, and pi represented the minor allele frequency
of the ith SNP. The SNP effects and weights for wssGWAS were calculated iteratively as follows [9]:

1. In the first iteration, set t = 1,
D(t) = I (6)

G(t) = λZD(t)Z
′ (7)

λ =
1∑M

i=1 2pi(1− pi)
(8)
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2. Estimate GEBV for all animals using ssGBLUP approach;
3. Compute SNP effects as

û(t) = λD(t)Z
′G−1

(t)âg (9)

where û(t) was a vector of the SNP effects estimation and âg was the GEBV of animals that were
genotyped;

4. Calculate SNP weights for the next iteration using

di(t=1) = û2
i(t)2pi(1− pi) (10)

where i was the ith SNP;
5. Normalize SNP weights to keep the total genetic variance constant as

D(t+1) =
tr
(
D(t)

)
tr
(
D(t+1)

)D(t+1) (11)

6. Calculate G(t+1)

G(t+1) =
ZD(t+1)Z′∑M

i=1 2pi(1− pi)
(12)

7. Set t = t + 1 and loop to step 2.

In this study, the procedure was run for three iterations as used in Wang et al. [9] and the
wssGWAS results were represented by the proportion of genetic variance explained by the windows of
20 successive adjacent SNPs [15]. The percentage of additive genetic variance explained by the ith SNP
window was calculated as:

var(ai)

σ2
a
× 100% =

var
(∑20

j=i z jû j
)

σ2
a

× 100% (13)

where ai was the genetic value of the ith window consisting of 20 adjacent SNPs; σ2
a was the total

genetic variance and z j was a vector genotype of the jth SNP for all animals; and û j was the SNP effect
of the jth SNP within the ith window. Because the windows size is 20, the proportion of variance
assigned to SNP 1 is calculated from SNP 1 to 20, for SNP 2 it goes from 2 to 21, and so forth. Therefore,
the SNP that contributed approximately equally to the 20-adjacent-SNP window was defined as the
most important marker (top SNP).

2.5. Identification of Candidate Genes

Genomic windows that explained more than 1.0% of the genetic variance were selected as possible
QTL regions associated with growth traits in Chinese Simmental beef cattle. Genes were searched
using the Ensembl database [16] based on the SNP position that belonged to the significant genomic
windows. In order to better understand the biological processes and pathways shared by these
candidate genes, we conducted GO and KEGG enrichment analysis using DAVID bioinformatics
resource (version 6.8) [17]. Significantly enriched terms were assessed using Fisher’s exact test (p < 0.05)
and genes involved in biological processes were highlighted [18].

3. Results and Discussion

3.1. Descriptive Statistics and Heritabilities for the Growth Traits

Descriptive statistics of the observed phenotypes are shown in Table 1. The coefficients of variation
(CV) for BW, YW, BYADG and 18MW were 11.97%, 16.36%, 18.45% and 18.61%, respectively. The results
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indicated that substantial phenotypic variation of these four traits exists in the Simmental beef cattle
population. The heritability estimates for BW, YW, BYADG and 18MW in Chinese Simmental beef
cattle were 0.42, 0.24, 0.23, and 0.43, respectively.

Table 1. Descriptive statistics and variance components of growth traits in Chinese Simmental beef
cattle a.

Traits N Mean SD Min Max CV (%) σ2
a σ2

e σ2
p h2(SE)

BW (kg) 6022 44.96 5.38 29 61 11.97 10.165 14.150 24.315 0.42 ± 0.03
YW (kg) 3996 418.21 68.37 264.94 608.65 16.36 444.650 1352.400 1797.050 0.24 ± 0.03

BYADG (kg/d) 3996 1.03 0.19 0.6 1.54 18.45 0.003 0.010 0.013 0.23 ± 0.02
18MW (kg) 3137 587.41 109.36 376.84 905.24 18.61 1193.400 1598.000 2791.400 0.43 ± 0.03

a Number of animals used in the wssGWAS, σ2
a = genetic variance, σ2

e = residual variance, σ2
p = phenotypic variance,

h2 = heritability.

3.2. Summary of the wssGWAS Results

We performed a wssGWAS in Simmental beef cattle populations to map genetic markers and
genes associated with BW, YW, BYADG and 18MW. The wssGWAS results were represented by the
proportion of genetic variance explained by windows of 20 successive SNPs (Figure 1). Genomic
windows that explained more than 1.0% of the additive genetic variance of the four traits are shown
in Tables 2–5, together with the genes near the most important SNPs within each window. In total,
66 nonredundant windows that explained 1.01–20.15% of the additive genetic variance for the four
growth traits were identified. Furthermore, the identified genomic windows explained 50.56%, 57.71%,
61.78%, and 37.82% of the genetic variances for BW, YW, BYADG, and 18MW, respectively.
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Figure 1. Manhattan plots for the percentage of genetic variance by 20 adjacent SNP windows for
growth traits in Chinese Simmental beef cattle. gVar (%) represent the proportion of genetic variance
explained by 20 adjacent SNPs. (a) BW: birth weight; (b) YW: yearling weight; (c) 18MW: body weight
at the age of 18 months; (d) BYADG: average daily gain from birth to yearling.

3.3. wssGWAS for BW

Analysis was undertaken of the association with BW identified 18 genomic windows that were
located on BTA1, 2, 3, 7, 10, 13, 16, 17, 18, 20, 21, 22, and 27. The identified genomic windows explained
1.07–7.89% of the additive genetic variances for BW. Genes nearest to the peak SNPs within each window
were treated as potential associated candidates with BW (Table 2). Among these significant windows,
the most important region was located at BTA10: 64,843,548–64,888,989 bp, which explained 7.89%
of the genetic variance for BW. The gene adjacent to the top SNP, BovineHD1000018698, was sulfide
quinone oxidoreductase (SQOR). SQOR is a protein coding gene that may interact with the inner
mitochondrial membrane in a monotopic fashion and catalyze the mammalian metabolism of H2S
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(hydrogen sulfide) in human [19]. Veeranki and Tyagi et al. [20] proposed a model where H2S may
function in skeletal muscle wasting/fibrosis as a result of metabolic complications (such as from obesity),
which implied that the features of H2S reversed muscle damage and moderated metabolic myopathy.
The second most important window (BTA18: 46,973,033–47,054,361 bp) was located inside the tubulin
folding cofactor B (TBCB) gene, which plays a role in modulating cytoskeletal activity [21]. TBCB was
proposed as a candidate gene related to meat quality in pigs due to the correlation between the
protein filaments of the cytoskeleton and actin filaments [22]. In the modern beef cattle industry, meat
quality traits and growth traits are two important breeding goals in genetic improvement programs.
Furthermore, there is a strong genetic correlation between meat quality and growth traits and therefore,
the suggestion of TBCB gene as a potential candidate for BW in cattle is reasonable [23]. BW is a typical
polygenic quantitative trait which may be subject to nutritional intake, feeding environment of cows
during pregnancy, and in some cases, sex-specific genomic imprinting [24]. Results from this study
implied that genetic factors may contribute to a large share of the variation in BW in beef cattle and
therefore, the identified SNPs (which explain >1% of the genetic variance) can be used for genetic
improvement in the context of genomic selection (GS).

Table 2. Windows that explained >1% of the additive genetic variance for birth weight in Simmental
beef cattle.

Chr a Window Region (bp) b gVar (%) c topSNP d Candidate Gene e Distance

10 64,843,548–64,888,989 7.89 BovineHD1000018698 SQOR 195,750
18 46,973,033–47,054,361 6.52 BovineHD1800013865 TBCB 971
13 32,898,989–32,942,587 4.51 BovineHD1300009582 CACNB2 106,042
17 59,422,381–59,533,974 4.23 BovineHD1700016840 WSB2 634
21 54,246,453–54,304,950 4.17 BovineHD2100015513 DYNLL1 49,145
1 86,864,010–87,000,954 3.00 BovineHD0100024730 CCDC39 89,435

18 43,486,335–43,539,576 2.83 BovineHD1800012856 CEP89 within
7 25,274,362–25,344,621 2.51 BovineHD0700006961 CHSY3 within

10 22,200,536–22,227,480 2.20 BovineHD4100007964 TRDC within
21 18,442,926–18,507,549 2.06 BovineHD4100015053 / /
18 9,390,632–9,440,030 1.78 BovineHD4100013431 CDH13 122,107
16 55,454,686–55,576,782 1.57 BovineHD1600015438 BOVAGGRUS 12,062
2 84,272,058–84,486,086 1.35 BovineHD0200024049 SLC39A10 461,944

27 17,515,069–17,628,482 1.35 BovineHD2700005087 / /
1 93,966,859–94,071,139 1.24 BovineHD0100026650 NLGN1 334,630

20 58,103,188–58,151,048 1.14 BovineHD2000016087 ANKH 274,075
22 21,743,429–21,782,083 1.14 BovineHD2200006300 ITPR1 within
3 83,073,814–83,124,751 1.07 BovineHD0300023782 ATG4C 225,105

a Chromosomes; b Window position in Ensembl; c The proportion of the genetic variance explained by 20 adjacent
SNP window; d The SNP that explained the largest proportion of genetic variance within each window (equal to the
value of the 20 adjacent SNP window explained); e Candidate genes near the top SNPs.

3.4. wssGWAS for YW and BYADG

In total, 14 windows in eight different chromosomes (BTA2, 3, 12, 19, 20, 23, 24 and 26) were
associated with YW (Table 3). The proportion of genetic variance for these windows ranged from
1.11% to 11.80%. The most significant window (BTA19: 28,728,158–28,766,002 bp) contributed 11.80%
of the genetic variance of YW. The top SNP (BovineHD1900008433) of this window was located within
the myosin heavy chain 10 (MYH10) gene. The MYH10 gene is a member of the myosin superfamily
which shares the common features of ATP hydrolysis (ATPase enzyme activity), actin binding,
and potential for kinetic energy transduction [25]. Myosin plays an important role in muscle growth
and contraction [26,27]. MYH10 is isolated from muscle cells and with functions in contractile, it is also
related to myosin in nonmuscle cells [28]. Moreover, Xue et al. [29] found that MYH10 takes part
in a pathway related to growth and development in chickens and significantly upregulated the
expression pattern at the transcript level. Furthermore, we evaluated the LD pattern of the SNPs in
the region around 28.47–28.90 Mb on BTA19. The LD analysis revealed that the region located on
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MYH10 showed a high LD level between the top SNP and nearby SNPs, implying a potential selection
signature with regard to YW in Simmental beef cattle (Figure 2a). Therefore, it is reasonable to speculate
that MYH10 is a strong candidate gene for YW due to its potential roles in the genetic mechanisms
of muscle development. For BYADG, 15 windows in nine different chromosomes (BTA3, 5, 11,
19, 20, 21, 22, 24 and 28) were identified (Table 4). Results showed that these windows explained
1.13–20.15% of the genetic variance for BYADG. The first three most important windows explained
approximately 37.14% of the genetic variance of BYADG in total, which accounted for up to 60% of the
genetic variance of all identified window interpretations. These findings implied that these windows
(BTA3: 106,574,782–106,644,015 bp; BTA21: 5,941,998–5,968,820 bp; and BTA5: 77,160,030–77,212,501 bp)
need more attention when selecting candidate genes for BYADG.

Table 3. Windows that explained >1% of the additive genetic variance for yearling weight in Simmental
beef cattle.

Chr a Window Region (bp) b gVar (%) c topSNP d Candidate Gene e Distance

19 28,728,158–28,766,002 11.80 BovineHD1900008433 MYH10 within
24 30,102,158–30,164,301 10.30 BovineHD2400008151 CHST9 within
3 106,567,276–106,628,358 9.47 BovineHD0300030609 RLF within
3 103,471,058–103,518,431 6.91 BovineHD0300029636 FAM183A 27,683
2 98,892,271–98,968,329 4.95 BovineHD0200028465 CPS1 within
3 107,082,578–107,188,510 3.09 BovineHD4100002437 PABPC4 1629
3 105,809,585–105,893,206 1.92 BovineHD0300030334 CTPS within
3 105,103,446–105,151,204 1.57 BovineHD0300030104 / /
2 98,767,231–98,852,487 1.50 BovineHD0200028425 CPS1 within

12 37,317,791–37,375,872 1.36 BovineHD1200010822 ATP12A 395,299
23 13,141,062–13,228,547 1.33 BovineHD2300003307 KCNK17 19,569
26 28,767,232–28,870,785 1.33 BovineHD2600007699 SORCS1 377,841
20 23,511,931–23,646,033 1.11 BovineHD2000007095 SLC38A9 within
12 37,380,083–37,454,520 1.08 BovineHD1200010844 / /

a Chromosomes; b Window position in Ensembl; c The proportion of the genetic variance explained by 20 adjacent
SNP window; d The SNP explained that the largest proportion of genetic variance within each window (equal to the
value of the 20 adjacent SNP window explained); e Candidate genes near the top SNPs.

Table 4. Windows that explained >1% of the additive genetic variance for average daily gain from
birth to yearling in Simmental beef cattle.

Chr a Window Region (bp) b gVar (%) c topSNP d Candidate Gene e Distance

3 106,574,782–106,644,015 20.15 BTB-00148396 RLF within
21 5,941,998–5,968,820 10.77 BovineHD2100001150 ALDH1A3 108,659
5 77,160,030–77,212,501 6.22 BovineHD0500021921 / /

28 41,315,052–41,343,055 4.52 BovineHD2800011614 WAPAL 178,111
5 77,289,332–77,341,198 2.90 BovineHD0500021954 / /
3 103,471,058–103,518,431 2.79 BovineHD0300029636 FAM183A 27,683

21 6,031,496–6,114,704 2.66 BovineHD2100001184 / /
11 47,195,270–47,279,484 1.75 BovineHD1100013811 RPIA 24,890
22 30,689,705–30,734,004 1.69 BovineHD2200008831 FOXP1 within
3 105,080,919–105,138,584 1.58 BovineHD0300030098 / /

19 24,496,287–24,525,423 1.56 BovineHD1900007093 OR1G1 9771
24 36,117,632–36,240,233 1.50 BovineHD2400009926 ADCYAP1 within
3 79,457,216–79,552,102 1.31 BovineHD0300022907 PDE4B within

20 23,511,931–23,646,033 1.26 BovineHD2000007095 SLC38A9 within
20 63,943,581–63,965,954 1.13 BovineHD2000018191 SEMA5A 204,352

a Chromosomes; b Window position in Ensembl; c The proportion of the genetic variance explained by 20 adjacent
SNP window; d The SNP that explained the largest proportion of genetic variance within each window (equal to the
value of the 20 adjacent SNP window explained); e Candidate genes near the top SNPs.
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Table 5. Windows that explained >1% of the additive genetic variance for 18-month weight in
Simmental beef cattle.

Chr a Window Region (bp) b gVar (%) c topSNP d Candidate Gene e Distance

1 64,788,160–64,867,718 3.44 BTB-00033090 ARHGAP31 within
20 55,978,366–56,002,160 2.74 BovineHD2000015364 / /
22 32,826,296–32,856,787 2.68 BovineHD2200009375 FAM19A4 within
4 18,525,619–18,550,135 2.62 BovineHD0400005535 C14H8orf59 424,568

26 2,272,143–2,343,667 2.21 BovineHD2600000342 / /
1 156,048,715–156,119,788 2.13 BovineHD0100045578 TBC1D5 within
9 86,926,509–86,984,196 2.06 BovineHD0900024383 SASH1 within

10 51,554,432–51,726,000 1.87 BovineHD1000015443 FAM63B within
10 48,374,404–48,406,759 1.82 BovineHD1000014557 VPS13C 105,944
25 25,386,519–25,442,136 1.77 BovineHD2500007181 KIAA0556 29,783
9 93,609,823–93,684,438 1.72 BovineHD0900026491 / /

23 19,254,288–19,290,469 1.64 BovineHD2300004888 CLIC5 within
14 49,154,187–49,217,544 1.54 BovineHD1400013993 MED30 195,164
14 47,765,008–47,835,714 1.40 BovineHD1400013511 SAMD12 14,727
5 18,940,413–19,018,750 1.39 BovineHD0500005477 DUSP6 336,392
9 71,346,676–71,377,254 1.19 BovineHD0900019755 MOXD1 4746

25 30,583,072–30,676,658 1.16 BovineHD2500008480 / /
3 60,766,989–60,828,010 1.15 BovineHD0300018250 TTLL7 317,902
1 49,845,978–49,930,370 1.14 BTB-01076879 ALCAM 486,294

21 38,919,896–39,060,313 1.13 BTB-00818234 / /
9 88,466,483–88,498,915 1.01 BovineHD0900024910 PPP1R14C within

a Chromosomes; b Window position in Ensembl; c The proportion of the genetic variance explained by 20 adjacent
SNP window; d The SNP that explained the largest proportion of genetic variance within each window (equal to the
value of the 20 adjacent SNP window explained); e Candidate genes near the top SNPs.
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Figure 2. Region plots of the two major candidate regions on BTA19 and BTA1. Results were shown for
YW around 28.47–28.90 Mb on BTA19 (a) and for 18MW at 64.55–64.98 Mb on BTA1 (b). The primary
SNP within each region is denoted by a large blue triangle. Different levels of linkage disequilibrium
between the primary SNP and surrounding SNPs were represented by colored rhombi.

Notably, three windows located on BTA3 (103,471,058–103,518,431 bp, 105,080,919–105,138,584 bp,
106,574,782–106,644,015 bp) were found to be associated with both YW and BYADG, implying
a pleiotropic effect for growth traits in beef cattle. Two genes which were adjacent to the top SNP
within each window were mined, namely, family with sequence similarity 183 member A (FAM183A)
and rearranged L-Myc fusion (RLF). FAM183A has been reported to play a role in autosomal recessive
intellectual disability and is expressed in the human brain [30,31]. To our knowledge, few studies
have clearly investigated whether FAM183A plays a role in influencing growth traits in domesticated
animals and even in the mouse, therefore, further functional studies are required. RLF encodes a Zn-15
related zinc finger protein and has a general role in transcriptional regulation of fetal and adult tissues
in humans [32]. RLF has been reported to play a role in increasing DNA methylation at a number
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of elements related to transcriptional regulation and is involved in maintaining epigenetic marks at
CpG island shores and enhancers [33]. DNA methylation plays an essential role in embryonic muscle
development and is important for the establishment and maintenance of cellular identity [34,35].
These findings could be helpful for the understanding of mechanisms of muscle development in
mammalian animals.

3.5. wssGWAS for 18MW

Table 5 shows the 21 windows associated with 18MW which were located on BTA1, 3, 4, 5, 9, 10,
14, 20, 21, 22, 23, 25, and 26, together with 16 genes near the most important SNP within each window.
The identified genomic windows explained 1.01–3.44% of the genetic variance for 18MW. The most
important window, BTA1: 64788160–64867718 bp, contributed to 3.44% of the genetic variance of
18MW and was located within gene Rho GTPase activating protein 31 (ARHGAP31). ARHGAP31
encodes a GTPase-activating protein (GAP) and plays a role in regulating the cellular processes of
cycling between an inactive GDP-bound and active GTP-bound conformation [36]. GAP has been
reported to have functions in protein trafficking and cell growth and serves as a molecular switch
involved in the regulation of various cytoskeleton-related events and gene transcription [37]. Moreover,
LD analysis revealed that a certain level of LD exists between the top SNP (BTB-00033090 within gene
ARHGAP31) and its surrounding SNPs in gene transmembrane protein 39A (TMEM39A) (Figure 2b).
The potential role of TMEM39A in growth needs further investigation.

3.6. Potential Genomic Regions and Candidate Genes Reveal the Complexity of the Genetic Architecture of
Growth Traits

In an attempt to better understand the biological processes and pathways shared by the
trait-associated genes, we searched 51 genes near the SNPs within each window of the four growth
traits. We then performed KEGG and GO enrichment analysis. Three GO terms and no KEGG pathways
were enriched for the growth traits analyzed. The enriched GO terms are involved in neuromuscular
processes controlling balance (GO: 0050885) consisting of chloride intracellular channel 5 (CLIC5),
aldehyde dehydrogenase 1 family member A3 (ALDH1A3), and MYH10 genes; calcium-dependent
cell-cell adhesion via plasma membrane cell adhesion molecules (GO: 0016339) consisting of cadherin
13 (CDH13) and neuroligin 1 (NLGN1) genes; motor neuron axon guidance (GO:0008045) including
activated leukocyte cell adhesion molecule (ALCAM) and forkhead box P1 (FOXP1) genes. Given the
potential roles of the three GO terms in biological processes, their involvement in the growth traits
were further analyzed. We searched genes function based on literature reports. Then, the MYH10,
CDH13, and FOXP1 genes were highlighted as the main candidates for the growth traits of the three
terms, respectively. Notably, MYH10 gene has been highlighted as a strong candidate in the association
analysis for YW and additional laboratory functional experiments would be needed. CDH13 gene
encodes a member of the cadherin superfamily and acts as a negative regulator of axon growth during
neural differentiation [38]. FOXP1 gene plays an important role in the regulation of tissue and cell
type-specific gene transcription during both development and adulthood and controls adipocyte
differentiation [39]. Results in GO enrichment analyses further extend to suggest that many genes are
involved with growth development.

Many studies have reported QTLs and genes associated with growth traits in cattle (e.g., body
weight and average daily gain) using the GWAS strategy [40,41]. However, few QTLs have consistently
been identified as being associated with growth traits among breeds of cattle, including for Brangus
heifers [42], Japanese Black (Wagyu) cattle [43], Charolais beef cattle [8], Siberia cattle [1], Nellore
cattle [3], and the Chinese Simmental beef cattle examined in this study. These findings imply that
further in-depth research is required to determine whether breed-specific QTLs exist. Despite the
fact that we have recently uncovered the near-complete genome sequences of several organisms,
our knowledge of the genes that underlie phenotypic differences within domestic animals remains
rudimentary [44]. In particular, for complex quantitative traits, such as growth traits, the genetic
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basis may be subject to a number of factors including natural selection, inheritance, and evolutionary
forces [45,46]. The results from our study suggest the complexity of genetic mechanisms of growth traits
in Chinese Simmental beef cattle, as numerous potential genomic regions and candidate genes were
associated with growth traits. Moreover, to evaluate whether SNPs associated with BW, YW, BYADG
and 18MW identified in the present study correspond to any previously known QTLs, we compared
the significant SNPs within each window from this study with the SNPs in the cattle QTLdb [47] based
on the location of SNPs. The 40 SNPs newly found to be associated with growth traits had not been
previously characterized as QTL with regard to growth in cattle (Table S1). These findings will further
advance our understanding of the genetic basis for growth traits and will be useful for the molecular
breeding of BW, YW, BYADG and 18MW in the context of GS in cattle.

4. Conclusions

In conclusion, we identified 66 nonredundant windows which explained 1.01–20.15% of the
additive genetic variance for growth traits in Chinese Simmental beef cattle using the wssGWAS
approach. Genes with potential functions in muscle development and regulation of cell growth were
highlighted as candidates for growth traits in cattle, such as SQOR and TBCB for BW, MYH10 for YW,
RLF for BYADG, and ARHGAP31 for 18MW. Specifically, the identified genomic regions will be useful
for the genetic improvement of growth traits by allowing the associated SNPs to be assigned with
higher weights in genomic selection.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/2/189/s1,
Table S1: Comparative mapping of tag SNPs with previous QTLs reported in the cattle QTL database (as of
24 November 2019) and previous GWAS results.
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