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Abstract

Rater effects are commonly observed in rater-mediated assessments. By using item response
theory (IRT) modeling, raters can be treated as independent factors that function as in-
struments for measuring ratees. Most rater effects are static and can be addressed appro-
priately within an IRT framework, and a few models have been developed for dynamic rater
effects. Operational rating projects often require human raters to continuously and re-
peatedly score ratees over a certain period, imposing a burden on the cognitive processing
abilities and attention spans of raters that stems from judgment fatigue and thus affects the
rating quality observed during the rating period. As a result, ratees’ scores may be influenced
by the order in which they are graded by raters in a rating sequence, and the rating order effect
should be considered in new IRT models. In this study, two types of many-faceted (MF)-IRT
models are developed to account for such dynamic rater effects, which assume that rater
severity can drift systematically or stochastically. The results obtained from two simulation
studies indicate that the parameters of the newly developed models can be estimated sat-
isfactorily using Bayesian estimation and that disregarding the rating order effect produces
biased model structure and ratee proficiency parameter estimations. A creativity assessment
is outlined to demonstrate the application of the new models and to investigate the con-
sequences of failing to detect the possible rating order effect in a real rater-mediated
evaluation.
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Introduction

Rater effects, which have been deemed sources of irrelevant variance in reported ratee scores, are
commonly observed and inevitably pose a potential threat to the quality of ratings in rater-
mediated assessments (e.g., Engelhard & Wind, 2018). A variety of rater effects, including rater
severity/leniency, extreme/central scale category use, halo errors, and differential rater functioning
(DRF) over different groups, have been well documented in the literature (Myford & Wolfe,
2003). Many statistical correction procedures and psychometric models developed under the
framework of item response theory (IRT) have been proposed to address the abovementioned
issues (e.g., Engelhard, 2013; Hung et al., 2012; Jin & Wang, 2018; Linacre, 1989; Myford &
Wolfe, 2004; Wang & Wilson, 2005a). Most rater effects that have been investigated are static and
rarely involve time-relevant issues during the rating process. In reality, human raters’ behaviors
are dynamic and may change over time. Therefore, the reliability and validity of ratings should be
examined with time-related rater effects.

When raters are suspected to exhibit inconsistent performance at different time points, DRF
over time has been applied to detect the possible changes in rater performance across multiple
rating periods (e.g., Myford & Wolfe, 2009). However, such approaches focus on the detection of
rater drift across different rating sessions scheduled over a few days and rarely investigate the
changes in rater performance within the same rating session. Such studies assumed that raters’
performances were homogenous within a rating session but assumed that they were heterogeneous
between two rating sessions and disregarded raters’ judgment and scoring standard drifts during
one rating session. In reality, raters’ behaviors may be more likely to drift over a continuous and
intensive rating session because raters may feel fatigue or boredom and limit their cognitive
resources when extensive rating tasks must be completed within a rating period. In this study, we
focus on raters’ judgment or scoring standard drifts (i.e., changes in rater severity) and consider the
rating order effect in rater-mediated assessments (Hopkins, 1998; Nitko, 1996; Repp et al., 1998)
by developing a new IRT model to account for rater severity drift over successive ratees in a rating
sequence.

The rating order effect in rater data caused by judgment fatigue has long been discussed in the
literature. For example, ratees’ scores or objects’ ratings are influenced by the order in which they
are rated; this effect can be observed in the fields of clinical psychology (Cummings, 1954), job
analysis (Israelski & Lenoble, 1982), and essay assessment (Drave, 2011). In operational rater-
mediated assessments, due to efficiency and cost considerations, raters are often required to
continuously and repeatedly provide scores over a long period (e.g., the Test of English as a
Foreign Language (TOEFL) iBT speaking test; refer to Xi & Mollaun, 2009), and as a result, the
rating quality may be affected by long rating periods and repetition-related fatigue. In an ex-
periment involving the scoring of spoken English, Ling et al. (2014) designed multiple rater
groups, manipulated the total scoring time and the length of each rating session and investigated
the effect of raters’ judgment fatigue on the rating quality. The evidence showed that a longer
rating period yielded lower rating quality, productivity, and rating consistency, even with brief
breaks, which indicated that ratees’ scores depended on the order in which they were rated. In
addition, Ling et al. conducted a follow-up survey and found that most of the raters reported low
levels of scoring confidence and losses of concentration later in the rating session. These findings
justify our approaches for developing new models to meet the practical demands of addressing the
rating order effect in rater-mediated assessments.

As rating order effects are observed in rater-mediated assessments, item position effects in-
volve item presentation sequences and were deliberated in the literature when selected response
items with objective answers were administered to examinees in achievement tests. The item
position effect refers to the phenomenon by which an item placed toward the end of a test is more
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difficult than the same item placed early in the test; such effects have been considered vulnerable
to influences from irrelevant construct factors, such as motivations, time limits, or fatigue (Debeer
& Janssen, 2013; Hecht et al., 2015; Weirich et al., 2014). Because human beings’ performances
exhibit similar behavior patterns when working on a given task (Anastasi, 1979), whether taking
an examination or making judgments, the concept of items functioning differently depending on
the order in which they are placed (Debeer & Janssen, 2013; Meyers et al., 2009; Weirich et al.,
2014) can be applied to develop new models by assuming that rater severity can drift depending on
the order in which ratees are rated. Such an assumption can be supported by the evidence obtained
in previous studies, in which fatigue had universally negative impacts on human behaviors and
performances across different areas due to performing cumulative work on the same tasks or
similar tasks (Ling et al., 2014, p. 495).

Within the framework of generalized linear mixed models (GLMMs; McCulloch & Searle,
2001), the dependent variables can be modeled as functions of fixed and random effects predictors
that can accommodate a variety of IRT models with exploratory and explanatory purposes (De
Boeck & Wilson, 2004). Corresponding to the GLMM formulation, the probability that raters will
give a particular rating to ratees can be predicted by a linear combination of the characteristics of
items (i.e., evaluation criteria), ratees, raters, and rating orders via certain link functions (e.g., the
logit link function). Factors that are assumed to affect the item responses can be incorporated into
the GLMM functions, and similar approaches have been adopted in Rasch-based, many-faceted
(MF) models for rater-mediated assessments. In this study, we develop new models that allow for
the inclusion of item/criterion discrimination because the extent to which an item/criterion relates
to a latent trait can be quantified, and two-parameter, MF-IRT models provide better levels of
model-data fit than Rasch-based MF models (Hung & Wang, 2012; Wang & Liu, 2007). Although
MF models definitely originate from the family of Rasch models (Linacre, 1989) and were not
developed for measuring item discrimination, to facilitate communication with the academic
community, this study follows the traditional taxonomy and denotes generalized measurement
models as MF-IRT models. Notably, the multiparameter IRT models employed in this study may
not demonstrate as desirable measurement properties as those in a Rasch model (i.e., true pa-
rameter invariance across facets; Fischer, 1995), but the consensus that non-Rasch models can
approximately achieve interval-level scaling properties and provide an appropriate metric for
parametric statistical analyses has been reached (Morse et al., 2012, pp. 123-125).

Purpose

The purpose of this study is to develop a new class of IRT models that are capable of detecting
possible rater drift in a scoring rubric (i.e., rater severity) within a rating sequence and inves-
tigating the extent to which rater severity changes as the rating session progresses. By applying the
new models to fit rater data, ratees’ proficiency estimates can be precisely calibrated, and ratees’
achievement levels can be deemed comparable when they are rated by raters in different rating
orders because the rating ordering effect is considered an influential facet in the proposed
psychometric models. This study consists of simulation procedures for evaluating the quality of
the model parameter recovery effects attained under different manipulated conditions and an
empirical analysis related to creativity assessment to demonstrate the application of the new
models. We address the following research questions regarding the simulation and empirical
studies for guidance:

1. How can the model parameters (i.e., criterion difficulty/threshold, criterion discrimination,
rater severity, raters’ change points, severity shifts, severity variations, and ratee profi-
ciency levels) be recovered in the simulated rater data for the newly developed models
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under a variety of manipulated conditions? What are the consequences of disregarding rater
severity drift during the rating session by fitting a regular MF-IRT model to the simulated
data generated from the proposed models?

2. Can the newly developed models be applied to fit creativity assessment data and detect the
rating order effect in the rating sequence? In addition, what are the implications of using the
new models to fit real data when the analysis results are compared with those calibrated by
a regular MF-IRT model?

In the next section, we briefly introduce IRT models for rater data based on the facet modeling
approach and then extend the existing MF-IRT models to incorporate a change parameter into their
probabilistic functions for quantifying the amount that a rater’s severity shifts (i.e., scoring rubric
drift) throughout the rating process. Following the introduction to the new models, a series of
simulations are conducted to evaluate the quality of the parameter estimation effects achieved by
the new models with respect to parameter recovery via Bayesian Markov chain Monte Carlo
(MCMC) methods, and the results are summarized and discussed. Empirical rater data related to a
creativity assessment are collected and applied to fit the developed models to detect the possible
presence of the rating order effect when raters must score all ratees within a limited period. The
final section draws conclusions regarding the newly developed models, discusses the implications
of the models, and provides suggestions and directions for future study.

IRT Models for Rater-Mediated Assessments With Rating
Order Effects

When the performance of an individual is graded by external raters using a rating scale, scores are
assigned to each person in a polytomous manner via assessment criteria that relate to a set of
categories (e.g., poor, satisfactory, good, and excellent). In MF-IRT modeling, rater severity is
treated as an additional factor that influences the probability of receiving a certain rating. Ac-
cording to Linacre (1989), when using the partial credit model (PCM) as the item response
function, the log odds of ratee n receiving a score of j over a score of j-1 when graded by rater £ on
criterion i can be expressed as

log (Lk) =0, — (B +15) — & (M

nik(j—1

where 0, is the proficiency level of ratee n and is assumed to be normally distributed; f; is the
overall difficulty parameter for criterion i; t; is the jth threshold parameter for criterion i; and &y is
the severity parameter for rater k. As in the traditional PCM, the means of the threshold parameters
within each criterion are set to zero for model identification. Note that the severity parameter is
utilized to represent the extent to which a rater assigns a rating that differs from the ratee’s actual
performance, where a larger §; value enables a lower probability of receiving a high score from
rater k, and vice versa.

Existing MF-IRT models are not sensitive to the rater severity changes induced when raters
score many ratees. We assume that the rating order may influence the scoring rubric of a rater and
that a different scoring rubric may emerge beyond a certain point. Two types of newly developed
models are extended from the MF generalized PCM (MF-GPCM; Wang & Liu, 2007) and
described as follows. The first proposed model is referred to as the MF-GPCM with rating order
effects (MF-GPCM-OE) and is built based on the finding that ratees are more likely to receive
different scores according to a systematic trend depending on the order in which they are rated
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(Hopkins, 1998; Snyder, 2000), where the log odds of the two probabilities of ratee n receiving
scores of j and j—1 are given by

10g <M> =0o; % [en - (B, + TU') - 6kl} > (2)
Prir-1y

where q; is the discrimination parameter for criterion i, & is the severity parameter of rater £ when
scoring a ratee in position / of the rating sequence (I = 1, ---, Ly; Ly is the number of ratees that
rater k must grade), and the other parameters are defined as shown in equation (1).

Because a trained rater is expected to use an identical scoring rubric throughout the rating
process, with a severity parameter that is constant regardless of the ratee order, the d;; parameter
can be restricted as follows

/
61{3 fﬂsnk
O = / , 3
O + (I — Ly Xnk),ifL—k>nk

where 1, is the change point for rater &, which is expressed as the ratio of the number of ratees that
rater k has rated before shifting their initial scoring rubric to the number of ratees that must be rated
by rater k, and 0, € (0, 1) (i.e., rater k grades the first L X 1, ratees using a constant scoring rubric
before the change point); y, is the rating shift parameter for rater k such that §;; > §; ifrater k becomes
more severe (i.e., a positive y parameter) and &y < Jy, if rater £ becomes more lenient (i.e., a negative
v parameter) as the rating process progresses. For example, if a severe rater has a severity parameter
of & = 1 and a change point parameter of 1 = .7 and is assigned to grade 100 ratees in a rating task,
two possible linear functions of increasing and decreasing severity can be assumed in the rating
sequence, with which the given rater may become more severe (e.g., y = .02) and his or her severity
parameter would become & = 1.02 when rating the 71%' ratee, § = 1.04 when rating the 72" ratee,
and 6 = 1.60 when rating the last ratee. On the other hand, he or she may become more lenient (e.g.,
y = —.02), and the corresponding severity parameter would become § = .98 when rating the 71
ratee, 8 = .96 when rating the 72" ratee, and & = .40 when rating the last ratee.

Equations (2) and (3) assume a linear shift in rater severity; that is, the longer the rating
sequence is, the larger the change in the amount of rater severity. However, raters are likely to
exhibit greater variability in their rater severity by repeatedly redefining their original scoring
rubrics as the rating project progresses (Ling et al., 2014; Nitko, 1996). In such a case, the shift in
rater severity may not follow a systematic pattern as the linear weight function assumes (i.e.,
equation (3)). When rater & assigns ratings below or above the ratee’s actual performance level
based on a dynamic scoring rubric, judgment randomness should be considered. The second
proposed model is referred to as the MF-GPCM with random severity (MF-GPCM-RS) and
assumes that rater k exhibits variation in their severity beyond the change point, which is given by

Pni L
log (#) = 0o; % [0, — (B; + ) — S )
nik(j—1)I

and
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where 84, describes the severity parameter at the /th position for rater £ and ratee # in the rating
sequence and the other parameters are defined as previously described. &y, reduces to oy if rater k
follows a constant scoring rubric; otherwise, Oy, is assumed to follow a normal distribution with a
mean of §; and a variance of 7. The MF-GPCM-RS considers judgment variations across ratees
by quantifying the magnitude of rater severity randomness. The concept of modeling variations in
rater severity is similar to the detection of within-rater variability, which has been discussed in the
literature (Longford, 1994).

In the above model formulations, we treat the ratee (i.e., person) parameters as random effects
but treat the criterion (i.e., item) parameters as fixed effects. Under the GLMM framework, both
person parameters and item parameters can be viewed as random effects to provide a more
parsimonious and inferable parameter distribution rather than focusing on individual parameter
estimation, as has been conducted in previous studies (e.g., Hecht et al., 2015; Weirich et al.,
2014). We adopt random-ratee and fixed-criterion approaches to model the rating order effect for
several reasons. First, the item parameters are usually treated as fixed effects rather than random
effects in most standard IRT models (Embretson & Reise, 2000). Second, it is not appropriate to
implement the random-item approach unless many items are constructed because the distribu-
tional parameters largely depend on the sample size to be calibrated (Huang, 2017). In rater-
mediated assessments, the number of assessment criteria or items is often limited to a small size
(e.g., less than five criteria; e.g., Jin & Wang, 2018; Wind & Ge, 2021); therefore, a random effects
approach for modeling the criterion parameters appears to be infeasible. Even if a criterion or item
bank is accessible, the distribution of the criterion or item parameters may not be normal, and
assuming a normal distribution appears to be unjustifiable (Wang & Wilson, 2005b).

For identification purposes, the model parameters should be constrained appropriately for the
two proposed models. Both the MF-GPCM-OE and MF-GPCM-RS specify latent trait parameters
(0) that follow the standard normal distribution. The means of the threshold parameters (t) across
the thresholds within each criterion are constrained to zero, as are the means of the severity
parameters (0) across the raters and the means of the rating shift parameters (y) across the raters.
Other subsumed models can be derived from the proposed models in terms of further model
constraints; we illustrate this application in the following empirical analysis. Note that when all
raters preserve the same scoring rubrics for all ratees regardless of the rating sequence, 1 = 1 in
equations (3) and (5), and the models mentioned above reduce to the traditional MF-GPCM for
rater data.

Note that the models developed above involve raters’ evaluations on a single task, but this does
not mean that the analysis has to be limited to one task. When appropriate, one can extend the
proposed models to incorporate multiple task assessments, and their corresponding models are
illustrated and supplemented in Online Supplement A. As the anonymous reviewers noted,
additionally, the traditional DRF detection method may be applied to investigate the rating order
effects of raters, and ratees’ performances may be not compared when raters cannot maintain a
consistent scoring rubric across different rating orders. We argue the limitations of the DRF
detection method and other fit statistics applied when detecting possible rating order effects and
debate the justifiability of using the developed models to fit rater data when rater invariance cannot
be reached; these issues are deliberated in Online Supplement B.
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Method

Two simulation studies were conducted to assess the quality of the MF-GPCM-OE and MF-
GPCM-RS with respect to parameter recovery using Bayesian estimation. For the first simulation
study, the data generation model was the MF-GPCM-OE, and the data analysis models were the
true model for assessing the parameter recovery effect and the MF-GPCM for investigating the
consequences of fitting a mis-specified model that disregarded the rating order effect. The same
approach mentioned in the first simulation study was applied to the second simulation study, in
which the MF-GPCM-RS served as both the data generation model and data analysis model, and
the MF-GPCM was fit to the MF-GPCM-RS data to evaluate the consequences of disregarding the
rating order effect in a rating sequence.

An incomplete rating design (i.e., when ratees are graded by a subset of raters) is commonly
employed in rater-mediated assessments and was applied here. The numbers of ratees (500 or
1,000) and assessment criteria (3 or 5) were manipulated across the simulation conditions. Note
that we applied assessment criteria rather than items that have been commonly utilized in IRT
models to describe the characteristics of evaluation indicators because assessment criteria or
domains are more frequently employed than items in the literature on rater-mediated assessments
(e.g., Jin & Wang, 2018; Wang & Engelhard, 2019). Each criterion was judged by raters on a five-
point rating scale.

For both simulation designs, each of the 500 or 1,000 ratees was graded by a subset of 2 (out of
5) raters on 3 or 5 criteria based on a five-point rating scale; that is, each rater assigned ratings to
200 ratees for the small sample size (i.e., 500 ratees) and to 400 ratees for the large sample size
(i.e., 1,000 ratees). Specifically, as shown in Table 1, the ratees were split into five equally sized
groups, and the rating ordering in each ratee group remained constant for the assigned raters.
Adjacent raters thus scored the same ratee group to provide connections between two raters in an
incomplete rating design (Wind & Guo, 2019). Rating designs and rater workloads similar to those
used in our settings were presented in previous studies (e.g., Jin & Wang, 2018; Ling et al., 2014).
Note that because the raters only evaluated a subset of ratees during the rating session, it is also
implied that the ratees were not graded by the raters in the same ordering sequence. Ratees’ latent
trait parameters were generated from a standard normal distribution. The raters’ severity pa-
rameters were set to five levels: —1.0, —0.5, 0, 0.5, and 1.0. The overall criterion difficulty
parameters were set to —0.5, 0, and 0.5 for the three-criteria condition and to —1.0, —0.5, 0, 0.5,
and 1.0 for the five-criteria condition, which was consistent with previous studies (Guo & Wind,
2021; Jin & Wang, 2018). The four threshold parameters were set to —0.75, —0.25, 0, 0.25, and
0.75 for all criteria, as demonstrated in previous studies (Jin & Wang, 2018). The criterion
discrimination parameters were generated from a uniform distribution ranging between 0.5 and
1.5, as in the empirical analysis using the MF-GPCM (Wang & Liu, 2007).

Table 1. Incomplete Ranking Design in the Simulation Study.

Rater | Rater 2 Rater 3 Rater 4 Rater 5
Ratee group
Group | \ \
Group 2 \ \
Group 3 \ \'%
Group 4 \'% \%
Group 5 \ \

Note. The numbers of ratees in each group were 200 and 100 for the large and small sample sizes, respectively.
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The proposed MF-GPCM-OE and MF-GPCM-RS have unique parameters that traditional
faceted models do not include; these parameters should be specified for their generated values. For
both simulation studies, the change point parameters (i.e., 1) were generated from a uniform
distribution ranging between 0.6 and 1.0 while assuming that the raters concentrated early during
the rating process and changed their initial scoring rubrics near the end of the rating sequence. For
the first simulation study, the rating shift parameters (i.e., y) for each rater were sampled from a
uniform distribution between —0.02 and 0.02 with a constrained mean of zero. Small shift
parameter values have been selected and observed in the literature for IRT models with item
position effects (e.g., Debeer & Janssen, 2013), and the idea of a linear position effect on item
difficulty was applied to the simulation study. The MF-GPCM-RS incorporated a random effects
parameter to capture the randomness of rater severity, and the variance of the severity (0’%) was
generated from a uniform distribution ranging between 0.5 and 1.5, representing mild randomness
effects to severe randomness effects, respectively; these were similar to the values used in previous
studies of random effects IRT models (e.g., Wang & Liu, 2007; Wang & Wilson, 2005a).

All data responses were generated using the MATLAB computer program. After rater data
were generated, Bayesian estimation with MCMC methods was performed to calibrate the model
parameters utilizing the WinBUGS computer program (Spiegelhalter et al., 2003). One major
reason to implement Bayesian estimation rather than frequentist estimation (e.g., marginal
maximum likelihood estimation) is that the developed models involve high dimensionality and
that MCMC methods can produce efficient and precise estimates (Huang et al., 2013; Huang,
2020). Additionally, the WinBUGS codes for the newly developed models are provided and listed
in Online Supplement C and D with respect to the empirical analysis; these codes can be flexibly
and easily modified by researchers and practitioners to accommodate many existing IRT models
for rater-mediated assessments and for developing their customized models.

The prior settings and parameter convergence evaluation are presented in Online Supplement E. All
conditions for both simulation studies were replicated 30 times, and the sampling variation appeared to
remain rather small as we added replications. In the Bayesian IRT literature, simulations have often
been conducted with a moderate or small number of replications, even for complicated IRT models
(e.g., Klein Entink et al., 2009; van der Linden et al., 2010), mainly because each replication consumes
dozens of hours of computational time to calibrate model parameters. Note that evidence documented
in the literature has shown that 30 replications are sufficient to gain reliable inferences when model
parameter recovery is the objective (Wang et al., 2013); therefore, a large number of replications is not
urgently needed unless concerns arise regarding the issue of model fit statistics and their corresponding
sampling distribution (e.g., Wind & Sebok-Syer, 2019).

The biases and root mean square errors (RMSEs) of the parameter estimates were computed to
assess the structural parameter recovery effect; the RMSEs were also computed for the latent trait
estimates in each replication. In addition, to evaluate the consequences of disregarding the rating
order effect, the MF-GPCM-OE data or MF-GPCM-RS data were fit to the conventional MF-
GPCM under each manipulated condition to evaluate the parameter recovery effect. Following the
comprehensive simulation studies, the application of the proposed models to fit real-life data is
demonstrated by using a creativity assessment, and subsequently, a supplementary simulation
study that mimicked the empirical analysis is provided to investigate the effects of the practical
conditions on the model parameter recovery effect; these discussions can be found in Online
Supplement G and H, respectively.

Results

The parameter recovery effects of the MF-GPCM-OE and MF-GPCM-RS were evaluated by
creating box plots of the bias and RMSE values for each structural parameter estimator, which
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were compared with those of the reduced model that disregarded the rating order effect. To respect
space constraints and because the biases and RMSEs had similar patterns, the box plots of the bias
values are listed in Online Supplement F. When the data were simulated from the MF-GPCM-OE
and fit to the data generation model and the MF-GPCM, the upper and lower quartiles of the bias
values were closer to zero for the MF-GPCM-OE than for the MF-GPCM, especially with respect
to the severity and threshold parameter estimates (refer to Figure F1 of Online Supplement F).
Similar patterns can be observed for the RMSE, as shown in Figure 1, in which the MF-GPCM-OE
produced lower RMSE values than the MF-GPCM. Furthermore, we inspected the estimation
quality of the change point (i.e., n) and rating shift (i.e., y) parameters in the MF-GPCM-OE and
discovered that the two types of parameters could be satisfactorily recovered.

In addition, a factorial analysis of variance was conducted to evaluate the effects of the two
manipulated factors (i.e., the number of ratees and number of criteria) on parameter recovery. The
RMSE values of the parameter estimates were treated as dependent variables, and the effect size
(i-e., the partial eta squared) was calculated for each structural parameter estimator. With respect to
the main effect of the ratee size, the magnitudes of the partial eta squared were .29, .33, .52, .62,
.68, and .31 for the discrimination, difficulty, change point, rating shift, severity, and threshold
parameters, respectively. With respect to the main effect of the criterion size, the magnitudes of the
partial eta squared were .06, .11, .10, .34, .20, and .04 for the discrimination, difficulty, change
point, rating shift, severity, and threshold parameters, respectively. Apparently, the number of
ratees had the largest effect on parameter recovery, and a larger ratee size can improve the
structural parameter estimation process, followed by the number of criteria, in which the use of
more assessment criteria was associated with lower RMSE values.

Special attention can be directed to the interpretation and implication of the n parameter
because this parameter is indicative of the extent to which a rater exhibited a constant scoring

(a) MF-GPCM-OE (b) MF-GPCM-OE (C) MF-GPCM-OE (d ) MF-GPCM-QE

Number of ratees = 500 and Number of criteria =3 Nusriber of ratees = 500 and Number of criteria = § Number of ratees = 1,000 and Number of criteria = 3 Number of ratees = 1,000 and Number of criteria = 5

RMSE
RMSE
RMSE
RMSE

—

iH

Paramater Parameter Parameter Parameter

(&) wrorcm (f)  wrcrem (@) wreron (h)  wrercn

Number of ratees = 500 and Number of critesia =3 Number of ratees = 500 and Number of criteria = 5 Number of ratees = 1,000 and Number of criteria = § Number of ratees = 1,000 and Number of crileria = 5

=

.‘F«MSE
RMSE
\|
RMSE

| [H
H

Parameter Parameter Parameter Parameter

Figure |. Box plots of the RMSEs of the parameter estimates obtained when the MF-GPCM-OE (a—d) and
MF-GPCM (e—h) were fit with the simulated data.

Note. CP = change point, Dif = difficulty, Dis = discrimination, RSh = rating shift, Sev = severity, and Thr =
threshold.
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rubric from the initial rating process to the other process that was influenced by nuisance factors
(e.g., fatigue or loss of motivation). According to the analysis results, the change point parameters
could be sufficiently recovered to their generated values, implying that an aberrant rater is likely to
be flagged within the rating session and that an intervention may be arranged to adjust the possible
severity drift. However, such an approach cannot be applied to practical performance assessments
because the change point at which raters begin to drift their severity should be calibrated by
collected rating data, and on-the-fly calibration of the change point parameters appears to be
infeasible. Nonetheless, we can construct a rater pool in which raters’ characteristics (e.g., change
points) have been calibrated during previous rating activity, and administrators can use the
obtained information to adjust rating schedules or arrange an intervention for a given rater. For
example, when a rater had a n parameter estimate of .6 that was calibrated by the rating responses
of 100 ratees, for the given rater, the rating administrators should particularly monitor the quality
of the ratings, arrange a short break in a timely manner, or repeatedly remind the rater of the
scoring guidelines after he or she graded the first 60 ratees in the proceeding session.

For the second simulation study, the quartiles of the bias values of the MF-GPCM-RS were
nearly zero except for the variance estimates and were lower than those of the MF-GPCM (refer to
Figure F2 of Online Supplement F). Patterns similar to those of the bias values were observed
when the RMSE values were evaluated, as shown in Figure 2, in which most of the structural
parameters had acceptable parameter precisions, but the RMSEs of the variance parameter es-
timates were larger than the errors of the other parameter estimates. As the number of ratees and
the criteria size increased, the RMSE values of all estimates decreased, and the estimation
precision improvement was most significant for the variance parameters. This finding is attributed
to the notion that the estimation precision of random effects parameters (i.e., variations in rater
severity) depends more on the chosen sample sizes than the fixed effects parameters (Wang &
Wilson, 2005a). Compared with those observed in the first simulation study, the consequences of
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Figure 2. Box plots of the RMSEs of the parameter estimates obtained when the MF-GPCM-RS (a—d) and
MF-GPCM (e—h) were fit with the simulated data.

Note. CP = change point, Dif = difficulty, Dis = discrimination, Sev = severity, Thr = threshold, and Var =
variance.


https://journals.sagepub.com/doi/suppl/10.1177/01466216231174566

322 Applied Psychological Measurement 47(4)

(a) MF-GPCM-OE vs MF-GPCM (b)  MF-GPCM-RS vs MF-GPCM
R1 = 500 ratees, R2 = 1,000 ratees, C1 = 3 criteria, and C2 = 5 criteria R1 = 500 ratees, R2 = 1,000 ratees, C1 = 3 criteria, and C2 = 5 criteria

085
06

Model _ Model
M VFGPCM M wFGPCM
E3 mF-GPCM-OE E3 MF-GPCMRS

RMSE

HIH
il
HIH

RI1C1 R1C2 R2C1 R2C2 R1C1 R1C2 R2C1 R2C2
Condition Condition

Figure 3. Box plots of the RMSEs of the latent trait estimates for both simulation studies.

using the MF-GPCM to fit the MF-GPCM-RS data were more serious for both the discrimination
and threshold parameters because of their larger RMSE values.

Next, we conducted a factorial analysis of the variance produced for the RMSE values that were
obtained by fitting the MF-GPCM-RS. The results were similar to those obtained from the MF-
GPCM-OE, and the factor concerning the number of ratees had a larger proportion of explained
variance than that of the number of criteria for most estimators, as indicated by the following
calculated effect size. Regarding the main effect of the number of ratees, the magnitudes of the
partial eta squared were .13, .51, .01, .65, .25, and .34 for the discrimination, difficulty, change
point, severity, variance, and threshold parameters, respectively. Regarding the main effect of the
number of ratees, the magnitudes of the partial eta squared were .01, .00, .06, .16, .03, and .00 for
the discrimination, difficulty, change point, severity, variance, and threshold parameters, re-
spectively. Compared with the first simulation study, the effect of manipulating the number of
criteria for parameter recovery appeared to be rather trivial.

The parameter recovery effects of the ratees’ latent trait estimates were evaluated by screening
the scatter of the RMSE values obtained across 30 replications with box plots, as shown in
Figure 3. For both simulation studies, more precise latent trait estimations were associated with the
use of a larger number of criteria and the use of the data generation model to fit the simulated data.
The MF-GPCM-OE had a better ratee parameter recovery effect than the MF-GPCM-RS due to its
smaller RMSE values. The differences between the RMSE values of the MF-GPCM-OE and the
MF-GPCM appeared to be larger than those between the MF-GPCM-RS and the MF-GPCM as
the number of ratees increased. A large number of ratees enabled the MF-GPCM-RS to achieve
better person parameter estimation, but this effect did not apply to the MF-GPCM-OE. In
summary, both the MF-GPCM-OE and MF-GPCM-RS yielded satisfactory parameter recovery
effects for both the structural parameters and person parameters using the MCMC methods, and
the consequences of disregarding the rating order effect when fitting the conventional faceted
model to the data were not trivial and could produce misleading conclusions and incorrect in-
ferences about ratees’ performances.
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Conclusion

Since human raters are always involved in providing scores to subjects based on pre-specified
criteria in rater-mediated assessments, the measurement errors that can be caused by rater effects
should be considered and addressed using statistical methods or psychometric models (Myford &
Wolfe, 2003; 2004). Previous studies have warned that judgment fatigue can affect rating quality
and that raters’ behaviors may drift across different rating sessions (e.g., Myford & Wolfe, 2009).
However, raters often experience continuous and repetitive scoring processes and may experience
fatigue within the same rating session. In such cases, raters’ judgment standards may shift de-
pending on the order in which ratees are graded in a rating sequence such that the rating order
effect arises; this effect threatens rating validity and renders ratees’ scores incomparable (Bejar,
2012; Hopkins, 1998; Nitko, 1996; Repp et al., 1988). Acknowledging human beings’ limited
cognitive resources and attention spans during a highly repetitive rating task, we proposed two
types of MF-IRT models that assumed that after raters exceeded certain change points, their
severity parameters shifted linearly or stochastically. We thus formulated the MF-GPCM-OE and
MF-GPCM-RS to satisfy the practical demands of addressing the rating order effect in rater-
mediated assessments.

After conducting a series of simulations with the use of Bayesian estimation, the results showed
that both the MF-GPCM-OE and MF-GPCM-RS produced satisfactory parameter recovery ef-
fects, and in general, increases in the numbers of ratees and criteria improved the parameter
estimations. When disregarding the rating order effect by fitting the conventional MF-GPCM, the
structural and person parameters were imprecisely estimated. The proposed MF-IRT models that
compensate for the rating order effect are not limited to the formulations discussed above, and the
flexibility of the WinBUGS program allows ordinary users to modify the basic commands for
customized applications, which serves as one major contribution of this study.

As evidenced by the empirical example of a creativity assessment, the MF-GPCM-RS yielded a
good fit for the given data; the three raters exhibited different points at which they switched from a
constant standard to dynamic scoring; and disregarding the rating order effect produced nontrivial
effects on the estimation of ratees’ proficiency. Surprisingly, one rater switched to dynamic
scoring early in the rating session (after rating the 31% ratee), probably because products should be
evaluated with different perspectives regarding creativity criteria, and repetition-related fatigue
contributed to a large burden on raters’ concentration and cognitive processing abilities. Nev-
ertheless, the analytical results should be interpreted with caution because the employed sample
size was rather small. In addition to integrating more breaks during the rating session, it is
recommended that rater behavior be monitored for evidence of judgment standard drift based on
the information obtained from the proposed models. For example, if a rater has been identified as a
person whose scoring standard drifted in a previous rating session, an intensive training program
should be implemented before the next rating project. Alternatively, in the current scoring project,
the given rater’s performance should be supervised, and they should be alerted, particularly near
the change point, to take corrective actions (e.g., take an immediate break or conduct a scoring
guideline review).

The rating order effect was preferentially notable for rater-mediated assessments in this study,
and changes in raters’ severity were simulated. As reminded by anonymous reviewers, we cannot
exclude the possibility that multiple rater effects would occur simultaneously to threaten ratees’
scoring processes. Previous studies have demonstrated that ratees’ performance can be influenced,
for instance, by the combination of leniency and halo effects (Engelhard, 1994), rater misfit and
rating range restrictions (Wolfe & McVay, 2012), and rater misfit and DRF (Wesolowski et al.,
2015). Wind and Guo (2019) further examined the sensitivity of rater fit statistics and DRF indices
when raters exhibited both misfitting and DRF between two subgroups in simulated settings and
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provided practical guidelines for practitioners. However, as discussed above, the existing fit
statistics or DRF indices may not be appropriate for dynamic rater effects, and multiple rater
effects should be controlled by extending more general measurement models. For example, when
researchers suspect that the effects of rating ordering and range restrictions (e.g., central- or
extreme-scale category use; Wolfe et al., 2001) on rating quality occur simultaneously, they may
extend the proposed models by adding raters’ discriminating power in the response functions or by
further allowing rater discrimination to drift over time. Another example may be the scenario in
which raters operate differential rating order effects across different subgroups and raters’ severity
levels not only drift within a rating session but also change between two subgroups, which can be
appropriately modeled by further model extensions if substantive literature and empirical evidence
regarding raters’ behaviors are available. Additionally, Bayesian model fitting techniques (e.g.,
posterior predictive model checking; Sinharay et al., 2006) also provide powerful indicators for
assessing the degree to which a fitted model deviates from the data response patterns and can be
considered useful diagnosis tools when using complicated IRT models to fit rater data.

We close this study by providing several suggestions for future research. First, the proposed
models were built based on substantive knowledge in the literature. However, we cannot exclude
other possibilities when raters provide scores in an operational rating project. For example, it is
reasonable to assume that raters may switch to their initial scoring rubrics after taking a short break
within a rating session, and a model that allows for reversible rating behavior should be developed.
Second, in addition to the MF-IRT models for rater data analysis, other psychometric models, such
as the hierarchical rater model (Patz et al., 2002) and the latent class signal detection model
(DeCarlo & Zhou, 2021), can be extended to explore the rating order effect and compared with the
developed models in terms of efficiency. Third, although the provided WinBUGS codes are
substantively flexible such that they can be modified for customized models, it may be laborious
for practitioners to compare multiple competing models in their data analyses. In practical testing
situations, it is common for researchers to select a best-fitting model from a variety of models
based on the assumed fit of the given data to explain individuals’ complicated response behaviors
(e.g., Debeer & Janssen, 2013). Further efforts to increase the feasibility of this process by
developing a programming package that integrates the proposed models are needed for the
purpose of practical promotion. Last, raters’ switches from normal behavior to aberrant scoring
behavior may be dependent on the previous rating, and the current rating status may be influenced
by the previous rating. A transition probability modeling approach (Kuijpers et al., 2021) can be
incorporated into the proposed models to describe the dependencies of behavior switching be-
tween adjacent rating sequences; this would be an interesting topic and is intended for future
investigation.
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