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Objective: To investigate the dynamic amplitude of low-frequency fluctuations (dALFFs)

in patients with Parkinson’s disease (PD) and healthy controls (HCs) and further explore

whether dALFF can be used to test the feasibility of differentiating PD from HCs.

Methods: Twenty-eight patients with PD and 28 demographically matched HCs

underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans and

neuropsychological tests. A dynamic method was used to calculate the dALFFs

of rs-fMRI data obtained from all subjects. The dALFF alterations were compared

between the PD and HC groups, and the correlations between dALFF variability and

disease duration/neuropsychological tests were further calculated. Then, the statistical

differences in dALFF between both groups were selected as classification features to help

distinguish patients with PD from HCs through a linear support vector machine (SVM)

classifier. The classifier performance was assessed using a permutation test (repeated

5,000 times).

Results: Significantly increased dALFF was detected in the left precuneus in patients

with PD compared to HCs, and dALFF variability in this region was positively

correlated with disease duration. Our results show that 80.36% (p < 0.001) subjects

were correctly classified based on the SVM classifier by using the leave-one-out

cross-validation method.

Conclusion: Patients with PD exhibited abnormal dynamic brain activity in the left

precuneus, and the dALFF variability could distinguish PD from HCs with high accuracy.

Our results showed novel insights into the pathophysiological mechanisms of PD.

Keywords: Parkinson’s disease, resting-state fMRI, dynamic brain activity, amplitude of low-frequency

fluctuations, support vector machine

INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by progressive
impairment of motor function and widespread non-motor symptoms, which affects patients’
quality of life and is, hence, a significant social burden (1–3). At present, the pathophysiological
mechanism of PD is not fully understood, and it is still a neuroimaging challenge to form a
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definitive diagnosis at the early stage of the disease (1). Magnetic
resonance imaging (MRI) has made great contributions in the
clinical evaluation of PD (4, 5). Conventional MRI has been
used to exclude secondary parkinsonism caused by neoplasms,
vascular parkinsonism, and multiple sclerosis among others. The
common imaging features of primary PD include iron deposition
and substantia nigra atrophy (6, 7). However, several new reports
have revealed that the cerebral region is widely involved in
patients with PD. Therefore, it is important to explore novel
imaging features that could help effectively identify PD.

In recent years, advanced neuroimaging techniques have
allowed us to noninvasively explore the nature of the human
brain in an efficient manner (8–10). Resting-state functional
MRI (rs-fMRI) is an established tool to investigate the intrinsic
neuronal activity of the human brain bymeasuring the amplitude
of spontaneous low-frequency fluctuations (ALFFs) of blood-
oxygen-level dependent (BOLD) signals (11–13). ALFF has been
widely used to investigate regional brain activity in neurological
diseases. Abnormal ALFFs in PD have been detected in extensive
brain regions and act as an important characteristic related
to subtypes of motor symptom or comorbidities (14). When
compared with healthy controls (HCs), patients with tremor-
dominant PD exhibited increased ALFF in the right cerebellar
posterior lobe, while those with PD with postural instability/gait
difficulty exhibited decreased ALFF in the bilateral putamen and
cerebellar posterior lobe (15). PD patients with depression had
significantly lower ALFF in the prefrontal cortex and anterior
cingulated cortex than PD patients without depression (16).
PD patients with apathy showed lower ALFF in the left orbital
middle frontal gyrus and bilateral superior frontal gyrus (17)
than PD patients without apathy. Further, PD patients with visual
hallucinations showed lower ALFF in both lingual gyrii/cunei
and greater ALFF in the temporo-parietal regions, medial
temporal gyrus, and cerebellum than those with non-visual
hallucinations and HCs (18). By measuring the local spontaneous
brain activities, these studies provided satisfactory evidence
that widespread cerebral regions were involved in PD, which
greatly contributed to the understanding the neurobiological
foundations of such disorders. However, the results of these
studies were limited in that their focus on abnormal brain
activities in PD with different motor/non-motor symptoms
was based solely on group-level analysis; thus far, to our
best knowledge, no study has used these abnormal features to
distinguish PD with specific symptoms at an individual level.

Previous studies on aberrant static ALFF in PD are
inconsistent as they report both lower and higher local brain
activity in various cerebral areas. However, a static state analysis
of ALFF ignores the dynamic characteristics of brain activity
during the whole scanning period. Evidences from rs-fMRI that
employ a sliding window approach have effectively detected
dynamic functional connectivity features with higher sensitivity
than the static state method (12, 19, 20). Recent studies reported
that dynamic rs-fMRI analysis strategy not only made good
contributions to human-brain exploration but also played an
important role in studying the pathogenesis of schizophrenia
(21–23). Nevertheless, few reports have focused on time-varying
local spontaneous neuronal activity in PD, as ALFF itself

exists with substantial fluctuations either (24, 25). Furthermore,
support vector machine (SVM) is one of the most widely
used supervised machine-learning approaches that can enable
individual-level classification and prediction with high accuracy
(26, 27). Uddin et al. (28) applied SVM to distinguish patients
with autism from normal individuals with a classifier accuracy of
over 80%. Accordingly, SVM has been proposed as an effective
tool for diagnostic application in the clinic.

To date, no studies have evaluated the combined effects of
dynamic ALFF and supervised machine-learning approaches
on PD. Based on previous findings that a static ALFF has
greater heterogeneity in PD and the proven property of
dynamic methods, we hypothesized that dynamic intrinsic local
spontaneous neuronal activity will show greater variability in
subjects with PD than HCs, and that it may be another powerful
index of rs-fMRI in exploring the underlying mechanisms of
PD. We aimed to identify the cerebral regions that displayed
abnormal dynamic local neuronal activity based on the voxel
level of the whole brain. Furthermore, we applied SVM to
observe whether the aberrant dALFF could be used as a feature
to distinguish PD from HCs. This study may improve our
understanding of the potential pathophysiological mechanism of
PD. Moreover, we hope that this research can contribute to the
clinical diagnosis of PD at an individual level.

MATERIALS AND METHODS

Subjects
This study was carried out in accordance with the tenets of the
Helsinki Declaration and approved by the local ethics committee
of Xuzhou Affiliated Hospital, Xuzhou Medical University.
Written informed consent was obtained from all subjects before
participation in the study.

The project used a convenience sample of 31 hospitalized
patients with PD who met the UK Bank diagnostic criteria
for PD (29). All patients underwent neuropsychological tests
such as the Mini Mental Status Examination (MMSE) and the
Montreal Cognitive Assessment (MoCA) and motor impairment
evaluation including the Unified Parkinson’s Disease Rating
Scale (UPDRS) and the Hoehn and Yahr (H-Y) stage when
patients were off medication. The included patients had no
history of mental illness or other neurological diseases. The
exclusion criteria of the participants were MRI-confirmed brain
abnormalities such as trauma, stroke, tumor, and infection and
contraindications to MRI such as claustrophobia and implanted
metal devices. In addition, the subjects with a history of drug
and/or alcohol abuse and syncope were also excluded. All patients
underwent routine treatment, and none of them received any
other relevant interventions. Thirty-two age- and sex-matched
healthy volunteers were included as HCs. Three patients and four
HCs were excluded because of head motion artifacts. Finally,
28 patients with PD (15 male and 13 female, 59.17 ± 9.72
years old) and 28 HCs (14 male and 14 female, 58.18 ± 6.46
years old) were included for analysis. There were no significant
intergroup differences with respect to age and sex (Table 1). All
patients underwent functional MRI scanning when they were
off medication; all the HCs also underwent the same protocol
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TABLE 1 | Demographics and clinical data.

Variable PD (N = 28) HCs (N = 28) P

Sex (M/F) 15/13 14/14 0.789#

Age (years) 59.17 ± 9.72 58.18 ± 6.46 0.794*

Duration of PD (years) 8.46 ± 2.92 N/A N/A

UPDRS-III 29.1 ± 8.70 N/A N/A

H-Y 2.02 ± 0.71 N/A N/A

MoCA 24.39 ± 2.52 25.86 ± 1.73 0.015*

MMSE 27.64 ± 1.25 27.71 ± 1.24 0.831*

CV values 0.18 ± 0.04 0.13 ± 0.12 <0.001*

PD, Parkinson’s disease; HCs, healthy controls; M, male; F, female; UPDRS-III, unified

Parkinson’s disease rating scale; H-Y, Hoehn and Yahr disability scale; MoCA, Montreal

Cognitive Assessment; MMSE, Mini-Mental Status Examination.

Data are presented as the range and mean ± SD.
#The p-value was obtained using a chi-square test.

*The p-value was obtained by a general linear mode analysis.

for MRI scanning and neuropsychological tests. All subjects
were right-handed.

MRI Data Acquisition
All participants were scanned in a 3.0 Tesla MRI scanner (GE
Medical Systems, Signa HD, Waukesha, WI) with an eight-
channel head coil. During the scan, comfortable foam pads
were used to stabilize the head of each subject to minimize
head motion, and all subjects wore earplugs to reduce the noise
from the MRI machine. Then, an echo-planar imaging sequence
was employed to acquire resting BOLD images. The parameters
of the protocol are as follows: time of repetition, 2,000ms;
time of echo, 30ms; field of view, 220mm × 220mm; slice
thickness, 3mm; slice gap, 1mm; voxel size, 3.4mm × 3.4mm
× 4.0mm; number of slices, 36; flip angle, 90◦; and total volume
of each subject, 185.

Preprocessing of rs-fMRI Data
The rs-fMRI data preprocessing were carried out using data
Processing and Analysis for (Resting-State) Brain Imaging
(DPABI) (http://www.rfmri.org/dpabi) (30). The first 10 time
points of each subject were excluded to stabilize the status and
allow participants to adapt to the scanning condition. Slice timing
was carried out on the remaining 175 volumes to correct time
differences. Realignment was performed to correct head motion
by using a Friston-24 model for individual-level correction,
and any subject with a head maximum displacement >2mm,
maximum rotation >2.0◦, or mean framewise displacement
(FD) >0.3 was excluded. In our study, mean FD was set as
a covariate for further group-level statistics to minimize the
potential influences of headmotion. Several covariates such as the
Friston 24 head-motion parameters, cerebrospinal fluid signal,
and white matter signal were regressed. Then, the processed
volumes were normalized to the standard Montreal Neurological
Institute (MNI) echo planar imaging (EPI) template with a voxel
size of 3mm × 3mm × 3mm. Finally, functional volumes
were smoothed with 6-mm full width at half maximum. We
did not carry out global signal regression of our data given that

there is still some controversy regarding removal of the global
signal (31–33).

Dynamic ALFF Analysis
The analysis of dynamic amplitude of low-frequency fluctuations
(dALFF) was carried out using Temporal Dynamic Analysis
(TDA) toolkits based on DPABI (34). Before dALFF calculation,
functional volumes were bandpass filtered (0.01–0.08Hz) to
minimize the influences of low-frequency drifts and fluctuations
of the signal. The sliding window is an important parameter to
capture dynamic spontaneous neural activities, and the proper
window length is critical for dynamic analysis. Too small a
window length may not allow robust estimation of dynamic
changes, and too long a window length may not be able to detect
dynamic activity. Previous studies provided the range of the
appropriate window length as 10–75 TR, step= 1 TR) (12, 35). To
maximize the statistical power, a moderate sliding window length
of 50 TR (step = 1 TR) was selected. The post-processed 175
volumes of each subject were segmented into 126 windows in all.
The ALFF was calculated in each sliding window. The standard
deviation (SD) of ALFF values of each voxel across 126 windows
was further calculated to assess the variability of ALFF. We also
calculated the static ALFF containing the whole sliding window.

Statistical Analysis
Two-sample t-test was used to observe intergroup differences
in age and MoCA/MMSE scores. Sex-based group difference
was evaluated using the chi-square test. A general linear mode
(GLM) with age, sex, and mean FD as covariates was used to
compare the difference of dALFF/ALFF between the PD and
HC groups. Multiple comparisons were corrected using Gaussian
Random-Field (GRF) method (voxel level, p < 0.001; cluster
level, p < 0.05).

Partial correlation analysis was calculated between dALFF
variability and disease duration/MoCA/MMSE/UPDRS/H-Y
with age and sex as covariates (p < 0.05). All statistical analyses
were performed using SPSS version 16 (SPSS Inc., Chicago,
IL, USA).

Support Vector Machine Analysis
The intergroup dALFF difference was used as the classification
feature in this study. We then trained the SVMs by providing
labeled observations, for which the classification results were
known. To overcome the limitations of our samples, the leave-
one-out cross-validation (LOOCV) method was applied to
estimate the generalization ability of our classifier. To verify the
ability of the validation strategy, we also made a classification
comparison by introducing 10-fold cross-validations. Then, the
total accuracy, sensitivity, and specificity were obtained to assess
classifier performance.

A permutation test was used to evaluate the statistical
significance of this classification accuracy (36). The permutation
test was repeated 5,000 times, and during each time, the classifier
randomly reallocated labels of PD andHC to the training subjects
and repeated the entire classification process. The p-value was
obtained after the total permutation was accomplished.
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RESULTS

Demographics and Clinical Data
The details of age, sex, and MoCA/MMSE scores are listed in
Table 1. The results showed no significant difference in age (p =
0.652), sex (p = 0.789), and MMSE (p = 0.831) between the PD
and HC groups. However, the MoCA score of the PD group was
significantly lower than that of the HCs (p < 0.05).

Differences in ALFF/Dynamic ALFF and
Correlational Analysis
The intergroup differences in dALFF are shown in
Figure 1 and Tables 1, 2. Compared with HCs, significantly
increased coefficient of variation (CV) of dALFF was
noted in the left precuneus of PD patients (p < 0.001). In
addition, we found that the CV of dALFF was positively
correlated with disease duration (p < 0.001, r = 0.800)
(Figure 1), and no significant correlation was found between
dALFF variability and MoCA/MMSE/UPDRS/H-Y scores
(Supplementary Material). There were no significant intergroup
differences in ALFF.

Classification Results
Classification results are shown in Figure 2. The accuracy of
linear SVM classifier using LOOCV achieved an accuracy of
80.36%, sensitivity of 85.71%, and specificity of 75% (p < 0.001,

non-parametric permutation approach). The receiver operating
characteristic (ROC) curve of the classifier was 0.82. A 10-fold
validation was also employed in our study to verify the reliability
of the classification method, which generated a classifier accuracy
of 71.43%.

DISCUSSION

Upon literature review, we observed that only few studies
employed a TDA method to explore the neural-activity
characteristics of PD. The present study showed the following
findings: (1) the dALFF of patients with PD compared to HCs
was notably different in the left precuneus; (2) a significant
correlation between CV of dALFF in the left precuneus and
the course of the disease was found in PD; (3) dALFF in the
left precuneus showed high accuracy in distinguishing between
patients with PD and HCs.

Prior studies have noted the importance of cerebral static
local neural activities in PD (4, 14, 15). To our best knowledge,
dynamic changes in spontaneous neural activity has been very

TABLE 2 | dALFF alterations between PD groups and HCs.

Region Cluster size (voxel) MNI (x,y,z) t-value

Left Precuneus 94 (−12, −42, 60) 4.34

FIGURE 1 | Increased CV of dALFF in the left precuneus displayed in coronal (A), sagittal (B), transverse (C), and three-dimensional view (D). Box plots with Whiskers

(min–max) show the CV values in the left precuneus of the two groups (E), and scatterplots show the relationship between the CV in the precuneus of the PD group

and the disease duration (F). CV, coefficient of variation; dALFF, dynamic spontaneous low-frequency fluctuation.
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FIGURE 2 | Classification accuracy of altered dynamic ALFF in the left precuneus obtained by the leave-one-out (red line) and nested 10-fold (blue line) cross

validation methods in PD groups, respectively.

poorly researched. The rs-fMRI analysis was based on the
hypothesis that brain activity was in a stationary state during
the entire scanning period; thus, the dynamic characteristics
could not be identified. Dynamic algorithm was proven to
represent the time-dependent characteristics of brain activity
under the given scanning period. A recent study captured
abnormal dALFF/ Regional Homogeneity (ReHo) in stroke
patients by using TDA and compared it with HCs; they further
found that variability in brain activity could be used to evaluate
patients’ motor function (24). Liu et al. (12) found abnormal
functional network connection (FNC) through dynamic instead
of static state. Dynamic FNC was significantly correlated with
the frequency of epileptic seizures and the course of the disease.
Furthermore, dynamic FNC could distinguish patients with
idiopathic generalized epilepsy with generalized tonic–clonic
seizures from controls with an accuracy of 77.91% through linear
SVM classifier (p < 0.001). Dynamic algorithm showed the
capability to characterize neural activity of the human brain by
identifying specific function signatures.

Our dynamic algorithm showed that the dALFF in the
left precuneus in PD was notably different than HCs. The

result was partially consistent with previous reports that the
left precuneus was a key cerebral region in patients with PD.
Precuneus, which mainly constitutes the medial and posterior
part of the parietal lobe, contributes to motor and cognitive
tasks, and has been reported as displaying the highest resting
metabolic rate among all cerebral regions (37). Interestingly, the
precuneus consumed 35% more glucose than other brain regions
in the resting brain (38). Perfusion single photon-emission
computed tomography (SPECT) and [18F]fluorodeoxyglucose
positron emission tomography ([18F]FDG-PET) proved that the
precuneus was the most remarkable area of hypometabolism
in the posterior cortical region (39). Another [18F]FDG-PET-
based study on PD found that the metabolic capability of
the left precuneus decreased with disease progression (40).
Similarly, a more recent research using the arterial spin labeling
(ASL) technique showed that cerebral blood flow (CBF) in
the left precuneus significantly reduced in the PD group
when compared with HCs (41). These functional imaging
studies supported the view that the left precuneus might be
more prone to attack in neuropsychiatric disorders. Additional
rs-fMRI studies showed that the left precuneus was closely
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associated with motor and non-motor symptoms in PD. Hu
et al. (42) found that increased local brain activity in the
left precuneus was related to the Hamilton Depression Rating
Scale score, by using static brain activity analysis. Thibes
et al. (43) used a brain connection algorithm and showed
that the left precuneus was a critical node connecting with
specific cerebral regions in PD. In addition, morphological
changes of the left precuneus were also found in PD with
cognitive impairment and isolated apathy through voxel-
based morphometry (44, 45). Therefore, the left precuneus
is undoubtedly an important and vulnerable structure in
patients with PD.

In our study, the higher variability of dynamic local brain
activity level in the left precuneus was positively correlated
with the course of PD. This meant that the degree of variation
was significantly increased with an extended disease course,
which reflected the increased or decreased brain activity at
different sliding windows during the whole scanning period.
These findings revealed a localized brain function impairment
over time in PD. However, the abnormal dALFF did not correlate
with UPDRS/H-Y scores in the present findings, likely because
the heterogeneous motor symptoms in PD were associated with
integration of multiple cerebral region function, rather than
being determined by a single brain region impairment (46,
47). Unlike previous reports, the present study did not find
significant intergroup differences with respect to ALFF, either
because the sample size in our study was relatively small or
because the result was not powerful enough to pass the multiple
comparison correction of the present statistical methods. In fact,
the dynamic features were concealed under the static analysis
that represented a measure of the average amplitude of local
activity across different scanning time points within the whole
scan (12). Thus, static rs-fMRImay not be as sensitive as dynamic
analysis to detect neural-activity changes. Our study indicated
that dynamic analysis could completely unearth information of
brain activity. In addition, the present result suggested that the
left precuneus was an important structure involved in PD, and
higher dALFF in this region was a promising imaging marker
reflecting the disease duration. Besides, our findings did not show
a correlation between dALFF and MoCA/MMSE tests. This may
be because the MoCA andMMSE scales were mainly appropriate
for cognitive screening, and our study lacked detailed assessment
of cognitive performance compared to previous studies (48).

The imaging diagnosis of PD remains a challenge even
now, as a confirmed diagnosis in most patients is still made
depending on the clinical symptoms (49). An assessment of
the iron content and volume of substantia nigra may be useful
indicators to identify PD and evaluate the disease progression
(6, 7). However, this approach has not been widely applied
in the clinical management of patients with PD. Previous
reports demonstrated that SVM was a powerful tool utilizing
imaging features to distinguish PD patients from HCs. In our
study, we tested the inter-group difference of dALFF in the
left precuneus as a classification feature to discriminate PD
from HCs through a linear SVM classifier. The accuracy of
this classification was 80.36% when an LOOCV method was
employed (non-parametric permutation correction, p < 0.001).
Further, to compare the performance of SVM using LOOCV, a

nested 10-fold cross-validation method was used to assess the
classifier’s performance; the accuracy was 71.43%. These findings
showed that SVM could achieve better classification capability
with LOOCV, and the results also provided evidence that patients
with PD could be distinguished from HCs at the individual level
when using dALFF variation in the left precuneus. These results
support the hypothesis that the dALFF could identify individual
PD patients.

Our study has some limitations. First, all patients were
on medication. Although patients underwent fMRI scanning
while they were off medication, the effects of the long-term
treatment could not be completely ruled out. Second, the
classification power based on the 28 PD patients was still not
strong enough, and we just used SVM in the same sample
to testify the classification accuracy. Third, the patients did
not undergo comprehensive cognitive scales testing, which
could have prevented a more accurate detection of cognitive
performance. Future research should include a larger sample size
and another independent test sample should be recruited for
testifying classification accuracy.

CONCLUSION

To our best knowledge, this is the first study to attempt to
investigate the dynamic spontaneous neural activities in patients
with PD. Our results provided evidence that dynamic analysis
was more sensitive to detect alteration of brain activity than a
static method. In addition, the CV of dALFF was found to be
correlated with the course of the disease, which may ultimately
contribute to identifying PD at the individual level. Thus,
our results provide novel insights on the pathophysiological
mechanisms of PD.
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